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Motivation

With the advances in information technology, there has been an
ever-increasing load of data in organizations (massive datasets are
commonplace);

All this data, often with high complexity, holds valuable information;

Human experts are limited and may overlook relevant details;

Moreover, classical statistical analysis breaks down when such vast
and/or complex data are present;

A better alternative is to use automated discovery tools to analyze
the raw data and extract high-level information for the decision maker
[Hand et al., 2001];
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Knowledge Discovery from Databases and Data Mining

For more details, consult [Fayyad et al., 1996].
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Knowledge Discovery in Databases (KDD)

“the overall process of discovering useful knowledge from data”.

Data Mining (DM)

“application of algorithms for extracting patterns (models) from data”.
This is a particular step of the KDD process.
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KDD consists of several iterative steps:

Understanding the application domain;

Acquiring or selecting a target data set;

Data cleaning, preprocessing and transformation;

Choosing the DM goals, DM algorithm and searching for patterns
of interest;

Result interpretation and verification; and

Using and maintaining the discovered knowledge.
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DM goals [Fayyad et al., 1996]

Classification – labeling a data item into one of several predefined
classes (e.g. diagnosing a disease according to patient’s symptoms);

Regression – mapping a set of attributes into a real-value variable
(e.g. stock market prediction);

Clustering – searching for natural groupings of objects based on
similarity measures (e.g. segmenting clients of a database marketing
study); and

Link analysis – identifying useful associations in transactional data
(e.g. “64% of the shoppers who bought milk also purchased bread”).
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Multilayer Perceptrons (MLPs) [Bishop, 1995][Sarle, 2005]

Feedforward neural network where each node outputs an activation
function applied over the weighted sum of its inputs:
si = f (wi ,0 +
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Activation functions

Linear: y = x ;

Tanh: y = tanh(x) ;

Logistic or Sigmoid (most used): y = 1
1+e−x ;
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Architecture/Topology

Only feedforward connections exist;

Nodes are organized in layers;
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Why Data Mining with MLPs? [Sarle, 2005]

Popularity - the most used Neural Network, with several off-the-shelf
packages available;

Universal Approximators - general-purpose models, with a huge
number of applications (e.g. classification, regression, forecasting,
control or reinforcement learning);

Nonlinearity - when compared to other data mining techniques (e.g.
decision trees) MLPs often present a higher predictive accuracy;

Robustness - good at ignoring irrelevant inputs and noise;

Explanatory Knowledge - Difficult to explain when compared with
other algorithms (e.g. decision trees), but it is possible to extract
rules from trained MLPs.
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Software [Sarle, 2005]

Commercial:

SAS Enterprise Miner Software (www.sas.com);

Clementine (http://www.spss.com/spssbi/clementine/);

MATLAB Neural Network Toolbox
(www.mathworks.com/products/neuralnet);

STATISTICA: Neural Networks (www.statsoft.com);

Free:

WEKA (data mining, Java source code available)
(www.cs.waikato.ac.nz/~ml/weka);

R (statistical tool, package nnet) (www.r-project.org);

Build Your Own Code:

Better control, but take caution!
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Data Mining with MLPs

Supervised Learning – input/output mapping (e.g. classification or
regression):

Data Collection - learning samples must be representative,
hundred/thousand of examples are required;

Feature Selection - what are the relevant inputs?

Preprocessing - data transformation, dealing with missing data,
outliers, ...;

Modeling – network design, training and performance assessment;

Prediction – feed the trained MLP with new data and interpret the
output;

Explanatory Knowledge – input importance by sensitivity analysis
and extraction of rules from trained MLPs;
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Feature Selection

Selection of the subset of relevant features. Why?

To reduce storage and measurement requirements;
To facilitate data visualization/comprehension;
Non relevant features/attributes will increase the MLP complexity
and worst performances will be achieved.

Feature Selection methods [Witten and Frank, 2005]:

A priori knowledge (e.g. the use of experts);

Filter and Wrapper algorithms;

Correlation analysis (only measures linear effects);

Trial-and-error blind search (e.g. test some subsets and select the
subset with the best performance);

Hill-climbing search (e.g. sensitivity analysis, forward and backward
selection);

Beam search (e.g. genetic algorithms);
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Preprocessing

Handling Missing Data (‘?’, ’NA’, ...) [Brown and Kros, 2003]:

Use complete data only (delete cases or variables);

Data Imputation, substitute by:

Value given by an expert (case substitution);
Mean, median or mode;
Value from another database (cold deck);
Value of most similar example (hot deck);
Value estimated by a regression model (e.g. linear regression);
Combination of previous methods (multiple imputation);
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Outliers

Due to errors in data collection or rare events;

Not related with the target variable, they prejudice the learning;

Solution: use of experts, data visualization, statistical analysis, ...
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Nonnumerical variable remapping [Pyle, 1999]

Only numeric data can be fed into MLPs;

Binary attributes can be coded into 2 values (e.g. {-1, 1} or {0, 1});
Ordered attributes should be encoded by preserving the order (e.g.
{low → -1, medium → 0, high → 1});
Nominal (non-ordered with 3 or more classes) attributes:

1-of-C remapping – use one binary variable per class (generic);
M-of-C remapping – requires domain knowledge (e.g. a state can be
coded into 2 variables, the horizontal and vertical position in a 2D
map);
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Example of 1-of-C remapping

x

Attribute color = {Red, Blue, Green};
With the linear mapping {Red → -1 , Blue → 0, Green → 1} it is
impossible to describe X, which is half green and half red;

With the 1-of-C mapping { Red → 1 0 0, Blue → 0 1 0, Green → 0
0 1 }, X could be represented by: 0.5 0 0.5;
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Rescaling/Normalization [Sarle, 2005]

MLP learning improves if all Inputs are rescaled into the same range
with a 0 mean:

y = x−(max+min)/2
(max−min)/2 (linear scaling with range [-1,1])

y = x−x
s (standardization with mean 0 and standard deviation 1)

Outputs limited to the [0,1] range if logistic function is used ([-1,1] if
tanh).

y = (x−min)
max−min (linear scaling with range [0, 1])
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Classification Metrics

Confusion matrix [Kohavi and Provost, 1998]

Matches the predicted and actual values;

The 2× 2 confusion matrix:

↓ actual \ predicted → negative positive
negative TN FP

positive FN TP

Three accuracy measures can be defined:

the Sensitivity (Type II Error) = TP
FN+TP × 100 (%) ;

the Specificity (Type I Error) ; = TN
TN+FP × 100 (%)

the Accuracy = TN+TP
TN+FP+FN+TP × 100 (%) ;
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Receiver Operating Characteristic (ROC) [Fawcett, 2003]

Shows the behavior of a 2 class classifier when varying a decision
parameter D;

The curve plots 1−Specificity (x−axis) vs the Sensitivity;

Global performance measured by the Area Under the Curve (AUC):

AUC =
∫ 1
0 ROCdD (the perfect AUC value is 1.0);
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Regression Metrics
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The error e is given by: e = d − d̂ where d denotes the desired
value and the d̂ estimated value (given by the model);
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Given a dataset with the function pairs x1 → d1, · · · , xN → dN , we can
compute:

Error metrics

Mean Absolute Deviation (MAD): MAD =
PN

i=1|ei |
N

Sum Squared Error (SSE): SSE =
∑N

i=1 e2
i

Mean Squared Error (MSE): MSE = SSE
N

Root Mean Squared Error (RMSE): RMSE =
√

MSE

Relative Root Mean Squared (RRMSE, scale independent):
RRMSE = RMSE/RMSEbaseline × 100 (%), where baseline often
denotes the average predictor.

Normalized Mean Square Error (NMSE, scale independent);
NMSE = SSE/SSEbaseline × 100 (%)
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Regression Error Characteristic (REC) curves
[Bi and Bennett, 2003]

Used to compare regression models;

The curve plots the error tolerance (x-axis), given in terms of the
absolute or squared deviation, versus the percentage of points
predicted within the tolerance (y -axis);

Example [Cortez et al., 2006a]:
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Validation method: how to estimate the performance?
[Flexer, 1996]

Holdout

Split the data into two exclusive sets, using random sampling:

training: used to set the MLP weights (2/3);

test: used to infer the MLP performance (1/3).

K-fold, works as above but uses rotation:

data is split into K exclusive folds of equal size;

each part is used as a test set, being the rest used for training;

the overall performance is measured by averaging the K runs;

10-fold most used if hundreds of examples;
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Training Algorithm

Gradient-descent [Riedmiller, 1994]:

Backpropagation (BP) - most used, yet slow;

Backpropagation with Momentum - faster than BP, requires
additional parameter tuning;

QuickProp - faster than BP with Momentum;

RPROP - faster than QuickProp and stable in terms of its internal
parameters;

Evolutionary Computation [Rocha et al., 2003]

May overcome local minima problems;

Can be applied when no gradient information is available
(reinforcement learning);
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Local Minima [Hastie et al., 2001]

The MLP weights are randomly initialized within small ranges ([-1,1]
or [-0.7;0.7]);

Thus, each training may converge to a different (local) minima;

Solutions

Use of multiple trainings, selecting the MLP with lowest error;

Use of multiple trainings, computing the average error of the MLPs;

Use of ensembles, where the final output is given as the average of
the MLPs;
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Overfitting [Sarle, 2005][Hastie et al., 2001]

Training Data
Test Data

B

A

Input

Output

If possible use large datasets: N � p (weights);

Model Selection

Apply several models and then choose the best generalization MLP;

Regularization

Use learning penalties or restrictions:

Early stopping - stop when the validation error arises;

Weight decay - in each epoch slightly decrease the weights;
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MLP Capabilities

Linear learning when:

there are no hidden layers; or

only linear activation functions are used.

Nonlinear learning:

Any continuous function mapping can be learned with one hidden
layer;

Complex discontinuous functions can be learned with more hidden
layers;
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Some MLP design rules

Output nodes:

It is better to perform only one classification/regression task per network;
i.e., use C/1 output node(s).

Activation Functions:

Hidden Nodes: use the logistic;

Output Nodes: if outputs bounded, apply the same function; else use
the linear function;
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Design Approaches [Rocha et al., 2006]

Blind Search

Only tests a small number of alternatives.

Examples: Grid-Search/Trial-and-error procedures.

Hill-climbing

Only one solution is tested at a given time.

Sensitivity to local minima.

Examples: Constructive and Pruning methods.

Beam search

Uses a population of solutions.

Performs global multi-point search.

Examples: Evolutionary Computation (EC).

Paulo Cortez (University of Minho) Data Mining with MLPs NN 2006 29 / 67



Explanatory Knowledge

In DM, besides obtaining a high predictive performance, it is also
important to provide explanatory knowledge: what has the model
learned?

Measuring Input Importance [Kewley et al., 2000]

Use of sensitivity analysis, measured as the variance (Va) produced in
the output (y) when the input attribute (a) is moved through its
entire range:

Va =
∑L

i=1 (yi − y)/(L− 1)

Ra = Va/
∑A

j=1 Vj
(1)

A denotes the number of input attributes and Ra the relative
importance of the a attribute;

The yi output is obtained by holding all input variables at their
average values; the exception is xa, which varies through its range
with L levels;
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Extraction of rules from trained MLPs [Tickle et al., 1998]

Two main approaches:

Decompositional algorithms start at the minimum level of
granularity: first, rules are extracted from each individual neuron
(hidden and output); then, the subsets of rules are aggregated to
form a global relationship.

Pedagogical techniques extract the direct relationships between the
inputs and outputs of the MLP; By using a black-box point of view,
less computation is required and a simpler set of rules may be
achieved.
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MLPs vs Support Vector Machines (SVMs)

SVMs present theoretical advantages (e.g. absence of local minima)
over MLPs and several comparative studies have reported better
predictive performances!

Yet:

Few data mining packages with SVM algorithms are available;

SVM algorithms require more computational effort for large datasets;

Under reasonable assumptions, MLPs require the search of one
parameter (hidden nodes or the decay) while SVMs require two or
more (C , γ, ε, ...);

MLPs can be applied in real-time, control & reinforcement or
dynamic/changing environments;
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The most used DM algorithms

KDNUGGETS poll, May 2006 (www.kdnuggets.com):

Decision Trees/Rules: 51.1%

Clustering: 39.8%

Regression: 38.1%

Statistics: 36.4%

Association rules: 30.7%

Visualization: 21.6%

SVM: 17.6%

Neural Networks: 17.6%

Time Series: 13.6

Bayesian: 13.6

...
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Case Study I: Intensive Care Medicine (Classification)
[Silva et al., 2006]

Intensive Care Units

In the last decades, a worldwide expansion occurred in the
number of Intensive Care Units (ICUs);

Scoring the severity of illness has become a daily practice, with
several metrics available (e.g. APACHE II, SAPS II, MPM);

The intensive care improvement comes with a price, being ICUs
responsible for an increasing percentage of the health care
budget;

Resource limitations force Physicians to apply intensive care only
to those who are likely to benefit from it;

Critical decisions include interrupting life-support treatments and
writing do-not-resuscitate orders;

Under this context, Mortality Assessment is a crucial task;
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SAPS II Prognostic Model

The SAPS II is the most widely European score for mortality
assessment, ranging from 0 to 163 (highest death probability);

The model encompasses a total of 17 variables (e.g. age,
previous health status or diagnosis), which are collected within
the first 24 hours of the patient’s internment;

Some of these variables imply the use of clinical tests (e.g. blood
samples) which require costs and time;

The prognostic model is given by a Logistic Regression:

logitk = B0 + B1 × SAPSIIk + B2 × ln(SAPSIIk + 1)
pdrk = exp(logitk)/(1 + exp(logitk))

Implemented in the R statistical environment;
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Motivation

NNs are more flexible than the Logistic Regression;

Current prognostic models only use static data (first 24 h);

Most ICU beds already perform automatic measurement of four
biometrics: Blood Pressure (BP), Heart Rate (HR), Oxygen
saturation (O2) and Urine output (UR);

Physicians can consult the history of these variables, although very
often this valuable data is discarded;
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Aim

Use dynamic information defined by events (out of
range values) obtained from the four variables;

Adopt a KDD/Data Mining (and in particular NN)
based approach for ICU mortality assessment;
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Data Collection

A EURICUS II derived database was adopted, with 13165
records of patients from 9 EU countries, during 10 months, from
1998 until 1999;

Data manually collected by the nursing staff (every hour);

The whole data was gathered at the Health Services Research
Unit of the Groningen University Hospital, the Netherlands;

Each example reports over a patient’s full length of stay;

Preprocessing

After a consult with ICU specialists, the patients with age lower
than 18, burned or bypass surgery were discarded, remaining a
total of 13165 records;

Four entries discarded due to the presence of missing values;

The event based variables were transformed into daily averages;
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Clinical Data Attributes

Attribute Description Domain
SAPS II SAPS II score {0, 1, . . . , 163}
age Patients’ age {18, 19, . . . , 100}
admtype Admission type {1, 2, 3}a

admfrom Admission origin {1, 2, . . . , 7}b

NBP Daily number of blood pressure events [0.0, . . . , 33.0]
NCRBP Daily number of critical blood pressure events [0.0, . . . , 6.0]
NHR Daily number of heart rate events [0.0, . . . , 42.0]
NCRHR Daily number of critical heart rate events [0.0, . . . , 6.0]
NO2 Daily number of oxygen events [0.0, . . . , 28.0]
NCRO2 Daily number of critical oxygen events [0.0, . . . , 6.0]
NUR Daily number of urine events [0.0, . . . , 38.0]
NCRUR Daily number of critical urine events [0.0, . . . , 8.0]
TBP Daily time of blood pressure events [0.0, . . . , 36.0]
THR Daily time of heart rate events [0.0, . . . , 33.0]
TO2 Daily time of oxygen events [0.0, . . . , 33.0]
TUR Daily time of urine events [0.0, . . . , 40.0]
death The occurrence of death {0, 1}c

a : 1 - Non scheduled surgery, 2 - Scheduled surgery, 3 - Physician.
b : 1 - Surgery block, 2 - Recovery room, 3 - Emergency room, 4 - Nursing room, 5 - Other ICU, 6 - Other hospital, 7 - Other
c : 0 - No death, 1 - Death.
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Clinical Data Histograms
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Neural Network Design

The input data was preprocessed with a max −min scaling
within [−1.0, 1.0] and a 1-of-C coding for the nominal attributes
(e.g. admtype);

The output was preprocessed to the values: 0 - no death, 1 -
death;

Predicted class given by the nearest value to the decision
threshold D;

Fully connected MLPs with bias connections, one hidden layer
(with a fixed number of hidden nodes: input nodes/2) and
logistic activation functions;

RPROP training, random initialization within [−1.0, 1.0],
stopped after 100 epochs;

Implemented in a JAVA package developed by the authors.
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Performance Assessment

Metrics: Sen. (sensitivity), Spe. (specificity), Acc. (accuracy) and
AUC (ROC area);

Validation: Stratified hold-out with 2/3 training and 1/3 test sizes;

30 runs for each model;

D = 0.5 (the middle of the interval);

Training Results

Setup Acc Sen Spe

Normal 85.75±0.10 41.78±0.34 96.43±0.08
Balanced 78.22±0.20 76.45±0.37 79.99±0.36
Log Balanced 79.87±0.19 78.99±0.22 80.76±0.26

Balanced training with under sampling (equal number of true/false cases);
Log – application of the transform y = log(x + 1) in the event variables;
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Test Set Performances

Setup Acc Sen Spe AUC

ANN All 79.21±0.24 78.11±0.51 79.48±0.35 87.12±0.21
ANN Case Out. 78.22±0.26 75.78±0.66 78.82±0.36 85.52±0.20
ANN Outcomes 77.60±0.31 70.00±0.59 79.45±0.48 83.88±0.23

LR All 75.97±0.29 77.06±0.68 75.71±0.40 85.17±0.27
LR Case Out. 77.15±0.26 70.63±0.67 78.73±0.41 83.78±0.24
LR Outcomes 77.57±0.15 65.91±0.62 80.41±0.21 82.59±0.23

LR SAPS II 82.60±0.14 42.57±0.50 92.33±0.12 79.84±0.26
LR SAPS II B 69.37±0.32 77.57±0.64 67.37±0.48 80.04±0.25

ALL - All inputs except the age;
Case Outcomes - All inputs except the SAPS II;
Outcomes - Only uses the intermediate outcomes;
LR SAPS II - the most used European prognostic model;
LR SAPS II B - equal to previous model, except that the parameters are
calibrated to a balanced training.
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ROC (test set)
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Sensitivity Analysis [Kewley et al., 2000]

It can be measured as the variance produced in the output of a
trained NN when a given input attribute is moved through its entire
range, while the remaining inputs are kept at their average values;

Input Importance by Sensitivity Analysis

Setup SAPSII age admtype admfrom BP? HR? O2? UR?

All 16.8 – 1.0 2.0 15.9 14.4 30.7 19.2
Case Outcomes – 14.3 5.9 11.7 13.1 16.7 22.5 15.8
Outcomes – – – – 16.9 15.8 21.8 45.5

? All attributes related to the variable where included:
number of events/critical events and the time.
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Extraction of Rules using a Decision Tree
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Conclusions

The event based models are more accurate than the static
models (SAPS II);

With the same inputs, the NNs outperform the Logistic
Regression;

Off-line learning study (data manually collected). However, there
is a potential for real-time and low cost modeling;

Future work: test this approach in a real environment with an
on-line learning (pilot project INTCare, Hospital S. António);
Some important issues:

Data cleansing and validation by ICU staff;
Study the concept of lead time: how soon is it possible to predict
death and with which accuracy?

Artificial Intelligence Medicine journal article available at:

http://www.dsi.uminho.pt/˜pcortez/death4.pdf
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Case Study II: Internet Traffic Forecasting (Regression)
[Cortez et al., 2006b]

Motivation

TCP/IP traffic forecasting is a crucial task for any medium/large
Internet Source Provider (ISP) and it has received little attention
from the computer networks community;

With better forecasts, the resources of the network can be optimized;

Traffic forecasting can also help to detect anomalies in the
networks. Security attacks like Denial-of-Service, viruses, or even an
irregular amount of SPAM can in theory be detected by comparing
the real traffic with the predicted values;

Nowadays, this task is often done intuitively by experienced network
administrators;

Yet, the Operational Research and Computer Science disciplines
led to solid forecasting methods (e.g. ARIMA) that replaced intuition
approaches in several fields (e.g. agriculture or economy);
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Time Series Forecasting (TSF)

A Time Series contains time ordered observations of an event:

t

4 8 12

x

Time

Time Series Forecasting (TSF) uses past patterns to predict the
future;

Several TSF methods available:

Exponential Smoothing (ES) (e.g. Holt-Winters) [Winters, 1960];
Box-Jenkins methodology (ARIMA) [Box and Jenkins, 1976];
Neural Networks (NNs) [Cortez et al., 2005].

The forecast horizon (or lead time) is defined by the time in
advance that a forecast is issued;
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Aim

Use the Simple Network Management Protocol (SNMP)
that quantifies the traffic passing through every network interface
with reasonable accuracy. Furthermore, SNMP does not induce
extra traffic on the network;

Forecast Internet traffic with a pure TSF approach (i.e., only
past values are used as inputs);

The predictions are analyzed at different time scales (e.g. five
minutes, hourly) and considering distinct lookahead horizons
(from 1 to 24);

Test several TSF methods: Holt-Winters (both traditional and
recent double seasonal versions), the ARIMA methodology and a
NN based approach;
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Internet Traffic Data

This work analyzed traffic data (in bits) from two different ISPs:
A and B;

The A dataset belongs to a private ISP with centers in 11
European cities. The data corresponds to a transatlantic link and
was collected from 6:57 AM 7th June 2005;

Dataset B comes from UKERNAa and represents aggregated
traffic in the Janetb (the UK academic network) backbone. It
was collected between 9:30 AM, 19th November 2004 and 11:11
AM, 27th January 2005;

The A time series was registered every 30 seconds, while the B
data was recorded at a five minute period;

The first series (A) included 8 missing values, which were
replaced by using a regression imputation (e.g. linear
interpolation);

aUnited Kingdom Education and Research Networking Association.
bhttp://www.ja.net
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JANET Backbone (UKERNA)
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Internet Traffic Data (cont.)

Two new time series were created for each ISP by aggregating the
original values;

The selected time scales were every five minutes (A5M and B5M)
and every hour (A1H and B1H);

For each series, the first 2/3 of the data will be used to create the
forecasting models (train) and the remaining last 1/3 to evaluate
(test) the forecasting accuracies (fixed hold-out);

Series Time Scale Train Length Test Length Total Length
A5M 5 min. 9848 4924 14772
B5M 5 min. 13259 6629 19888
A1H 1 hour 821 410 1231
B1H 1 hour 1105 552 1657
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Hourly A Data
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Hourly B Data
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Time Series Decomposition (A5M and A1H autocorrelations)

Two seasonal cycles: intraday (K1 = 288/24) and intraweek (K2 = 168);
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Naive Benchmark

The seasonal version of the random walk is used. Forecast given by
the observed value for the same period related to the previous longest
seasonal cycle (last week).

Holt-Winters Method (Exponential Smoothing)

Very popular and simple predictive model, based on some underlying
patterns such as trend and seasonal components (K1)
[Winters, 1960];

Three parameters: α, β and γ;

This model has been extended to encompass two seasonal cycles
(K1, K2 and four parameters: α, β, γ and ω) [Taylor, 2003];

The parameters will be optimized by a 0.01/0.05 grid-search for the
best training error;
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ARIMA Methodology [Box and Jenkins, 1976]

An important forecasting approach, going over model identification,
parameter estimation, and model validation.

The global model is based on a linear combination of past values
(AR) and errors (MA):

ARIMA(p, d , q) non seasonal model
ARIMA(p, d , q)(P1,D1,Q1) seasonal model
ARIMA(p, d , q)(P1,D1,Q1)(P2,D2,Q2) double seasonal model

Since the model selection is a non-trivial process, the forecasting
Fortran package X-12-ARIMA [Findley et al., 1996], from the U.S.
Bureau of the Census, was used for the model and parameter
estimation phases;

The BIC statistic, which penalizes model complexity and is evaluated
over the training data, will be the criterion for the model selection;
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Neural Network (NN) Design

Multilayer perceptrons with one hidden layer, logistic functions on
the hidden nodes, linear function in the output node, bias and
shortcut connections;

The NN initial weights are randomly set within the range [−1.0; 1.0]
and the RPROP algorithm is used for training (stopped at 1000
epochs);

A NN Ensemble (NNE) is used, where R = 5 different networks are
trained and the final prediction is given by the average of the
individual predictions;

The NNE based forecasting method will depend solely on two
parameters: the input time lags and number of hidden nodes (H);
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Neural Network (NN) Design (cont.)

Layer
Hidden

...

xt−1

xt−2

xt−n+1

xt−n

x t

Output

Input

The inputs will be defined by a sliding time window (with several time
lags);

Example: with the series 1, 2, 3, 4, 5, 6 and time lags {1, 2, 4}, the
following examples can be built: 1, 3, 4 → 5 and 2, 4, 5 → 6;
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Neural Network (NN) Design (cont.)

The training data will be divided into training (2/3) and validation
sets (1/3);

Several NN combinations were tested, using H ∈ {0, 2, 4, 6, 8} and:
Scale Time Lags
5min. {1,2,3,5,6,7,287,288,289}

{1,2,3,5,6,7,11,12,13}
{1,2,3,4,5,6,7}

1hour {1,2,3,24,25,26,168,167,169}
{1,2,3,11,12,13,24,25,26}
{1,2,3,24,25,26}

The NN with the lowest validation error (average of all MAPEh

values) will be selected. After this model selection phase, the final
NNs are retrained with all training data.

Implementation

All methods (except ARIMA model estimation) implemented in a JAVA
package developed by the authors;
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Best Neural Models

Series Hidden Nodes (H) Input Time Lags
A5M 6 {1,2,3,5,6,7,11,12,13}
A1H 8 {1,2,3,24,25,26}
B5M 0 {1,2,3,5,6,7,287,288,289}
B1H 0 {1,2,3,24,25,26,168,167,169}

The number of hidden nodes suggest that the A datasets are
nonlinear while the data from the ISP B are linear.
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Performance Assessment

The Mean Absolute Percentage Error (MAPE) is a popular
metric, with the advantage of being scale independent:

et = yt − ŷt,t−h

MAPEh =
∑P+N

i=P+1
|yi−byi,i−h|

yi×N × 100%
(2)

where et denotes the forecasting error at time t; yt the desired value;
ŷt,p the predicted value for period t and computed at period p; P is
the present time and N the number of forecasts.

Test Results (Average MAPEh values, h ∈ {1, . . . , 24})

Series Naive Holt-Winters ARIMA NNE
A5M 34.80 11.98 10.68 9.59±0.08
B5M 20.05 7.65 6.60 6.34±0.11

A1H 65.67 50.60 26.96 23.48±0.49
B1H 35.18 13.69 12.69 12.26±0.03
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Five Minute Test Results (horizon vs MAPE values)
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Hourly Test Results (horizon vs MAPE values)
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Conclusions

The experimental results reveal promising performances:
Real-time: 1–3% error for five minute lookahead forecasts and
11–17% error for 2 hours in advance;
Short-term: 3–5% (one hour ahead) to 12–23% (1 day lookahead);

Both ARIMA and NNE produce the lowest errors for the five
minute and hourly data (NN is the best for A5M, B5M and
A1H);

The computational effort criterion discards the ARIMA
methodology, which is impractical for on-line forecasting systems
[Taylor et al., 2006]. Thus, we advise the use of the NNE
approach, which can be used in real-time;
Future Work:

Apply similar methods to active measurement scenarios in which
real-time packet level information is fed into the forecasting engine;
Forecast of traffic demands associated with specific Internet
applications (e.g. peer to peer);
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At last, a nice demo...

Artificial Life Environment (reinforcement learning)

There is energy (e.g. grass) all over the field;

Two populations of beings: preys and predators;

Each artificial being is modeled by a MLP:

Inputs: vision within a certain range and angle (nothing, prey or
predator);
Outputs: actions (nothing, move forward, rotate left or right);
Weights are directly coded into chromosomes, using real-valued
representations;

Evolutionary learning;
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