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Abstract - The main purpose of this paper is to 
present an useful set of hierarchical mechanisms of 
specification to model and simulate digital systems. 
The shobi-PN model (Synchronous, Hiernrchical, 
Object-Oriented and Interpreted Petri Net), was 
developed to support the use of hierarchy to model 
both the control unit and the data path of the 
systems. Modeling of a pipelined architecture unit 
of a microprocessor is considered as a case study to 
illustrate the capabilities of the hierarchical 
mechanisms proposed. 
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L INTRODUCTION 
The design of complex digital systems is 

conceptually divided in two parts: tlie control unit and 
tlie data path. To specify a digital system, both the 
control unit and the data path should be addressed by 
the specification model and the CAD environment. The 
complexity of the design task grows when the 
controller behavior presents parallel activities. 

Among tlie existing modeling paradigms, the 
PN-based one allows an easy specification of 
cooperative systems. PNs are a grapllical language, 
easy to underst'md and systems modeled with PNs 
benefit from a mathematical theory to formilly 
validate their properties 111. 

The application of PN to hardware design has 
resulted in several well-known models (2, 3,4, 51. 
These models have proved to be useful and eficient to 
specify controllers, but none of tliem exploits the 
benefits of object-orientation to deal with the 
complexity of systems. 

The use of object-oriented principles (hierarchy, 
encapsulation, inheritance, polymorpllism, modularity, 
etc.) provides powerful mechanisms to specify 
hardware systems, for high-level modeling [6, 71. The 
object-oriented paradigm is widely explored in the 
construction of a hierarchy of classes for modeling the 
data path and in the invocation of methods to specify 
the actions assigned to the p'mllel control sequences. 
These techniques also hold promise in the 
hardware/software co-design. 

11. HIERARCHICAL MECHANISMS 
A new PN model, shobi-PN (Synchronous, 

Hierarchical, Object-Oriented and Interpreted Petri 
Net), was developed to support tlie use of hierarchy 
and to model the control unit and tlie data path of 
digital systems IS]. It has been shown that the nucleus 
of the shobi-PN model can also be used as a kernel for 
distributed control systems 191. 

The shobi-PN model presents the same 
characteristics as the SIPN (Synchronous and 
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Interpreted PN) model [IO, 111, in what concerns 
synchronism <and interpretation, and adds 
functionalities by supporting object-oriented modeling 
approaches and hierarchical mechanisms, in both the 
control unit and the data path. Tlus model embodies 
concepts present in syncluonous PNs [ 121, hierarchical 
PNs [ 131, colored PNs [ 141, and object-oriented PNs 

In the shobi-PN model, the tokens represent 
objects tlnt model data patli resources. The instance 
variables represent tlie information that is processed on 
the data pith and the methods are the interface between 
the control unit and the &ita path. The tokens may be 
considered as colored, if SIPN tokens are viewed as 
uncolored (the SIPN places are safe). Each token 
models a structure of the data path. 

A node (transition or place) invokes the tokens' 
methods, when the tokens arrive at tllat node. 
However, only tlie methods that luve a direct relation 
with the hardware control signals are directly invoked 
in the PN. There are additional methods available at 
the objects' interface tlut are not used by the PN, These 
methods are invoked by the simulation software to 
visualize the contents of a data path sbucture in any 
state of tlie PN. 

Eacli arc is associated with one or more colors 
which indicates the type of objects that are allowed to 
pass through that arc. This means that there is a 
well-defined path on the PN to be traversed by each 
data path structure. This requirement simplifies the PN 
and liniits tlie capacity of some places, since it is not 
needed tliat objects, tlut are not invoked, unnecessarily 
traverse tlie PN. 

1151. 

CLASS: register-I bit 
VARIABLES: 

BOOL: bit - . . - -. . 
METHODS: 

BOOL RD BIT (BOOL level) 
{ if (level & H), 

} 

VOID WR BIT (BOOL level) 
{ i f  (level =% H) 
then bit = H then return (bit) 

else return (NOT bit) 

Figure 1. The class register-lbit. 
Hierarchy can be introduced in the specifications 

in two different ways. The control unit is modeled by 
the PN structure, and to introduce the hierarchy on it, 
macronodes (representing sub-PNs) may be used. "lie 
data path resources are represented by the internal 
structure of the tokens, and the hierarchy can be 
introduced by aggregation (composition) of several 
objects inside one single token (a macrotoken) or by 
using the inheritmce of methods and data structures. 

If a 1-bit register is to be modeled by an object, the 
corresponding class should be declared with a Boolean 
variable and methods to read and to write that variable 
(161. Fig.1. shows that class written in a generic 
description language. 
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Synthesis of the Controller 
For simulation purposes, the shobi-PN 

specification can be used directly, but to synthesize the 
control unit, the control part of a shobi-PN must be 
transformed into an SIPN. This mapping is possible if 
the following points are considered: (I) structural 
compatibility in the control unit representation; (2) PN 
re-initializations; and (3) simultaneity on the invocation 
of different methiods on the same node. 

To ensure the structural compatibility of the 
control unit representation between the SIPN model 
and the shobi-PN model, it is imposed that the skeleton 
of the shobi-PN must be structurally equivalent to an 
SIPN without re-initializations. The following concepts 
used in relation to shobi-PNs are defined: (1) Control 
Net: set of contiguous nodes and arcs of a shobi-PN 
that structurally corresponds to a SIPN without 
re-initializations; (2) Control Track: path defined by 
one token in a control net; (3) Control Noah: nodes 
(places or transitions) of a control net; (4) Control Arcs: 
arcs of a control net; (5 )  Closing Track path defined by 
a token outside a control net; (6) Closing Nodes: nodes 
of a closing track; (7) Closing Arcs: arcs of a closing 
track; (8) Closing Cycle: path defined by the movement 
of one token in a shobi-PN which is composed of a 
control track and also, if applicable, a closing track (it 
can be identified by the tracking of the color associated 
with all the arcs of the cycle); (9) Associated Net: SIPN 
structurally equivalent to a control net after the 
introduction of the re-initializations for the uncolored 
tokens. 

These concepts can be more easily understood by 
using the shobi-PN in Fig.2.(a) to specify a simple 
control sequence, with two objectdtokens to model 
two structures of the data path. 

.... - - -  ........ 
,., NOTxl 

b.R, , ,2~sl i~  5, J -‘a ) 
Figure 2. (left) shobi-PN for a simple control 

sequence and (right) its corresponding SIPN. 

In this example, the control net is composed by the 
following set of nodes { t l ,  p l ,  t2, p2, t3) and by the 
arcs that direc.tly link them. It defines the skeleton of 
the shobi-PN. The control track for the token a consists 
of { t l , p l ,  t2), while the control track for the token b 
consists of {t.’,p2, t3). The closing track for the token 
a consists of {t2,pfI, tI) and for token b consists of 
{t3, pf2, t2) .  The closing cycles for tokens a and b are 
{ t l ,  p l ,  t2, p f l )  and { t2, p2, (3, pf l } ,  respectively . 

Mapping the shobi-PN into the associated net is 
made by transforming k-limited places into safe places. 
A safe place generates in the SIPN, whenever marked, 
all the control signals associated to the methods 
invoked in the corresponding place in the shobi-PN. As 
an example, consider the SII” in Fig.2.(b). 

The closing tracks allow the shobi-PN to be 
reinitialized, since they drive to closing nodes 
@fl, pf2 in Fig.2.(a)] the tokens from the control net, 
which enable control nodes (tl, t2). Nonetheless, after 
the extraction of the closing tracks from the shobi-PN, 

the control net obtained is not by itself cyclic because 
it is not closed (when there are closing tracks). 

The nodes that close the control net after removing 
the closing tracks, must be identified in the shobi-PN, 
since the automatic definition of these nodes may not 
be unique: some systems may possess some parts of 
the PN for set-up purposes (Ll-live PN [ 13). 

In the control net, the appropriate nodes (in 
practice transitions) are tagged as initial and final 
nodes so that the associated net is obtained by 
connecting one marked place with each pair of initial 
and final nodes. Each marked place is an input to the 
initial node and an output to the final node. In 
Fig.2.(a), transitions t l  and t3 were tagged as an initial 
node (tag ri l )  and final node (tag r f l ) ,  respectively. 

Initially marked control places may exist, which is 
another possibility to reinitialize the net, because these 
places are directly mapped into marked places in the 
associated net. In some extreme situations, initial and 
final nodes may not exist at all, which means that the 
control net is closed: all closing cycles are exclusively 
composed by control tracks, with no need to define 
closing tracks. Hybrid situations are also possible. 

The base shobi-PN model allows PNs to have 
nodes that invoke methods to different tokens, in 
different markings. This possibility of the model must 
be avoided for digital systems, because it does not 
allow the extraction of the control net of an associated 
net. If this imposition is not considered 
non-determinism occurs; it becomes impossible to 
distinguish which colored tokens in the shobi-PN 
correspond to the uncolored tokens in the SIPN 
(associated net). 

There should exist an unique mapping from the 
colored tokens into uncolored ones. This means that 
there is a semantical loss during the transformation of a 
shobi-PN into a SIPN, since the colored tokens 
represent objects (with data structures and methods), 
while the uncolored tokens just represent a Boolean 
variable. 

Ifthe behavior ofthe shobi-PN does not ensure the 
simultaneity in the execution of the invoked methods 
in each node, that requirement must be structurally 
imposed by an implicit synchronization. 

In fig.2.(a), transition t2 invokes methods to 
different objects: method RD-x2(H) to object a and 
method WR-y3(H) to object b. Nevertheless, these 
invocations are made simultaneously, due to the 
synchronism imposed by the enabling of transition r2, 
that depends on the markings of its input places 
@l,p$?). Otherwise, if it were possible to fwe 
transition t2 without the presence of a token b in place 
pf2, it would not be possible to guarantee that the 
Mealy output signal y3  will be activated, whenever 
transition t2 fires. In these situations, the reading and 
writing of hardware signals would depend not only on 
the transitions’ firings and on the PN marking, but also 
on a complex and dynamic management of the data 
path resources. This flexibility of the base shobi-PN 
model is conceptually powerful, but dificults the 
compatibility between the shobi-PN and SIPN models, 
because the unique mapping of colored tokens into 
uncolored ones is lost. 
Replica Mechanism 

Whenever several methods that use the same data 
structures are concurrently invoked to a given token in 
different nodes, it is necessary to support a replica 
mechanism. This mechanism allows a token to be 
replicated as many times as needed, so that it is 
structurally possible to concurrently invoke methods to 
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the same token, but in distinct areas of the PN. This 
mechanism can be used as an elegant solution for a 
complex problem (the mul tiple-sourcing) that could be 
alternatively, but inefficiently, solved at the 
algorithmic level, by changing the PN structure. 

This mechanism becomes indispensable when the 
modeling of the data path by hierarchical aggregation 
is not possible. The replica are the only solution to 
ensure the parallelism inherent to the data path 
structure, if the mechanism does not violate the 
consistency of the tokens' data structures. 

Using the shobi-PN model, it is possible to easily 
model complex behaviors of hardware systems (data 
path and controller) by decomposing the global model, 
even if the sub-structures have a parallel 
time-evolution. 
The Design Flow 

A design flow which incorporates the mecltanisms 
presented in this section was conceived, allowing 
designers to model digital systems, to validate their 
properties and to simulate their behavior [17]. It also 
allows the automatic generation of VHDL code to 
synthesize the digital controller [ 1 I]. 

IIL EXAMPLE: THE PIPELINE UNIT 
The shobi-PN model was already used for digital 

control systems design in other projects in different 
application areas [ 18, 191. In this section, to c1,arify the 
concepts introduced in this article, a detailed example 
is presented: a general-purpose pipeline unit of a 
microprocessor [20]. This example completely 
specifies the control sequences and the correct 
management of the &ita items <and the data path units. 
The data operations are intentionally left unspecified 
because they are not importcant for showing the 
relevant characteristics of the shobi-PN model. 

Figure 3. Data flow diagrams for (left) the pipeline unit 
and (right) operation OP,. 

Pipeline systems possess a set of operating units 
that process information simultcaneously (but using 
different data items) allowing temporal overlapping of 
several instructions' execution. 

Each register, excluding the first and the last ones, 
is simultaneously an input for one or more operators 
and an output for mother one. To memorize the result 
of operator OP, in its register R,+I, the operation OP,+] 
in the previous cycle must already be finished and its 
result already stored in register Rl+2. The operation OP, 
can only be started whenever register RI is already 
loaded with the results from operation OP,J. 

Before st'arting to describe the shobi-PN, the 
pipeline unit's data path resources need to be modeled, 
by idenhfying the objects and defining its variables and 
methods. After a careful analysis of the system 
statement Fig.3.(a)J, tluee dfferent classes are 

identified to model the data path: the register class, the 
operator class, and the macro-operator class. 
According to this selection, the corresponding classes 
to the identified objects are declared and coded in a 
proper description language. 

The control unit is then specified with a shobi-PN, 
using as tokens instances of the previously defined 
classes. Lich token is invoked by methods existing in 
its interface during its travelling along the PN. 

R I  

3 

Figure 4. shobi-PN for the pipeline unit. 
The pipeline unit can be specified by the shobi-PN 

in Fig.4. Tlus shobi-PN possesses few closing paths, 
because it only needs tluee closing places 
(pfl ,  pj2, pf3[Fig.5]}. However, there are four control 
places (p2, p5, p6, p13} with two tokens: one control 
token and one closing token. Closing Tokens do not 
originate marked places in the associated net, whether 
Control Tokens give origin to control places. This 
situation implies the initial existence of non-safe 
control places at the shobi-PN, but this should not be 
seen as a problem, because one of the tokens is a 
closing one. 

The shobi-PN presents a regular structure, because 
the pipeline unit data pith is also regular, both in 
structural and behavioral terms. Each operation basic 
or complex, cran be refined in a lower level of the 
hierarchy, since macronodes are used at the highest 
level of the PN to represent operations. For the OP7 
operation, its &ita flow diagram is refined as presented 
in Fig.3.@). Its corresponding macronode is presented 
in FigS. where it is possible to observe the hierarchical 
decomposition of the macrotoken OP7 in its 
sub-tokens OP7.1, OP7.2 and OP7.3. It is also 
considered that the registers R ' and R " are sub-tokens 
of the nmcro-token OP7. 
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Registers R I  'and R3 need the existence of the 
replica meclm.ism, since each one is concurrently 
invoked with itself. In this case, it is mandatory to use 
replica because the concurrently-invoked methods 
access the same: object's data structure, which does not 
allow the object to be decomposed in several ones. To 
ensure the unification of the replica in the top 
shobi-PN, two closing places @fI, pf2) were added to 
the closing cycles. 

Figure 5. Operation 7 refinement in shobi-PN. 

IV. CONCLUSIONS 
This article shows tlmt the shobi-PN model is an 

usefbl modeling tool to specify digital control systems. 
This model is one of the few known formalisms using 
object-oriented PNs to specify both the parallel control 
unit and the data path of a hardware system in an 
integrated and modular way. The shobi-PN model 
presents synchronous behavior, object-oriented 
approaches, imd hiemchical mechanisms for 
specifying digital systems. As a consequence, this new 
model directly supports hierarchical structures in both 
the control urut and the da%ta path, allowing tlie 
specification of digital patallel control systems in a 
modular, hierarchical and incremental way. 

The use of object-oriented principles (hierarchy, 
inheritance, modularity, etc.) provides new ways to 
specify and model digital systems. Since classes are 
built with data structures and operations, it is relatively 
easy to apply the object-oriented paradigm in the 
hardware domain. These techniques also hold promise 
in the hardwarelsoftware co-design. 
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