
Hierarchical Mechanisms for High-level Modeling and
Simulation of Digital Systems

Ricardo Jorge Machado, Jodb Miguel Fernandes, Albert0 Josd Proenqa
Department of Informatics, School of Engineering, University of Minho

4709 Braga codex, Portugal
rmnc@di. uminho.pt

Abstract - The main purpose of this paper is to
present an useful set of hierarchical mechanisms of
specification to model and simulate digital systems.
The shobi-PN model (Synchronous, Hiernrchical,
Object-Oriented and Interpreted Petri Net), was
developed to support the use of hierarchy to model
both the control unit and the data path of the
systems. Modeling of a pipelined architecture unit
of a microprocessor is considered as a case study to
illustrate the capabilities of the hierarchical
mechanisms proposed.

Keywords: High-level Modeling, Digital Design,
Petri Nets, Object-Orientation.

L INTRODUCTION
The design of complex digital systems is

conceptually divided in two parts: tlie control unit and
tlie data path. To specify a digital system, both the
control unit and the data path should be addressed by
the specification model and the CAD environment. The
complexity of the design task grows when the
controller behavior presents parallel activities.

Among tlie existing modeling paradigms, the
PN-based one allows an easy specification of
cooperative systems. PNs are a grapllical language,
easy to underst'md and systems modeled with PNs
benefit from a mathematical theory to formilly
validate their properties 111.

The application of PN to hardware design has
resulted in several well-known models (2, 3,4, 51.
These models have proved to be useful and eficient to
specify controllers, but none of tliem exploits the
benefits of object-orientation to deal with the
complexity of systems.

The use of object-oriented principles (hierarchy,
encapsulation, inheritance, polymorpllism, modularity,
etc.) provides powerful mechanisms to specify
hardware systems, for high-level modeling [6, 71. The
object-oriented paradigm is widely explored in the
construction of a hierarchy of classes for modeling the
data path and in the invocation of methods to specify
the actions assigned to the p'mllel control sequences.
These techniques also hold promise in the
hardware/software co-design.

11. HIERARCHICAL MECHANISMS
A new PN model, shobi-PN (Synchronous,

Hierarchical, Object-Oriented and Interpreted Petri
Net), was developed to support tlie use of hierarchy
and to model the control unit and tlie data path of
digital systems IS]. It has been shown that the nucleus
of the shobi-PN model can also be used as a kernel for
distributed control systems 191.

The shobi-PN model presents the same
characteristics as the SIPN (Synchronous and

229

Interpreted PN) model [IO, 111, in what concerns
synchronism <and interpretation, and adds
functionalities by supporting object-oriented modeling
approaches and hierarchical mechanisms, in both the
control unit and the data path. Tlus model embodies
concepts present in syncluonous PNs [121, hierarchical
PNs [131, colored PNs [141, and object-oriented PNs

In the shobi-PN model, the tokens represent
objects tlnt model data patli resources. The instance
variables represent tlie information that is processed on
the data pith and the methods are the interface between
the control unit and the &ita path. The tokens may be
considered as colored, if SIPN tokens are viewed as
uncolored (the SIPN places are safe). Each token
models a structure of the data path.

A node (transition or place) invokes the tokens'
methods, when the tokens arrive at tllat node.
However, only tlie methods that luve a direct relation
with the hardware control signals are directly invoked
in the PN. There are additional methods available at
the objects' interface tlut are not used by the PN, These
methods are invoked by the simulation software to
visualize the contents of a data path sbucture in any
state of tlie PN.

Eacli arc is associated with one or more colors
which indicates the type of objects that are allowed to
pass through that arc. This means that there is a
well-defined path on the PN to be traversed by each
data path structure. This requirement simplifies the PN
and liniits tlie capacity of some places, since it is not
needed tliat objects, tlut are not invoked, unnecessarily
traverse tlie PN.

1151.

CLASS: register-I bit
VARIABLES:

BOOL: bit - . . - -. .
METHODS:

BOOL RD BIT (BOOL level)
{ if (level & H),

}

VOID WR BIT (BOOL level)
{ i f (level =% H)
then bit = H then return (bit)

else return (NOT bit)

Figure 1. The class register-lbit.
Hierarchy can be introduced in the specifications

in two different ways. The control unit is modeled by
the PN structure, and to introduce the hierarchy on it,
macronodes (representing sub-PNs) may be used. "lie
data path resources are represented by the internal
structure of the tokens, and the hierarchy can be
introduced by aggregation (composition) of several
objects inside one single token (a macrotoken) or by
using the inheritmce of methods and data structures.

If a 1-bit register is to be modeled by an object, the
corresponding class should be declared with a Boolean
variable and methods to read and to write that variable
(161. Fig.1. shows that class written in a generic
description language.

0-7803-5008- 1 /98/$10.000 1998 IEEE.

Synthesis of the Controller
For simulation purposes, the shobi-PN

specification can be used directly, but to synthesize the
control unit, the control part of a shobi-PN must be
transformed into an SIPN. This mapping is possible if
the following points are considered: (I) structural
compatibility in the control unit representation; (2) PN
re-initializations; and (3) simultaneity on the invocation
of different methiods on the same node.

To ensure the structural compatibility of the
control unit representation between the SIPN model
and the shobi-PN model, it is imposed that the skeleton
of the shobi-PN must be structurally equivalent to an
SIPN without re-initializations. The following concepts
used in relation to shobi-PNs are defined: (1) Control
Net: set of contiguous nodes and arcs of a shobi-PN
that structurally corresponds to a SIPN without
re-initializations; (2) Control Track: path defined by
one token in a control net; (3) Control Noah: nodes
(places or transitions) of a control net; (4) Control Arcs:
arcs of a control net; (5) Closing Track path defined by
a token outside a control net; (6) Closing Nodes: nodes
of a closing track; (7) Closing Arcs: arcs of a closing
track; (8) Closing Cycle: path defined by the movement
of one token in a shobi-PN which is composed of a
control track and also, if applicable, a closing track (it
can be identified by the tracking of the color associated
with all the arcs of the cycle); (9) Associated Net: SIPN
structurally equivalent to a control net after the
introduction of the re-initializations for the uncolored
tokens.

These concepts can be more easily understood by
using the shobi-PN in Fig.2.(a) to specify a simple
control sequence, with two objectdtokens to model
two structures of the data path.

.... - - -
,., NOTxl

b.R, , ,2~sl i~ 5, J -‘a)
Figure 2. (left) shobi-PN for a simple control

sequence and (right) its corresponding SIPN.

In this example, the control net is composed by the
following set of nodes { t l , p l , t2, p2, t3) and by the
arcs that direc.tly link them. It defines the skeleton of
the shobi-PN. The control track for the token a consists
of { t l , p l , t2), while the control track for the token b
consists of {t.’,p2, t3). The closing track for the token
a consists of {t2,pfI, tI) and for token b consists of
{t3, pf2, t2) . The closing cycles for tokens a and b are
{ t l , p l , t2, p f l) and { t2, p2, (3, pf l } , respectively .

Mapping the shobi-PN into the associated net is
made by transforming k-limited places into safe places.
A safe place generates in the SIPN, whenever marked,
all the control signals associated to the methods
invoked in the corresponding place in the shobi-PN. As
an example, consider the SII” in Fig.2.(b).

The closing tracks allow the shobi-PN to be
reinitialized, since they drive to closing nodes
@fl, pf2 in Fig.2.(a)] the tokens from the control net,
which enable control nodes (tl, t2). Nonetheless, after
the extraction of the closing tracks from the shobi-PN,

the control net obtained is not by itself cyclic because
it is not closed (when there are closing tracks).

The nodes that close the control net after removing
the closing tracks, must be identified in the shobi-PN,
since the automatic definition of these nodes may not
be unique: some systems may possess some parts of
the PN for set-up purposes (Ll-live PN [13).

In the control net, the appropriate nodes (in
practice transitions) are tagged as initial and final
nodes so that the associated net is obtained by
connecting one marked place with each pair of initial
and final nodes. Each marked place is an input to the
initial node and an output to the final node. In
Fig.2.(a), transitions t l and t3 were tagged as an initial
node (tag ri l) and final node (tag r f l) , respectively.

Initially marked control places may exist, which is
another possibility to reinitialize the net, because these
places are directly mapped into marked places in the
associated net. In some extreme situations, initial and
final nodes may not exist at all, which means that the
control net is closed: all closing cycles are exclusively
composed by control tracks, with no need to define
closing tracks. Hybrid situations are also possible.

The base shobi-PN model allows PNs to have
nodes that invoke methods to different tokens, in
different markings. This possibility of the model must
be avoided for digital systems, because it does not
allow the extraction of the control net of an associated
net. If this imposition is not considered
non-determinism occurs; it becomes impossible to
distinguish which colored tokens in the shobi-PN
correspond to the uncolored tokens in the SIPN
(associated net).

There should exist an unique mapping from the
colored tokens into uncolored ones. This means that
there is a semantical loss during the transformation of a
shobi-PN into a SIPN, since the colored tokens
represent objects (with data structures and methods),
while the uncolored tokens just represent a Boolean
variable.

Ifthe behavior ofthe shobi-PN does not ensure the
simultaneity in the execution of the invoked methods
in each node, that requirement must be structurally
imposed by an implicit synchronization.

In fig.2.(a), transition t2 invokes methods to
different objects: method RD-x2(H) to object a and
method WR-y3(H) to object b. Nevertheless, these
invocations are made simultaneously, due to the
synchronism imposed by the enabling of transition r2,
that depends on the markings of its input places
@l,p$?). Otherwise, if it were possible to fwe
transition t2 without the presence of a token b in place
pf2, it would not be possible to guarantee that the
Mealy output signal y3 will be activated, whenever
transition t2 fires. In these situations, the reading and
writing of hardware signals would depend not only on
the transitions’ firings and on the PN marking, but also
on a complex and dynamic management of the data
path resources. This flexibility of the base shobi-PN
model is conceptually powerful, but dificults the
compatibility between the shobi-PN and SIPN models,
because the unique mapping of colored tokens into
uncolored ones is lost.
Replica Mechanism

Whenever several methods that use the same data
structures are concurrently invoked to a given token in
different nodes, it is necessary to support a replica
mechanism. This mechanism allows a token to be
replicated as many times as needed, so that it is
structurally possible to concurrently invoke methods to

230

the same token, but in distinct areas of the PN. This
mechanism can be used as an elegant solution for a
complex problem (the mul tiple-sourcing) that could be
alternatively, but inefficiently, solved at the
algorithmic level, by changing the PN structure.

This mechanism becomes indispensable when the
modeling of the data path by hierarchical aggregation
is not possible. The replica are the only solution to
ensure the parallelism inherent to the data path
structure, if the mechanism does not violate the
consistency of the tokens' data structures.

Using the shobi-PN model, it is possible to easily
model complex behaviors of hardware systems (data
path and controller) by decomposing the global model,
even if the sub-structures have a parallel
time-evolution.
The Design Flow

A design flow which incorporates the mecltanisms
presented in this section was conceived, allowing
designers to model digital systems, to validate their
properties and to simulate their behavior [17]. It also
allows the automatic generation of VHDL code to
synthesize the digital controller [1 I].

IIL EXAMPLE: THE PIPELINE UNIT
The shobi-PN model was already used for digital

control systems design in other projects in different
application areas [18, 191. In this section, to c1,arify the
concepts introduced in this article, a detailed example
is presented: a general-purpose pipeline unit of a
microprocessor [20]. This example completely
specifies the control sequences and the correct
management of the &ita items <and the data path units.
The data operations are intentionally left unspecified
because they are not importcant for showing the
relevant characteristics of the shobi-PN model.

Figure 3. Data flow diagrams for (left) the pipeline unit
and (right) operation OP,.

Pipeline systems possess a set of operating units
that process information simultcaneously (but using
different data items) allowing temporal overlapping of
several instructions' execution.

Each register, excluding the first and the last ones,
is simultaneously an input for one or more operators
and an output for mother one. To memorize the result
of operator OP, in its register R,+I, the operation OP,+]
in the previous cycle must already be finished and its
result already stored in register Rl+2. The operation OP,
can only be started whenever register RI is already
loaded with the results from operation OP,J.

Before st'arting to describe the shobi-PN, the
pipeline unit's data path resources need to be modeled,
by idenhfying the objects and defining its variables and
methods. After a careful analysis of the system
statement Fig.3.(a)J, tluee dfferent classes are

identified to model the data path: the register class, the
operator class, and the macro-operator class.
According to this selection, the corresponding classes
to the identified objects are declared and coded in a
proper description language.

The control unit is then specified with a shobi-PN,
using as tokens instances of the previously defined
classes. Lich token is invoked by methods existing in
its interface during its travelling along the PN.

R I

3

Figure 4. shobi-PN for the pipeline unit.
The pipeline unit can be specified by the shobi-PN

in Fig.4. Tlus shobi-PN possesses few closing paths,
because it only needs tluee closing places
(pfl , pj2, pf3[Fig.5]}. However, there are four control
places (p2, p5, p6, p13} with two tokens: one control
token and one closing token. Closing Tokens do not
originate marked places in the associated net, whether
Control Tokens give origin to control places. This
situation implies the initial existence of non-safe
control places at the shobi-PN, but this should not be
seen as a problem, because one of the tokens is a
closing one.

The shobi-PN presents a regular structure, because
the pipeline unit data pith is also regular, both in
structural and behavioral terms. Each operation basic
or complex, cran be refined in a lower level of the
hierarchy, since macronodes are used at the highest
level of the PN to represent operations. For the OP7
operation, its &ita flow diagram is refined as presented
in Fig.3.@). Its corresponding macronode is presented
in FigS. where it is possible to observe the hierarchical
decomposition of the macrotoken OP7 in its
sub-tokens OP7.1, OP7.2 and OP7.3. It is also
considered that the registers R ' and R " are sub-tokens
of the nmcro-token OP7.

23 1

Registers R I 'and R3 need the existence of the
replica meclm.ism, since each one is concurrently
invoked with itself. In this case, it is mandatory to use
replica because the concurrently-invoked methods
access the same: object's data structure, which does not
allow the object to be decomposed in several ones. To
ensure the unification of the replica in the top
shobi-PN, two closing places @fI, pf2) were added to
the closing cycles.

Figure 5. Operation 7 refinement in shobi-PN.

IV. CONCLUSIONS
This article shows tlmt the shobi-PN model is an

usefbl modeling tool to specify digital control systems.
This model is one of the few known formalisms using
object-oriented PNs to specify both the parallel control
unit and the data path of a hardware system in an
integrated and modular way. The shobi-PN model
presents synchronous behavior, object-oriented
approaches, imd hiemchical mechanisms for
specifying digital systems. As a consequence, this new
model directly supports hierarchical structures in both
the control urut and the da%ta path, allowing tlie
specification of digital patallel control systems in a
modular, hierarchical and incremental way.

The use of object-oriented principles (hierarchy,
inheritance, modularity, etc.) provides new ways to
specify and model digital systems. Since classes are
built with data structures and operations, it is relatively
easy to apply the object-oriented paradigm in the
hardware domain. These techniques also hold promise
in the hardwarelsoftware co-design.

V. REFERENCES
T. Murata. Petri Nets: Properties, Analysis and
Applications. Proc. of the IEEE, 77(4):541-80,
Aprl89.
M. Augin, F. Boeri, C. AndrC. New Design
using PLAs and Petri Nets. Int. Synip. on
Measurement and Control (1MEC0'78),
pp. 864-9, Greece, 1978.
Z. Peng, K. Kuchcinski, B. Lyles. CAMAD: A
Unified Data Path / Control Synthesis
Environment. IFIP Con$ on Design
Methodologies for VLSI and Computer
Architecture, Pisa, Italy, Sep188.
K. Bilinski, M. Adanski, J. Saul, E.L. Dagless,
Petri-Net-Based Algorithms for Parallel-
-Controller Synthesis. IEE Proc. : Computers
and Digital Techniques, 141(6):405-12, Nov194.

1161

1171

181

191

L. Gomes, A. Steiger-Gareo, Programmable
Controller Design Based on a Synchronized
Coloured Petri Net Model and Integrating Fuzzy
Reasoning. I6th Int. Con$ on Application and
Theory of Petri Nets, Torino, Italy, Jun/95.
S. Swamy, A. Molin, B.M. Covnot. 00-VHDL:
Object-Oriented Extensions to VHDL. IEEE
Computer, pp. 18-26,0ct/95.
K. Agsteiner, D. Monjau, S. Schulze.
Object-Oriented High-Level Modelling of
System Components for the Generation of
VHDL. E URO-DA C'95 with EURO- VHDL'95,
pp. 436-41, Brighton, UK, Sep/95.
R.J. Machado. Hierarchy in Object-Oriented
Petri Nets for tlie Specification of Digital
Systems (in Portuguese). M.Sc. thesis, Dep.
Informatics, U.Minlio, Braga, Portugal, Nov/96.
A. Pina, J.M. Fernandes, R. J. Machado. Genetic
regulatory mechanisms by means of Extended
Interactive Petri Nets. IEEE Int. Con$ on
Systems, Man, and Cybernetics (sMC'97),
Orlando, Florida, USA, Oct/97.
J.M. Fernandes, A.M. Pina, A.J. Proenca.
Concurrent Execution of Petri Nets based on
Agents, 1st Workshop on Object-Oriented
Programming and Models of Concurrency,
Torino, Italy, J d 9 5 .
J.M. Fernandes, M. Adamski, A.J. Proenqa.
VHDL Generation from Hierarchical Petri Net
Specifications of Parallel Controller. IEE Proc.:
Computers and Digital Techniques,

R. David, H. Alls Petri Nets & Grafcet: Tools
for Modelling Discrete Event Systems.
Prentice-Hall, UK, 1992.
R. Fehling. A Concept of Hierarchical Petri Nets
with Building Blocks. Advances in Petri Nets
1993, vol. 674 of LNCS, pp. 148-68.
Springer-Verlag, 1993.
K. Jensen. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, vol. I.
Springer-Verlag, Berlin, 1992.
C. L'akos. The Object Orientation in Object Petri
Nets. 1st Workshop on Object-Oriented
Programming and Models of Concurrency,
Torino, Italy, Jud95.
S. Kumar, J. Aylor, B. Joluison, W. Wulf.
Object-Oriented Tecluiiques in Hardware
Design. IEEE Computer, pp. 64-70, J d 9 4 .
R.J. Machado, J.M. Femandes, A.J. Proenca.
SOFHIA: A CAD Environment to Design
Digital Control Systems. XIII IFIP Con$ on
Computer Hardware Description Languages
and Their Applications (CHDL'9 7), Toledo,
Spain, pp. 86-8, Aprl97.
R.J. Machado, J.M. Femandes, A. J. Proenqa. An
Object-Oriented Model for Rapid Prototyping of
Data PatldControl Systems - A Case Study. 9th
IFAC .S:vnip. on Information Control in
Manufacturing (INCOM'98), Nancy and Metz,
France, Jun/98. (accepted for publication)
R. J. Machado, J.M. Fernandes, A. J. Proenqa.
Specification of Industrial Digital Controllers
with Object-Oriented Petri Nets. IEEE Int.
Synip. on Industrial Electronics (ISIE'97),
Guimariies, Portugal, JuY97.
J. TomC. Control of Digital Systems (in
Portuguese). Colecciio Infom5tica e
Computadores. Editorial PreseqaLNESC,
Lisbon, Portugal, 1989.

141(2): 127-37, Mi~197.

232

