
1

1 A METHODOLOGY FOR COMPLEX
EMBEDDED SYSTEMS DESIGN
Petri Nets within a UML Approach

Ricardo J. Machado, João M. Fernandes,
Henrique D. Santos

1. Introduction

The vast majority of embedded systems are control-dominated systems and
traditionally designers specify them using only a state-oriented model, such as FSMs.
However, real-time embedded systems are getting quite complex, which implies that a
different approach is necessary. The system specification has to fulfil several
requirements, namely support for concurrency, timing constraints, hierarchy, data and
control flow, and distributed computations.

Thus, for modelling more aspects of the systems (namely, data and function), it is
important to consider genuine multiple-view models. There is also absolutely no
doubt that IT organisations can improve efficiency and productivity if they share the
same notation. In this context, the authors recommend the utilisation of some UML
views to specify embedded systems, because it is a notation that covers the most
relevant modelling aspects of systems and it is an OMG standard.

Figure 1. The HIDRO lines.

This paper focus mainly on the analysis phase, describing a UML-based approach for
designing complex embedded systems, and specifically the usefulness of using shobi-PN v2.0
specifications, a Petri net extension, for modelling the dynamic behaviour. A relative complex
case study is used to show the usefulness of the suggested specification approach.

HFs tunningrepairing start-up mounting control engraving packaging

γ

χζ

γ

χζ

robot

LA LB LC LD LE LF

eαα eββ eδδ eεε

eλλ

transfer

2 A Methodology for Complex Embedded Systems Design

The diagrams shown in this paper are all relative to the Blaupunkt-Bosch’s car
radios production lines (HIDRO lines) controller (fig. 1), which is one of the several
complex embedded systems that the authors have used, as real case studies, to validate
the proposed methodology.

2. UML

UML is a general purpose modelling language for specifying, visualising,
constructing and documenting the artefacts of software systems, as well as for
business modelling and other non-software systems (Booch et al., 1999). As a
standard language for defining and designing software systems, UML is being
progressively accepted as a language in industrial environments. UML is meant to be
used universally for the modelling of systems, including automatic control
applications with both hardware and software components, so the authors believe that
it is an appropriate choice for embedded systems. To confirm the usefulness of UML
for this engineering field, several research teams (Douglass, 1998; Lyons, 1998;
Lanusse et al., 1998; McLaughin et al., 1998; Kabous et al., 1999; Jigorea et al.,
2000) have also adopted UML as the notation for specifying embedded systems,
which means that this notation is gaining widespread acceptance and usage within this
community.

The main views used by the authors for specifying the system are captured by the
following diagrams: (1) use case diagrams are used to capture the functional aspects
of the system as viewed by its users; (2) object diagrams show the static configuration
of the system, and the relations among the objects that constitute the system;
(3) sequence diagrams present scenarios of typical interactions among the objects that
constitute the system or that interact with it; (4) class diagrams store the information
of ready-made components that can be used to build systems and specify the
hierarchical relationships among them; (5) Petri nets (shobi-PN v2.0) are used to
specify the dynamic behaviour of some objects/classes.

Although the OMG's Real-time Analysis and Design working group has not come
yet with a final proposal for directly incorporating real-time concepts into the UML
standard (namely in what concerns the syntax for the OCL language), the authors are
using UML for dealing with hard real-time systems. Up to now timed sequence
diagrams and Oblog syntax have been used for the specification of the canonical
latency and duration constraints, which are viewed as composites for more accurate
categories of timed requirements (for performance and safety constraints
specification).

2.1. Use Case Diagrams

A use cases diagram is considered to be a powerful and useful technique for capturing
the user's requirements. It is an easy-to-read diagram that divides the system in its
functional points. A use case can be understood as a functionality or service that the
system offers to its users.

A Methodology for Complex Embedded Systems Design 3

The authors propose an extension to UML by adding a new property to use cases,
that was designated reference. New properties are added in UML by tagged values, so
each use case can have a reference that follows a numbering scheme similar to the
traditional DFD numbering. Each use case at the system-level is assigned a reference
(example: ref=2), and if this use case is refined by other sub-use cases, each of these
will have a reference that uses the super-use case as a prefix (example: ref=2.3). This
numbering scheme can be repeated to any depth and it helps those involved in the
project to relate all use cases diagrams and will be also used during the transition from
use cases to objects to ease the mapping between both models.

Fig. 2 shows the system-level (or top-level) use cases diagram of the HIDRO lines,
where it is possible to visualise which actors perform which functionalities. Since use
cases have different impact on the final system, they must be ranked taken into
consideration their importance to the main functionality of the system. This allows the
project to follow a risk-driven process, where the most important or complex
functionalities of the system are first tackled, leaving the less important ones to be
treated later.

Figure 2. Use case diagram.

2.2. Object Diagrams

Object diagrams are also an important technique to show the components that
constitute the system. Transforming the use cases that divide the system in a
functional way into objects is a critical task, since usually there is no direct mapping
from use cases to objects. Thus, a strategy, composed of some guidelines, is needed to
guide the developers of the system on how to transform use cases into objects. There
are some approaches for transforming the use cases diagrams into object diagrams,
but the majority of them is based on personal feelings and some kind of magic. The
authors have defined a systematic strategy, based on the object types (interface, entity
and control) presented in (Jacobson et al., 1992), for finding the objects of a given
system based on its use cases. This strategy is called 4-step rule set and has been

{6.}
produce reportHIDRO Lines

worker

{10.}
operate

auto-radio

production
responsible n.2

system's
administrator

maintenance
technician

line
configurator

place
configurator

anyone

{8.}
manage
system's
access

{2.}
configure

place

{11.}
visualize

production

{12.}
activate

emergency

«extends»

production
responsible n.1

{1.}
maintain the

system

{3.}
configure

line

{4.}
activate

equipment

{7.}
monitorize

line

{5.}
recover from
emergency

{9.}
conduct

auto-radio

auto-radio

4 A Methodology for Complex Embedded Systems Design

published in (Fernandes et al., 2000). Fig. 3 depicts the object diagram obtained by
the application of the 4-step rule set strategy to the use case diagram of fig. 2.

Figure 3. Object diagram of the HIDRO lines system.

2.3. Sequence Diagrams

The proposed methodology uses sequence diagrams as an intermediate format to
specify the system’s dynamic behaviour. Sequence diagrams correlate several objects
in a particular scenery, that corresponds to a part of each object’s life cycle. Its is also
possible to inscribe timing constrictions in the sequence diagram. Fig. 4 shows one
sequence diagram of the HIDRO lines system.

Figure 4: Sequence diagram.

«data»
{8.d}

passwords

database

«data»
{9.3.d}

car radios
in production

car radios

«data»
{2.d}

sites configuration

configurations

supervision

supervision interfaces

supervision control

manipulate car radio

sensors

«sensor»
{4.1.i}

activate line

1

interfaces reports

*
«interface»

{9.4.i}
handle car radio

«interface»
{9.5.i}

require conduction

«control»
{5.c}

emergency recoverer

«interface»
{5.i}

recover from
emergency

«interface»
{2.i}

configure place

«interface»
{3.i}

configure line

«interface»
{4.3.i}

activate site

«interface»
{8.i}

manage
user´s access

«interface»
{6.i}

generate reports

«control»
{6.c}

report generator

«data»
{6.d}
reports

«control»
{10b.1.c}

car radio verifier

1 «actuator»
{9.3.i}

transport car radio

*

«control»
{10b.2.c}

execute task

«data»
{10b.2.d}
 task data

«interface»
{10b.2.i}

execute task

«black box»
{10b.2}

site

«sensor»
{4.2.i}

activate transport

1

«sensor»
{9.2.i}

identify car radio
at the transport

* «sensor»
{10b.1.i}

identify car radio
at the site

*

«sensor»
{9.1.i}

detect car radio

* «sensor»
{12.i}

activate emergency

1

«data»
{3.d}

line configuration

«data»
{4.3.d}

active sites

«data»
 {9.4.d}

handled car radios

«data»
{9.5.d}

required car radios

«data»
{10b.3.d}

tasks results

«control»
{9.3.c}

conduction controller

1

«interface»
{7.i}

supervise line

«control»
{7.c}

supervision of
the line

«interface»
{11.i}

visualize production

«control»
{11.c}

visualization of
the production

Plant Control n.2 Control n.1

Palete_Arrived(iB,n,u)

CODE(bB,n)

CODE(n)

Read_Code(bB,n)

Calc_Dest

Move_Palete(en)

LE

Sensor iB,n,u detects one palete.
Controller n.2 reads bB,n and
asks controller n.1 the palete’s
destination.

Controller n.1 calculates the
palete’s destination and sends it
to the controller n.2
Controller n.2 controls the
palete’s moving from LB to en.

CODE(n)

{ AVE(b − a) ≤ 2 s }

a

b

Palete_Arrived(ie,n,j)

Calc_Dest

Move_Palete(LE)

LE

Sensor ie,n,j detects one palete.
Controller n.2 asks controller n.1
the palete’s destination.

Controller n.1 calculates the
palete’s destination and sends it
to controller n.2.
Controller n.2 controls the
palete’s miving from en to LE.

c

d

{ AVE(d − c) ≤ 2 s }

A Methodology for Complex Embedded Systems Design 5

The authors’ methodology allows the use of UML non-standard sequence
diagrams, that are called scenery diagrams. These diagrams are very useful when the
pictorial representations of the data path/plant’s control sub-sequences are relevant for
a thoroughly understanding of the controller’s behaviour. In fig. 5 it is possible to
observe a scenery diagram of the HIDRO lines.

Figure 5: Scenery diagram.

The methodology also proposes the use of non-standard data path/plant diagrams
for data path/plant’s resources static specification, since UML does not define any
diagram for that. These diagrams are needed to understand the pictorial representation
of the data path/plant’s resources involved in the scenery diagrams.

3. Petri Nets

For the system’ components that have a complex or interesting dynamic behaviour, a
state model can be specified. UML has two different meta-models for this purpose:
STATECHARTS and activity diagrams. Although these two meta-models present many
important characteristics for reactive systems, namely concurrency and hierarchy,
they do not allow an elegant treatment of the data path/plant resources management
and the specification of dynamic parallelism. These are two crucial necessities for
complex, distributed and parallel embedded systems, since different parts of the
system may try to access simultaneously the same resource. SPECCHARTS are also

LA

...

...

LC

...

...

LB

...

...

#1

LA

...

...

LC

...

...

LB

...

...

#1

LA

...

...

LC

...

...

LB

...

...

#1

LA

...

...

LC

...

...

LB

...

...

γ

χζ

start TIME_BL

finish TIME_BL

a) t1 b) t2

c) t3 d) t4

#2

#2

#1

#2

6 A Methodology for Complex Embedded Systems Design

another interesting state-oriented meta-model for specifying and designing embedded
systems (Gajski et al., 1994).

For control embedded systems, the application of Petri nets (PNs) to the
specification of the behavioural view can benefit from a huge amount of available
research. The designer can choose, among several PN meta-models, a specific one
intentionally developed to deal with the semantical specificities of that kind of
systems, like the ones referred in (Kleinjohann et al., 1997; Sgroi et al., 1998).

PN is a mathematical meta-model that can be formally analysed and for which
several implementation techniques are available. In this context, the authors have
developed an extended PN meta-model, designated shobi-PN, to specify the reactive
behaviour of the system’ components instead of using the “STATECHARTS + activity
diagrams” UML proposal.

3.1. The shobi-PN v1.0

The traditional synchronous and interpreted PN meta-model (SIPN) was developed,
aiming just the specification of the control part of the system: the data path/plant of
the system can not be described with the mechanisms available on the meta-model. To
overcome this limitation, the shobi-PN v1.0 meta-model, which is an extension to the
SIPN model, was developed (Machado et al., 2000). The shobi-PN v1.0 meta-model
supports hierarchy and allows objects to be used for specifying the data path/plant
resources.

The shobi-PN v1.0 meta-model presents the same characteristics as the SIPN
meta-model, in what concerns synchronism and interpretation, but adds new
mechanisms by supporting object-oriented modelling ideas and new hierarchical
constructs, in both the control unit and the data path/plant. This meta-model embodies
concepts present in Synchronous PNs (David et al., 1992), Hierarchical PNs (Fehling,
1993), Coloured PNs (Jensen, 1992), and Object-Oriented PNs (Lakos, 1995). In the
shobi-PN v1.0 meta-model, the tokens represent objects that model data path/plant
resources. The instance variables represent the information that is processed on the
data path/plant and the methods are the interface between the control unit and the data
path/plant. Each token models a structure of the data path/plant. A node (a transition
or a place) invokes the tokens’ methods, when the tokens arrive at that node. Each arc
is associated with one or more colours which indicate the types of objects that are
allowed to pass through that arc. This means that, for each data path/plant structure,
there is a well-defined path on the PN.

Hierarchy can be introduced in the specifications in two different ways: (1) the
control unit is modelled by the PN structure, and to introduce the hierarchy on the
controller, macronodes (representing sub-PNs) may be used; (2) the data path/plant
resources are represented by the internal structure of the tokens, and the hierarchy can
be introduced by aggregation (composition) of several objects inside one single token
(a macrotoken) or by using the inheritance of methods and data structures.

Whenever several methods that use the same data structures are concurrently
invoked to a given token in different nodes, it is necessary to support a replica
mechanism. This mechanism allows a token to be replicated as many times as needed,
so that it is structurally possible to concurrently invoke methods to the same token,
but in distinct areas of the PN. This mechanism can be used as an elegant solution for

A Methodology for Complex Embedded Systems Design 7

a complex problem (the multiple-sourcing) that could be alternatively, but
inefficiently, solved at the algorithmic level, by changing the PN structure. This
mechanism becomes indispensable when the modelling of the data path by
hierarchical aggregation is not possible. The replica are the only solution to ensure the
parallelism inherent to the data path/plant structure, if the mechanism does not destroy
the tokens’ data structures consistency.

This shobi-PN v1.0 meta-model has been exhaustive used in several application
domains of medium complexity: industrial controllers (Machado et al., 1997b),
communication interfaces (Machado et al., 1998a), and micro-architecture of
processors (Machado et al., 1998b).

3.2. The shobi-PN v2.0

The use of shobi-PN v1.0 meta-model to specify the behaviour of the level 2
controller of the HIDRO production lines has revealed some semantical fragilities of
that modelling approach, namely when it is mandatory to assure: (1) the violation of
levels of structural hierarchy by the introduction of tokens/objects in arbitrary zones
of the PNs (this is very useful when, for some specific objects, it is crucial to bypass
some levels of the controller’s hierarchy); (2) the creation and destruction of objects
for momentary reference of objects that are external to the system; (3) the
manipulation of the original (genuine) objects and not the eventual replica that the
dynamic execution of the PNs can create (this is vital to deal with critical regions in
the control of multiple accesses to shared resources - for instance, the elevators in the
HIDRO lines case study).

To solve this three kinds of detected problems, the authors have extended the
shobi-PN v1.0 meta-model (which has originated the shobi-PN v2.0 meta-model) by
defining: (1) a generalised arc set (GAS) which allows the use of 16 different types of
arcs, each one with specific syntactic and semantic properties within the
shobi-PN v2.0 meta-model; (2) the concept of asynchronous macro-transition (AMT)
as an auxiliary mechanism to the GAS, to solve the specific problem of the violations
of the structural hierarchy’s levels. Fig. 6 shows one shobi-PN v2.0 specification net
of the HIDRO production lines level 2 controller.

The tokens/objects that must appear in the shobi-PN nets are found by calculating
the system high-level object diagram, obtained by applying to the global object
diagram (fig. 3) one filtering and collapsing technique, also developed by the authors
(see fig. 7).

4. Tools

From a pragmatic point of view, a methodology for developing systems can only be
useful for its users if there exist tools supporting the development tasks. The proposed
methodology is an on-going project, but there are already some tools available for the
developers.

A graphical environment was developed to allow animation/simulation which
generates UML sequence diagrams. These diagrams are built from the system

8 A Methodology for Complex Embedded Systems Design

specification and allow the designers to compare them with similar diagrams
constructed previously in co-operation with the system’s customers.

Figure 6: A shobi-PN v2.0 specification net.

This eases the methodology to follow the operational approach (Zave, 1984),
which permits the customers to validate their requirements directly from the system
specification (i.e. without having to fully develop a system prototype or even the
system itself). If some errors are detected, the system specification can be modified
prior to the implementation phase, which greatly reduces the development costs and
increases the system’s correctness. Other tools are under development, namely
graphical editors (for specifying the systems) and compilers (for automatically
generating C code for the MCS-51 compatible microprocessors). A preliminary
version of all this tool-set is expected to be available very soon. This tool-set is the
descendant of the one authors have presented in (Machado et al., 1997a), i.e. it
supports directly the shobi-PN meta-model, using the Oblog language
(www.oblog.com) as the implementation support.

NCS3n

NCS3n

Init_Node (NCS3n)

NBSA,n

NBSC,nNBSB,n

NCS3n

NCS3n

NCS3nNCS3n

NCS3n NCS3n

NCS3nNCS3n

NCS3n

NCS3nNCS3n

NCI3n

NCI3n

Init_Node (NCI3n)

NBID,n

NBIF,nNBIE,n

NCI3n

NCI3n

NCI3nNCI3n

NCI3n NCI3n

NCI3n
NCI3n

NCI3n

NCI3nNCI3n

NBe,nNBe,n
NBe,n

NBe,n

NBe,n

NBe,n

NBe,n

NBe,n

NBe,n

NBe,n

Init_E (NBe,n, up)

NBe,n

NBe,n

NBe,n

NBe,n

Init_E (NBe,n, down)

NBe,n

NBe,n NBe,n

NBe,nNBe,n

NCI3nNCS3n

s1

s2

s3 s4

s5

s7

s8 s9

s10

s6

s11

s12 s13

s14 s15

s16

t1

t3t2

t4 t5

amt1

t6

t8t7

t9 t10

amt2

t12t11

t13 t14

t15 t16

t17 t18

A Methodology for Complex Embedded Systems Design 9

Figure 7: High-level object diagram of the HIDRO lines.

5. Conclusions

This paper presents the general characteristics of a UML-based methodology to
support the design of complex embedded systems. The authors defend the use of
PN-based behavioural specifications, instead of using the UML STATECHARTS and
activity diagrams. In this context, the shobi-PN v2.0 meta-model was generally
explained, in what concerns the usefulness of its GAS and AMT concepts. This paper
also shows the simulation environment the authors have developed to directly support
the design of complex embedded controllers. All the UML standard and non-standard
diagrams shown in this paper are relative to the Blaupunkt-Bosch’s auto radios
production lines. As a typical example of a complex embedded system, the controller
for this production line has been used by the authors to validate their methodology.

References

Booch, G., Rumbaugh, J., Jacobson, I. (1999). The Unified Modeling Language User Guide,
Addison-Wesley.

David, R., Alla, H. (1992). Petri Nets & GRAFCET: Tools for Modelling Discrete Event Systems,
Prentice-Hall.

Douglass, B. P. (1998). Real-Time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley.

Fehling, R. (1993). “A Concept of Hierarchical Petri Nets with Building Blocks.” Advances in
Petri Nets 1993, Lecture Notes in Computer Science, vol. 674, pp. 148-168,
Springer-Verlag.

Fernandes, J. M., Machado, R. J., Santos, H. D. (2000). “Modeling Industrial Embedded
Systems with UML.” 8th IEEE/IFIP/ACM International Workshop on Hardware/Software
Co-Design - CODES’2000, pp. 18-22, San Diego, U.S.A., May, 2000, ACM Press.

«control»
{5.c}

emergency recover

«control»
{9.3.c+10b.1.c}

controller
n. 1

1

«black box»
{10b.2}

site

*

«control»
{9.3.c}

controller
n. 2

controller

data path/plant
«data»

data base

1

nnn

jneinesnenetnne

nlinenlinenline

ylnExlnElnEyrnD
EDline

nlinen

neylnDnxlnCyrnCnn

pnCpnCrnpnApnAlnn

dnlineyrnlinexrnlinernlinenlinetnlineylnlinexlnlinelnlinenlineunlineunlinenline

ylnCxlnClnCyrnBylnByrnAxrnArnA
CBAline

nlinen

nnn

EylDrDxrDDDuDuD

pBpBdCdBdAxlCylAnn

EDDpCpAnn

CpAnn

dEuEuEEExlDlDpApCpAnn

pCpCpApAnn

pnCpnAn

uDuDyrEExrDrDxlDlDDxrCrCuCuCxlAuAuAnn

euDdDylDxlDlDEEEpBpByrBxrBrBuBuBB

EDCBAline
linec

n
n

n
n

n
n

NPPINCESINCES

iiimeNB

oNBSNBI

iisiNBINCI

NBiNCIiiPNCSPINCES

siPsiPNP

iiismtiisbsiNBS

iisiiiisNBSNCS

NPNCSPNCS

bisibosi

siiiiiiINCESINCES

oboiiPINCESPINCES

biPNCSPNCS

issboissiiPINCESPINCES

sisiPNCSPNCS

iiPNCSPNCS

siibisisoissiisiPINCESINCES

NBiiiisboNBIssscoiisisNBSINCES

mPINCESPNCSINCESINCESplantpathdata

−=

++++=

+=

++−−=

+−++−=

+++++=

+++++++++++=

++−+−++−=

+=

−++++++−+

+++++−+−+=

++−+−=

+−=

++++−+−+++−+=

+−+−=

+−=

++++++++−++++++−=

++−++−+−++++++++−+−=

++++=

∑

∑

∑∑∑∑

∈

∈

=

=

=

=

=

=

∈∈∈∈

2323

)(2

)2()3(23

)()(

)()(

)()()(3

33

)]()([

)]()()([2323

])[()(2323

33

)]()()([])([2323

)()(33

)(33

)()]()[()]()()[(2323

])()([])()([11

2332311/

,,,,,,,,,

,,,

,,,,,,,,,,,
},{

,

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,
},,{

,

16,,,16,,16,,,16,16,16,,16,,16,

,16,,16,,16,,16,,16,,,16,,,16,1616

15,15,15,,15,,15,1515

14,,14,1414

,6,,7,,7,7,7,,,7,,7,,7,,7,,7,77

,6,,6,,6,,6,66

,,,,}16,13..8,5..2{

,1,,1,,,1,1,,,1,,1,,,1,,1,1,,,1,,1,,1,,1,,,1,,1,,1,11

0,,0,,0,,,0,,,0,,0,0,0,0,,0,,0,.........,,0,,,0,,0,,0,,0,0,0

},,,,{
,

}15,7{}16,14..8,6..2{}16,1{
0

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
12

1

2
1

...
...

3
2

3
1

3
1

2
1

2
1

3
2

3
2

3
1

2
1

10 A Methodology for Complex Embedded Systems Design

Gajski, D., Vahid, F., Narayan, S. (1994). Specification and Design of Embedded Systems,
Prentice-Hall.

Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G. (1992). Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley.

Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
vol. I, Springer-Verlag.

Jigorea, R., Manolache, S., Eles, P., Peng, Z. (2000). “Modeling of Real-Time Embedded
Systems in an Object-Oriented Design Environment with UML.” 3rd IEEE International
Symposium on Object-Oriented Real-Time, Distributed Computing - ISORC’2000,
pp. 210-203, Newport Beach, U.S.A., March.

Kabous, L., Nebel, W. (1999). “Modeling Hard Real-Time Systems with UML: The
OOHARTS Approach.” 2nd International Conference on the Unified Modeling Language -
UML'99, Fort Collins, U.S.A., October.

Kleinjohann, B., Tacken, J., Tahedl, C. (1997). “Towards a Complete Design Method for
Embedded Systems Using Predicate/Transition-Nets.” Hardware Description Languages
and Their Applications: Specification, Modelling, Verification and Synthesis of
Microelectronic Systems, chapter 1, pp. 4-23, C. Delgado Kloos e E. Cerny (editors),
Chapman & Hall.

Lakos, C. (1995). “The Object Orientation in Object Petri Nets.” 1st Workshop on
Object-Oriented Programming and Models of Concurrency, Torino, Italy.

Lanusse, A., Gérard, S., Terrier, F. (1998). “Real-Time Modeling with UML: The ACCORD
Approach.” International Workshop on the Unified Modeling Language: Beyond the
Notation - UML'98, Mulhouse, France.

Lyons, A. (1998). UML for Real-Time Overview, ObjecTime Limited, April.
Machado, R. J., Fernandes, J. M., Proença, A. J. (1997a). “SOFHIA: A CAD Environment to

Design Digital Control Systems.” Hardware Description Languages and Their
Applications: Specification, Modelling, Verification and Synthesis of Microelectronic
Systems, chapter 10, pp. 86-88, C. Delgado Kloos e E. Cerny (editors), Chapman & Hall.

Machado, R. J., Fernandes, J. M., Proença, A. J. (1997b). “Specification of Industrial Digital
Controllers with Object-Oriented Petri Nets.” IEEE International Symposium on Industrial
Electronics - ISIE’97, vol. I, pp. 78-83, Guimarães, Portugal, July.

Machado, R. J., Fernandes, J. M., Proença, A. J. (1998a). “An Object-Oriented Model for
Rapid-Prototyping of Data Path/Control Systems - A Case Study.” 9th IFAC/IFIP
Symposium on Information Control in Manufacturing - INCOM’98, vol. II, pp. 269-274,
Nancy & Metz, France, June.

Machado, R. J., Fernandes, J. M., Proença, A. J. (1998b). “Hierarchical Mechanisms for
High-level Modeling and Simulation of Digital Systems.” 5th IEEE International
Conference on Electronics, Circuits and Systems - ICECS’98, vol. III, pp. 229-232, Lisbon,
Portugal, September.

Machado, R. J., Fernandes, J. M., Esteves, A. J., Santos, H. D. (2000). “An Evolutionary
Approach to the Use of Petri Net based Models: From Parallel Controllers to HW/SW
Co-Design.” Hardware Design and Petri Nets, chapter 11, pp. 205-222, A. Yakovlev,
L. Gomes e L. Lavagno (editors), Kluwer Academic Publishers.

McLaughin, M., Moore, A. (1998). “Real-Time Extensions to UML.” Dr. Dobb's Journal,
(292),82-93, December.

Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A. (1998). “Quasi-Static
Scheduling of Embedded Software Using Free-Choice Petri Nets.” 1st Workshop on
Hardware Design and Petri Nets - HWPN’98, Lisbon, Portugal, June.

Zave, P. (1984). “The Operational vs. the Conventional Approach.” Communications of the
ACM, 27(2):104-18, 1984.

