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Abstract The main purpose of this article is to present how Petri Nets (PNs) have

been used for hardware design at our research laboratory. We describe

the use of PN models to specify synchronous parallel controllers and how

PN speci�cations can be extended to include the behavioural description

of the data path, by using object-oriented concepts. Some hierarchical

mechanisms which deal with the speci�cation of complex digital systems

are highlighted. It is described a design 
ow that includes, among oth-

ers, the automatic generation of VHDL code to synthesize the control

unit of the system. The use of PNs as part of a multiple-view model

within an object-oriented methodology for hardware/software codesign

is debated. The EDgAR-2 platform is considered as the recon�gurable

target architecture for implementing the systems and its main charac-

teristics are shown.
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Introduction

The control unit and the data path must both be considered by the

speci�cation model and the CAD environment, in order to fully specify a

digital control system. The behaviour of the control unit of a digital sys-

tem is usually described with a Finite State Machine (FSM). Whenever

the system functionality presents concurrent activities, the speci�cation
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206 HARDWARE DESIGN AND PETRI NETS

of the system becomes more problematic and awkward, if we only use

FSM-based techniques.

To specify a parallel controller using FSM techniques, there are, at

least, two alternatives: (1) serially-linked controllers can be obtained by

identifying sub-routines in the speci�cation, or (2) concurrently-linked

controllers should be connected with semaphore bits or common lines

[24]. These solutions are generally awkward to apply, and can result

in ineÆcient implementations due to the pre-partitioning, which limits

the concurrency to the number of FSMs used. It is also hard to verify

for parallel synchronization problems, such as deadlocks or multiple-

sourcing.

Among the existing modelling paradigms, the PN-based one allows

an easy speci�cation of cooperative subsystems [23]. PNs are associated

with a graphical notation, which is easy to understand and a system

modelled with a PN might bene�t from a mathematical theory to for-

mally check its properties [27].

1. PARALLEL CONTROLLERS

A development methodology for digital systems must provide tools

for system speci�cation, modelling and implementation. System speci�-

cation includes the description of the expected behaviour (functionality)

of the digital system. Modelling involves constructing a mathematical

formalism embodying the speci�ed system behaviour. This formalism

can be manipulated and analysed to determine properties of the system

which are not necessarily apparent from the initial problem statement,

usually written in a natural language, such as english. The modelling

formalism may also be adopted for the system speci�cation, when there

is a close correspondence between the system model and its speci�cation.

Several researchers have shown that PNs are a powerful formalism to

model the behaviour of parallel systems, namely, parallel digital con-

trollers. A marking of the PN is equivalent to a global state of the mod-

elled system (node in the reachability graph) and a change of the mark-

ing corresponds to a state transition (edge in the reachability graph). A

detailed analysis of the model, based on a set of well established meth-

ods, allows the detection of a large number of design errors prior to the

system implementation.

Several types of PNs were proposed to model digital systems, either

by imposing restrictions to a basic formalism, or by adding extensions

to it. PN-based controllers can be best modelled by safe PNs, which

can be viewed as a natural extension to FSMs, providing an easy mi-

gration path from FSM to PN-based speci�cations. To e�ectively model
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parallel controllers using safe Place/Transition nets [23], the following

modi�cations were proposed [6]: (1) logic expressions are assigned to

transitions (the guards); (2) Moore type output signals are associated

to places, while Mealy type output signals are related to transitions, to

represent the controller actions; (3) transitions �ring are synchronized

with the active edge of a (global) clock; and (4) enabling and inhibitor

arcs are supported.

The resulting PN type is called Synchronous Interpreted PN (SIPN),

which can be used to specify the control unit of synchronous digital

systems. Some PN formalisms, namely STGs (Signal Transition Graphs)

[31], were also proposed to specify asynchronous digital circuits [30]. To

execute an SIPN, all the enabled transitions at a given moment wait

for a clock pulse and then all �re to produce a new marking. Fig. 11.1

presents an SIPN example, where xi are input signals and yi are output

signals.
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Figure 11.1 An SIPN speci�cation of a controller.

A software framework was developed at our laboratory [6], to accept

an SIPN-based controller speci�cation, written in theConPar language,

in order to validate the properties of the controller and to allow the

PN model animation. Validation of models is important if they are

to evolve into implementations, so a compiler was also included in the

framework to generate the corresponding VHDL code [7]. This code can

feed standard ECAD packages for simulation and synthesis purposes.
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1.1 THE CONPAR DESCRIPTION
LANGUAGE

PNs can also be viewed as formal models for logic rule-based speci�-

cations They make the straightforward link between algebraic numerical

methods and the symbolic mathematical logic based methods of speci�-

cation, optimisation, veri�cation and synthesis. The rule-based form of

speci�cation can be considered as an alternative textual form of timing

diagram description. The causality among signals is explicitly given in

terms of local, relevant inputs, outputs and state changes.

The ConPar description language, which is an extension to a pre-

viously de�ned language called PNSF [15], was developed to specify

SIPN-based controllers, supporting macroplaces. In ConPar notation,

a transition is described as a conditional rule:

<label> : <PreConditions> j- <PostConditions> ;

The precondition and postcondition are respectively formed from in-

put and output place symbols. When the preconditions of a rule are sat-

is�ed (hold), the postconditions are made true (they will hold). Logical

conjunction of all related discrete states is assumed when the precondi-

tion contains more than one discrete state symbol.

For example, the transition t1 in Fig. 11.1 has input place p1, output

places p2 and p3, it is guarded by input x1 and the output signal y1

is activated when the transition is enabled. In ConPar notation, this

transition is described as follows:

t1: p1 * x1 |- p2 * p3 * y1;

1.2 THE VHDL COMPILER

The ConPar description language corresponds to an intermediate

representation that links the SIPN model to the corresponding VHDL

description. This transformation (from ConPar to VHDL) can be ob-

tained automatically by using a VHDL compiler already developed.

To obtain an eÆcient implementation, the PN is directly mapped

into boolean equations without explicitly enumerating all possible global

states and global state changes [1]. The speci�cation is given in terms

of the local states changes (local transitions) and one-hot code state

assignment is used [24].

A VHDL textual PN speci�cation of parallel controllers was proposed

in [24], which describes a VHDL template with ASSERT statements to

enable the syntatic and semantic correctness of the model to be tested.

Experimental results, developed at Inmos in a practical design, achieved
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a 50% area reduction and a 40% speed improvement over the best FSM

synthesis. In this work, this VHDL template was adopted for automatic

code generation.

The VHDL code generated by our compiler is more readable than the

one created with the CAMAD approach [25], where the VHDL code is

not directly related to the original PN speci�cation. This may cause

some implementation ineÆciency, since the PN is transformed into an

FSM (which is built with the same algorithm as the reachability graph)

and then translated into VHDL code using a CASE statement inside a

PROCESS.

Examples on the use of SIPNs, the ConPar language and the CAD

envirnonment can be found in [10, 8, 9]. The complete grammar for the

ConPar is described in [7]

2. PARALLEL CONTROLLERS + DATA
PATH

The SIPN model was developed, aiming just the speci�cation of the

control part of the digital system: the data path of the system can

not be described with the mechanisms available on the model. In some

situations, this is considered to be a severe limitation, since it does not

allow the integrated development of the whole hardware part of the

system. For instance, the simulation task may become diÆcult because

the information on the data path may have to be obtained from di�erent

simulation environments.

To overcome this limitation, the shobi-PN model [17], which is an

extension to the SIPN model, was developed. The shobi-PN model sup-

ports hierarchy and allows objects to be used for specifying the data path

resources. A full digital system can be speci�ed and tested, following a

structured and incremental approach.

The shobi-PN model presents the same characteristics as the SIPN

model, in what concerns synchronism and interpretation, but adds new

mechanisms by supporting object-oriented modelling ideas and new hi-

erarchical constructs, in both the control unit and the data path. This

model embodies concepts present in Synchronous PNs [3], Hierarchical

PNs [5], Coloured PNs [14], and Object-Oriented PNs [16].

In the shobi-PN model, the tokens represent objects that model data

path resources. The instance variables represent the information that is

processed on the data path and the methods are the interface between

the control unit and the data path. The tokens may be considered as

coloured, if SIPN tokens are viewed as uncoloured (the SIPN places are

safe). Each token models a structure of the data path.
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A node (a transition or a place) invokes the tokens' methods, when

the tokens arrive at that node. Nevertheless, only the methods that

have a direct relation with the hardware control signals are directly

invoked in the PN. There are additional methods available at the objects'

interface that are not used by the PN. These methods are invoked by the

simulation software to visualize the contents of a data path structure in

any state of the PN.

Each arc is associated with one or more colours which indicate the

types of objects that are allowed to pass through that arc. This means

that, for each data path structure, there is a well-de�ned path on the PN.

This restriction simpli�es the PN and limits the capacity of some places,

since it is not needed that objects, that are not invoked, unnecessarily

traverse the PN.

Hierarchy can be introduced in the speci�cations in two di�erent ways.

The control unit is modelled by the PN structure, and to introduce the

hierarchy on the controller, macronodes (representing sub-PNs) may be

used. The data path resources are represented by the internal structure

of the tokens, and the hierarchy can be introduced by aggregation (com-

position) of several objects inside one single token (a macrotoken) or by

using the inheritance of methods and data structures.

2.1 SYNTHESIS OF THE CONTROLLER

For simulation purposes, the shobi-PN speci�cation can be used di-

rectly, but to synthesize the control unit, the control part of a shobi-PN

is transformed into an SIPN. This mapping is possible if it ensured that

there is a structural compatibility in the control unit representation.

Other topics, such as the PN reinitializations and the simultaneity on

the invocation of di�erent methods on the same node, are also important

for the mapping but they are not considered in this paper: for details

please refer to [17].

To ensure the structural compatibility of the control unit representa-

tion in the SIPN and shobi-PN models, it is imposed that the skeleton

of the shobi-PN is structurally equivalent to a SIPN without reinitial-

izations. The following concepts used for shobi-PNs are introduced: (1)

Control Net: set of contiguous nodes and arcs of the shobi-PN that

structurally corresponds to the SIPN without reinitilizations; (2) Con-

trol Track: path de�ned by a token in the Control Net; (3) Control

Nodes: nodes (places or transitions) of the Control Net; (4) Control

Arcs: arcs of the Control Net; (5) Closing Track: path de�ned by a

token outside the Control Net; (6) Closing Nodes: nodes of a Closing

Track; (7) Closing Arcs: arcs of a Closing Track; (8) Closing Cycle: path
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de�ned by the movement of a token in the shobi-PN. It is composed by

a Control Track and also, if applicable, by a Closing Track. It can be

identi�ed by the tracking of the colour associated with all the arcs of

the cycle; (9) Associated Net: SIPN structurally equivalent to the Con-

trol Net after the introduction of the reinitilizations for the uncoloured

tokens.

These concepts can be more easily understood by using the shobi-

PN in Fig. 11.2(a) to specify a simple control sequence, with two ob-

jects/tokens to model two structures of the data path.
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Figure 11.2 (a) shobi-PN for a simple control sequence and (b) its corresponding

SIPN.

In this example, the control net is composed by the following set of

nodes ft1; p1; t2; p2; t3g and by the arcs that directly link them. It de-

�nes the skeleton of the shobi-PN. The control track for token a consists

of ft1; p1; t2g, while the control track for token b consists of ft2; p2; t3g.
The closing track for the token a consists of ft2; pc1; t1g and for to-

ken b consists of ft3; pc2; t2g. The closing cycles for tokens a and b are

ft1; p1; t2; pc1g and ft2; p2; t3; pc2g, respectively.
Mapping the shobi-PN into the associated net is made by transform-

ing k-limited places into safe places. A safe place generates, whenever

marked, all the control signals associated to the methods invoked in the

corresponding place in the shobi-PN. As an example, consider the SIPN

in Fig. 11.2(b).
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2.2 REPLICA MECHANISM

Whenever several methods that use the same data structures are con-

currently invoked to a given token in di�erent nodes, it is necessary

to support a replica mechanism. This mechanism allows a token to be

replicated as many times as needed, so that it is structurally possible

to concurrently invoke methods to the same token, but in distinct ar-

eas of the PN. This mechanism can be used as an elegant solution for

a complex problem (the multiple-sourcing) that could be alternatively,

but inneÆciently, solved at the algorithmic level, by changing the PN

structure.

This mechanism becomes indispensable when the modelling of the

data path by hierarchical aggregation is not possible. The replica are

the only solution to ensure the parallelism inherent to the data path

structure, if the mechanism does not destroy the tokens' data structures

consistency.

With the shobi-PN model, it is possible to easily model complex be-

haviours of hardware systems (data path and controller) by decompos-

ing the global model, even if the sub-structures have a parallel time-

evolution.

SOFHIA (Software for Hierarchical Architectures), a CAD environ-

ment that covers all the design phases, was also developed to directly

support the shobi-PN model [18]. Examples on the use of shobi-PNs

and the SOFHIA CAD environment can be found in [19, 20, 21]

3. HARDWARE/SOFTWARE CODESIGN
METHODOLOGY

A methodology to system development based on the operational ap-

proach is essential to guarantee that complex systems can be addressed

[32]. The main idea of this approach is based on an executable speci�-

cation that evolves through transformational re�nements to obtain the

�nal implementation.

Object-oriented models (usually multiple view models covering the

system's object, dynamic, and functional perspectives) are expected to

fully address the above requirements, since they allow the easy re�ne-

ment of application-domain objects during the whole process. However,

there is no established methodology for hardware/software codesign that

exploits the bene�ts of object-oriented system modelling techniques.

MOOSE is a graphical/textual method which is geared towards the

development of embedded computer systems and leads to codesign after

the system as a whole has been investigated through the use of abstract

and executable models [22]. MOOSE uses a multiple view model for
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specifying the systems: OIDs (Object Interaction Diagrams) which are

DFD-like diagrams for functional modelling, Domain Model for object

modelling, and STD (State Transition Diagrams) to model the dynamic

behaviour of the system.

Our methodology is based on MOOSE, with the following modi�ca-

tions: (1) STDs are replaced by shobi-PNs, which allow an easy han-

dling of concurrency within the dynamic management of the system's

objects; (2) the MOOSE paradigm follows essentially the waterfall pro-

cess model, whilst we proposed a more iterative approach in the de�ni-

tion of the committed and the platform architectures, since we include

the HDL/HLL generation in the partitioning phase (Fig. 11.3); (3) an

umbrella testbed is included to cover all the development phases, to

allow behavioural co-simulation, partitioning co-simulation and imple-

mentation co-veri�cation; (4) MOOSE bases partitioning on the designer

experience and intuition, while we use an automatic partitioning based

on heuristics and an iterative re�nement through resources area and

time estimation; and (5) a target architecture (EDgAR-2) is used for

the hardware parts implementation.
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Figure 11.3 The proposed methodology.

The parallel capabilities of PNs are essentially used during the par-

titioning activities, which re�ne the executable speci�cations towards

an equivalent CFSMD model (speci�ed by an HDL) to map it into the

hardware recon�gurable components (section 4.).
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4. EDGAR-2: THE RECONFIGURABLE
TARGET ARCHITECTURE

4.1 THE ARCHITECTURE

EDgAR-2 is an FPGA/CPLD based system used for hardware/software

codesign and rapid system prototyping. The EDgAR-2 is the successor

of the EDgAR. Both systems were developed at our laboratory. The

EDgAR was �rst conceived as part of a stand alone emulation tool for

digital systems [4]. The EDgAR-2 is an enhancement architecture, in-

cluding updated and powerful devices, with In System Programmable

(ISP) property and a PCI bus interface, which allow it to be a recon�g-

urable hardware block in a host PC, implementing a codesign machine

or even a high versatile prototype tool for digital design.

Programmable logic devices (PLDs) can be divided into two classes:

one based on coarse grain two level logic blocks, with guaranteed time

delay (CPLDs), typically used for control paths or time critical circuits;

the other based on �ne grain multi level logic blocks (FPGAs), typically

used for data paths or space critical circuits [26].

Since each PLD class is suitable to implement complementary parts

in a typical digital system, the EDgAR-2 includes devices of both types.

The basic architecture element (Fig. 11.4) is a module composed of an

array of 4 Processor Modules (PMs), including each one a control unit

and a data path unit. The PMs are interconnected in a linear way with

dedicated buses, forming a PM pipeline. Both sides of the array are

available to interconnect several EDgAR-2 boards, in a larger array or

pipeline. Each PM is implemented with a Xilinx 4010E FPGA [28] |

data path | and a 211SP MACH [2] | control path. In what concerns

the host PC, each PM is linked to one byte from the 32 bits PCI data

bus. In this way, the software module in a codesign realisation can

access all the 4 PMs during the same bus cycle, assuming it is possible

to manage the common address space in that way. The PCI bus is also

used to (re)programme the FPGAs, using the same connectivity, while

the CPLDs, for that purpose, use a dedicated independent bus based in

a parallel port.

The main EDgAR-2 characteristics can be summarised as follows: (1)

fully in system programmable; (2) 
exible clock schemes (respecting to

frequency and source), with a limited support for asynchronous prob-

lems; (3) polling and interrupt mechanism for communication with the

host system; (4) PCI burst mode support; (5) pipeline structure; and

(6) scalable architecture.

Because EDgAR-2 is full in system programmable, it supports the

recon�gurable paradigm. Together with a real time operating system
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Figure 11.4 The EDgAR-2 architecture.

(RTOS) and a custom PCI based computer architecture, the obtained

machine is a powerful tool to solve time critical problems. However, dur-

ing the initial phase and for validation purposes, the prototype operates

only under control of the Windows NT (tm) operating system, using a

proprietary device driver.

4.2 THE COMPUTATIONAL MODEL

The EdgAR-2 architecture was designed to directly accommodate a

�nite state machine with data path (FSMD) model [13]. This model is

basically an extension to the well known FSM model, with a data path

to support a higher level of data abstraction, including primitive variable

objects and the associated logical and arithmetic operators. From the

structural point of view, and taking into account the respective proper-

ties, the FSMD model is composed of 2 components: an FSM controller

and a data path. This (FSM controller, data path) pair can be called a



216 HARDWARE DESIGN AND PETRI NETS

Processor Element (PE) and is directly mapped into an EDgAR's PM.

Since the architecture can support several FSMDs, both at the PM level

| PE cluster without connection restrictions | and the board level |

one dimensional PE cluster array -, the model naturally includes con-

currency, and it can be renamed as concurrent FSMD (CFSMD).

Furthermore, if the development system supports hierarchy, it is pos-

sible to work at an architecture level [11] using models such as the Hi-

erarchical Concurrent FSMDs (HCFSMD) or even the Program State

Machine (PSM) [12]. These last two models can also be used for mod-

elling at the system level. However, because PLD devices waste a lot

of space implementing the (re)programmability feature, the logical re-

sources become critical, which is a restriction to use higher abstraction

levels. This issue around the level of abstraction and the resources con-

sumed is essentially the same we �nd in the software domain concerning

the high level languages vs. assembly languages. From this point of

view, EDgAR-2 can be compared with a computer with a few kbytes of

memory.

From the above discussion, and despite EDgAR-2 model supports

higher level of abstractions, the CFSMD model seems to be the best

choice, allowing concurrent descriptions at the RTL level. This decision

a�ects the complexity of the development tools, and can impose some

restrictions to the implementation of codesign methodologies, having

EDgAR-2 as the target hardware.

As stated before, pipeline is also supported by the computational

model of the architecture. At the outer level EDgAR-2 can be de�ned as

a pipeline of PE clusters, with each cluster formed by arbitrary concur-

rent PEs. This architecture is well suited, for instance, to a production

line with several interdependent machines, each with a set of concurrent

processes. At the PE level pipeline is not explicit in the architecture,

but especially the FPGAs easily allow the addition of pipeline stages to

the data path. To what concerns the control path, typically it is not

pro�table to introduce pipeline stages, due to the faster operation of the

2-level logic CPLDs.

To summarise, the target hardware de�nes an elementary PE archi-

tecture, comprising: (1) an FSM controller block (CPLDs) | support-

ing registers and two-level logic. This block does not include enough

memory to be micro-programmed. The micro-programmability would

allow a microprocessor model, which is not needed because the host

has a processor. (2) a data path block (FPGAs) | supporting logic

and arithmetic operators up to 32 bits wide, data structures with low

complexity (up to 4 � 1kbyte) and the common logic structures (MUXs,

decoders, registers, ALUs up to 32). A system is composed of an arbi-
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trary number of concurrent PEs, forming clusters, eventually linked in

a pipeline structure.

4.3 THE COMMUNICATION MODEL

At a high level of abstraction two communication class mechanisms

can be identi�ed: message passing and shared memory. Some of the

operations typically found in a message passing mechanism are: point-

to-point communication (one to one relation), broadcasting (one to all

relation), scatter (one node sends a distinct messages for each node),

gather (one node gets a distinct messages from each node) [29]. Shared

memory evolves the coordinated access of all processes to a common

memory space, requiring the de�nition of arbitration rules. EDgAR-

2 does not include a large common memory, and so it imposes severe

restrictions to the implementation of shared memory mechanisms.

At a lower level of abstraction, a physical topology imposes more

or less restrictions to the implementation of the above communication

mechanisms. Some of the topologies commonly used on systems like

the EDgAR-2 are: (1) chain | all nodes, except the two end nodes,

communicates with two neighbours, building a chain; (2) ring | a chain

topology, where the two end nodes are connected; (3) n-dimensional

mesh | every node communicates with its adjacent ones, building a

n-dimensional cube; (4) centralised or star | a topology where one

single node (concentrator) connects to all the others; (5) hierarchical or

tree | the connections between nodes present an hierarchical or tree-

like structure; (6) complete or fully connected topology | every node

communicates to all the others; and (7) an irregular topology.

These topologies can be explicitly de�ned in the architecture design, or

implemented in software or even trough programmable routing devices,

allowing topology changes.

To what concerns EDgAR-2, it is necessary to distinguish the com-

munication between processes running on hardware, on software and on

both hardware and software. The processes running on hardware must

conform to the CFSMD computational model proposed. If this model

is not restricted, it requires a fully connected topology at the PE level.

Both the CPLDs and FPGAs programmable structures are very rich

in terms of in chip interconnections, allowing, for most applications, a

fully connected topology at the PE cluster level. To implement the same

topology at the PM level it is necessary to use larger chips with much

more pins, which imposes a higher cost and a higher complexity of the

PCB routing.
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The analysis of the CFSMDmodel for several problems| (embedded)

control systems domain | showed that only a small number of systems

will justify a fully connected topology. So it was decided to provide the

architecture of the EDgAR-2 with the following combined topology: a

fully connected or centralised topology at the PE cluster level, with a

chain (or optionally a ring) topology at the PM or system level.

The processes running on software naturally use the mechanisms sup-

ported by the host operating system. This issue has no in
uence in

the EDgAR-2's model and will not be more detailed here. Finally, in a

codesign environment, there will be hardware processes communicating

with software processes. As described before, the host can access all the

PMs through a PCI bus. For complexity reasons and because typically

EDgAR-2 works as a coprocessor, the PCI interface does not implement

Bus Master operations. This decision implicitly give to the software

processes the control over hardware processes. This corresponds to the

centralised mechanism de�ned above. Fig. 11.5 shows the communica-

tion model just described.

Any communication involving EDgAR-2 can be synchronous or asyn-

chronous. The later requires some type of handshake, while the former

just requires a signal from the sender to the receiver. Besides, there

will be some type of protocol, which is naturally limited by the amount

of resources available. Typically, a communication should be restricted

to a register transfer with a request/acknowledge handshake. If a more

elaborated protocol and/or handshake is required, its speci�cation must

be described, making it in an additional PE.

Using the communication topology described, higher level communi-

cation models can be implemented. The decision of which model to use

will be done by the development methodology (however, it is not diÆcult

to realise a complex communication protocol which could waste most of

the EDgAR-2 resources). Some guidelines for this decision are described

here. First, communication models based on large memory utilisation

are not supported due to the lack of memory on the EDgAR-2 board.

Second, the broadcasting operation used on the message-passing model

is not suitably supported to other levels rather than PE cluster level,

because it will require the architecture to allow simultaneous write op-

erations to all devices, which is not the case | to execute a message

broadcasting a time overhead is imposed by the required sequence of

point-to-point communications. Third, it is necessary to use low com-

plexity communication protocols, in order to achieve a good balance

between communication resources and processing resources.



Evolutionary Approach to Using Petri Nets 219

...

FSMDs

Concurrent

Concurrent

FSMDs

FSMDs

HOST

Multi

Processor

PE cluster

PE cluster

PE cluster

Concurrent

Hardware Software

Figure 11.5 The EDgAR-2 communication model.

5. CONCLUSIONS

This paper has presented the evolution of a family of PN-based mod-

els to allow the speci�cation of sequential and parallel controllers, with

or without data path, and has also shown how is it possible to use them

within a wider methodology for hardware/software codesign. PNs are

viewed as a fundamental component of a multiple-view model to deal

with parallel and concurrent behavioural speci�cation at system-level

design. The whole methodology is object-oriented and follows the op-

erational approach to allow the generation of executable speci�cations

and transformational re�nements to obtain the hardware and software

solutions for system implementation. The codesign target architecture

is also presented, which includes a CPLD/FPGA-based ISP board and a

host PC with real-time multiprocessing capabilities. The target architec-

ture proposed o�ers an interesting low cost environment to research on
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codesign methodologies and on hardware rapid-prototyping for a broad

range of time critical problems.
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