
A Petri Net Meta-Model to Develop Software Components
for Embedded Systems

Ricardo J. Machado João M. Fernandes
Dept. Sistemas de Informação

Escola de Engenharia
Universidade do Minho
Guimarães, Portugal
rmac@dsi.uminho.pt

Dept. Informática
Escola de Engenharia

Universidade do Minho
Braga, Portugal

miguel@di.uminho.pt

Abstract
This paper presents a new Petri net (PN) meta-model,
called shobi-PN v2.0, that can be used to specify the
dynamic behaviour of concurrent systems, using
object-oriented modelling concepts together with a
generalised arc set capable of coping with the
complexity of the current embedded systems. This new
Petri net meta-model can also be used to support a
component-based development approach in the design
of generic and parametrisable control-oriented
software components for embedded systems.

1. Introduction

Embedded systems can be qualified, in their vast
majority, as control-dominated systems and usually
their dynamic behaviour is specified with a
state-oriented model, such as FSMs (Finite State
Machines). However, real-time embedded systems are
becoming nowadays hugely complex, meaning that a
distinct approach is needed. The specification model
has to fulfill several requirements, namely support for
concurrency, timing constraints, hierarchy, data and
control flow, and distributed computations. Thus, for
modelling several perspectives of the systems (namely,
their data and function views), it is mandatory to
consider multiple-view models. It is also commonly
agreed that designers can enhance their efficiency and
productivity if there exists a common notation that
everybody is able to understand. In this context, the
authors recommend the use of some UML diagrams to
specify and model embedded systems, because it is a
notation that covers the most relevant modelling
aspects of systems and it is a standard [1].

UML is a general purpose modelling language for
specifying, visualising, constructing and documenting
the artefacts of software systems, as well as for
business modelling and other non-software systems
[2]. At the moment UML is an OMG’s (Object
Management Group) standard for defining and
designing software systems, but it is expected to
become an ISO standard in the near future [3]. As a
consequence of being a standard language, UML is
being increasingly accepted as a language in industrial
environments. UML is meant to be used universally
for the modelling of systems, including automatic
control applications with both hardware and software
components, so the authors consider it as an adequate
alternative for embedded systems. Several researchers
have also selected UML as the notation for specifying
embedded systems, which confirms the usefulness of
UML for this engineering field and indicates that this
notation is gaining widespread acceptance and usage
within this community [4, 5, 6, 7, 8, 9].

For specifying the systems, the authors are using
the main views captured by the following UML
diagrams:
(1) use case diagrams are utilized to catch the
functional aspects of the system as viewed by its users;
(2) object diagrams show the static configuration of the
system, and the relations among the objects the system
is composed of;
(3) sequence diagrams display scenarios of common
interactions amongst the objects that constitute the
system or the actors that interact with it;
(4) class diagrams show the information of ready-made
components that can be used to construct systems and
specify the hierarchical relationships among them.

Additionally, Petri nets (shobi-PN v2.0) are used to
specify the dynamic behaviour of some

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

objects/classes. It is important to note that, contrarily
to our proposal, some authors use the UML
state-oriented models to specify the algorithm of a
specific method of an object, and not the entire
life-cycle of that object [10]. Our proposal is different
and assumes that the methods of the object are used as
inputs or outputs of the PNs.

Although the OMG’s Real-time Analysis and
Design working group has not come yet with a final
proposal for directly incorporating real-time concepts
into the UML standard (namely in what concerns the
syntax for the OCL language), the authors are using
UML for dealing with hard real-time systems. Up to
now, timed sequence diagrams and Oblog syntax (the
language used by the authors to support the system’s
specification based on PNs) have been used for the
specification of the canonical latency and duration
constraints, which are viewed as composites for more
accurate categories of timed requirements (for
performance and safety constraints specification).

2. Petri Nets meta-models

State models can be specified for the system’s
components that possess a complex or interesting
dynamic behaviour. UML has two different
meta-models for this purpose: STATECHARTS and
activity diagrams. Although these two meta-models
present many important characteristics for reactive
systems, namely concurrency and hierarchy, they do
not allow an elegant treatment of the data path/plant
resources management and the specification of
dynamic parallelism. These are two crucial topics for
complex, distributed and parallel embedded systems,
since different parts of the system may require the
simultaneous access to the same resource.

For digital systems and, more specifically, for
control embedded systems, the application of Petri nets
to the specification of the behavioural view can benefit
from several research results. The designer can choose,
among several PN meta-models, a specific one
intentionally created to deal with the particularities of
that kind of systems, like the ones referred in [11, 12,
13].

PNs constitute a mathematical meta-model that can
be animated/simulated, formally analysed, and for
which several implementation techniques are available
(PLC, hardwired, PLD/FPGA, microprocessor-based).
In this situation, for replacing UML’s statecharts and
activity diagrams, an extended PN meta-model,
designated shobi-PN, is proposed, to specify the
reactive behaviour of the system’s components.

2.1. The shobi-PN v1.0

The traditional synchronous and interpreted PN
meta-model (SIPN) [14] was developed, aiming at just
the specification of the control part of the system: the
data path/plant of the system can not be described with
the mechanisms available on the meta-model. To
overcome this limitation, the shobi-PN v1.0
meta-model, which is an extension to the SIPN model,
was developed [15]. The shobi-PN v1.0 meta-model
supports hierarchy and allows objects to be used for
specifying the data path/plant resources.

The shobi-PN v1.0 meta-model presents the same
characteristics as the SIPN meta-model, in what
concerns synchronism and interpretation, but adds new
mechanisms by supporting object-oriented modelling
ideas and new hierarchical constructs, in both the
control unit and the data path/plant. This meta-model
embodies concepts present in Synchronous PNs [16],
Hierarchical PNs [17], Coloured PNs [18], and
Object-Oriented PNs [19]. In the shobi-PN v1.0
meta-model, the tokens represent objects that model
data path/plant resources. The instance variables
represent the information that is processed on the data
path/plant and the methods are the interface between
the control unit and the data path/plant. Each token
models a structure of the data path/plant. A node (a
transition or a place) invokes the tokens’ methods,
when the tokens arrive at that node. Each arc is
associated with one or more colours which indicate the
types of objects that are allowed to pass through that
arc. This means that, for each data path/plant structure,
there is a well-defined path on the PN.

To ensure the structural compatibility of the control
unit representation in the SIPN and shobi-PN models,
it is imposed that the skeleton of the shobi-PN is
structurally equivalent to a SIPN without
reinitializations. The following concepts used for
shobi-PNs are introduced:
(1) control net: set of contiguous nodes and arcs of the
shobi-PN that structurally corresponds to the SIPN
without reinitilizations;
(2) control track: path defined by a token in the control
net;
(3) control nodes: nodes (places or transitions) of the
control net;
(4) control arcs: arcs of the control net;
(5) closing track: path defined by a token outside the
control net;
(6) closing nodes: nodes of a closing track;
(7) closing arcs: arcs of a closing track;
(8) closing cycle: path defined by the movement of a
token in the shobi-PN; it is composed by a control

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Figure 1. (left) shobi-PN for a simple control sequence and (right) its corresponding SIPN.

track and also, if applicable, by a closing track; it can
be identified by the tracking of the colour associated
with all the arcs of the cycle;
(9) associated net: SIPN structurally equivalent to the
control net after the introduction of the reinitilizations
for the uncoloured tokens.

These concepts can be more easily understood by
using the shobi-PN in fig. 1 to specify a simple control
sequence, with two objects/tokens to model two
structures of the data path.

In this example, the control net is composed by the
following set of nodes {t1, p1, t2, p2, t3} and by the
arcs that directly link them. It defines the skeleton of
the shobi-PN. The control track for the token a
consists of {t1, p1, t2}, while the control track for the
token b consists of {t2, p2, t3}. The closing track for
the token a consists of {t2, pf1, t1} and for token b
consists of {t3, pf2, t2}. The closing cycles for tokens
a and b are {t1, p1, t2, pf1} and {t2, p2, t3, pf2},
respectively.

Hierarchy can be introduced in the specifications in
two different ways:
(1) the control unit is modelled by the PN structure,
and to introduce the hierarchy on the controller,
macronodes (representing sub-PNs) may be used;
(2) the data path/plant resources are represented by the
internal structure of the tokens, and the hierarchy can
be introduced by aggregation (composition) of several
objects inside one single token (a macrotoken) or by
using the inheritance of methods and data structures.

Whenever several methods that use the same data
structures are concurrently invoked to a given token in
different nodes, it is necessary to support a replica
mechanism. This mechanism allows a token to be
replicated as many times as needed, so that it is
structurally possible to concurrently invoke methods to
the same token, but in distinct areas of the PN. This
mechanism can be used as an elegant solution for a
complex problem (the multiple-sourcing) that could be
alternatively, but inefficiently, solved at the

algorithmic level, by changing the PN structure. This
mechanism becomes indispensable when the
modelling of the data path by hierarchical aggregation
is not possible. The replica are the only solution to
ensure the parallelism inherent to the data path/plant
structure, if the mechanism does not destroy the
tokens’ data structures consistency.

This shobi-PN v1.0 meta-model has been
exhaustively used in several application domains of
medium complexity: industrial controllers [20],
communication interfaces [21], and micro-architecture
of processors [22].

2.2. The shobi-PN v2.0

The use of shobi-PN v1.0 meta-model to specify the
behaviour an industrial controller (the HIDRO
production lines [23]) has revealed some semantic
fragilities of that modelling approach, namely when it
is mandatory to assure:
(1) the violation of levels of structural hierarchy by the
introduction of tokens/objects in arbitrary zones of the
PNs (this is very useful when, for some specific
objects, it is crucial to bypass some levels of the
controller’s hierarchy);
(2) the creation and destruction of objects for
momentary reference of objects that are external to the
system;
(3) the manipulation of the original (genuine) objects
and not the eventual replica that the dynamic execution
of the PNs can create (this is vital to deal with critical
regions in the control of multiple accesses to shared
resources - for instance, the elevators in the HIDRO
lines case study).
To solve this three kinds of detected problems, the
authors have extended the shobi-PN v1.0 meta-model
(which has originated the shobi-PN v2.0 meta-model)
by defining:
(1) a generalised arc set (GAS) which allows the use of
16 different types of arcs, each one with specific

a .WR_y1(H)

a

a

b .WR_y3(H)

b .WR_y2(H)

b .WR_y3(H)b.RD_x3(H)

a.RD_x1(L)

a.RD_x2(H)

b

b b

b

a

a

a

b

p1

p2

p f1

p f2

t1

t2

t3

r i1

r f1

y1

y3

y2

y3x3

not x1

x2

p1

p2

pr1

t1

t3

t2

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Table 1. Generalised arc set of shobi-PN v2.0 meta-model.

Arc Description

control arc: Arc that transports objects (and replica) and originates arcs in the SIPN meta-model.

closing arc: Arc that transports objects (and replica) and does not originate arcs in the SIPN
meta-model.

enabling control arc: Control arc that does not transport objects (neither replica), it is solely used to
enable transitions; it originates enabling arcs in the SIPN meta-model.

enabling closing arc: Closing arc that does not transport objects (neither replica), it is solely used to
enable transitions; it does not originate enabling arcs in the SIPN meta-model.

inhibitor control arc: Control arc that does not transport objects (neither replica), it is solely used to
inhibit transitions; it originates inhibitor arcs in the SIPN meta-model.

inhibitor closing arc: Closing arc that does not transport objects (neither replica), it is solely used to
inhibit transitions; it does not originate inhibitor arcs in the SIPN meta-model.

destructor control arc: Control arc that does not transport objects (neither replica), it is solely used to
destroy replica; it does not originate arcs in the SIPN meta-model.

destructor closing arc: Closing arc that does not transport objects (neither replica), it is solely used to
destroy replica; it does not originate arcs in the SIPN meta-model.

synchronous hierarchical control arc: Control arc that transports pre-existent objects and it can violate
levels of structural hierarchy; it does not transport replica.

synchronous hierarchical closing arc: Closing arc that transports pre-existent objects and it can violate
levels of structural hierarchy; it does not transport replica.

asynchronous hierarchical control arc: Control arc that transports replica of pre-existent objects and it
can violate levels of structural hierarchy.

asynchronous hierarchical closing arc: Closing arc that transports replica of pre-existent objects and it
can violate levels of structural hierarchy.

initialising synchronous hierarchical control arc: Control arc that transports not yet existent objects,
creating or destroying them; it can violate levels of structural hierarchy.

initialising synchronous hierarchical closing arc: Closing arc that transports not yet existent objects,
creating or destroying them; it can violate levels of structural hierarchy.

initialising asynchronous hierarchical control arc: Control arc that transports replica of not yet existent
objects, creating or destroying them; it can violate levels of structural hierarchy.

initialising asynchronous hierarchical closing arc: Closing arc that transports replica of not yet existent
objects, creating or destroying them; it can violate levels of structural hierarchy.

syntactic and semantic properties within the
shobi-PN v2.0 meta-model (table 1);
 (2) the concept of asynchronous macro-transition
(AMT) as an auxiliary mechanism to the GAS, to solve
the specific problem of the violations of the structural
hierarchy’s levels.

In the 16 kinds of arcs there are some
dual/complementary arc subsets.

2.2.1. Control vs. Closing. For each type of control
arc, there exists a dual corresponding closing arc. Any

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Figure 2. Upper level behaviour of an industrial controller specified with a shobi-PN v2.0.

control arc belongs to the skeleton (control path) of the
net, which means that it must remain in the associated
net for allowing the controller to be properly
synthesised.

On the contrary, since the closing arcs do not
directly contribute to the skeleton structure, they are
withdrawn from the associated net. This duality allows
the system’s resources (data path resources) to be
managed in an easy way, since the closing cycles may
benefit from the use of as many types of closing arcs
as types of control arcs.

2.2.2. Hierarchical vs. Non-hierarchical. All
hierarchical arcs can violate the hierarchical levels of
the net’s structure. This hierarchical arcs’ capacity
permits the use of several modelling mechanisms,
without reducing the flexibility in the communication
with external objects among any level. Thus, the

hierarchical levels can be violated (in a judicious and
controlled way), whenever it is not advantageous to
maintain those levels for interconnecting objects.

The need to allow some types of arcs to possess this
capacity arises from the inexistence of equivalence
between the controllers hierarchical levels and the data
path ones. A non-hierarchical arc can not violate the
hierarchy of the net’s structure, i.e., it is unable to
represent a flow transfer (transportation of objects or
their replica), transversally to the hierarchical levels,
since its scope is restricted to a single level.

2.2.3. Synchronous vs. Asynchronous. For each type
of hierarchical synchronous arc, there exists a dual
corresponding hierarchical asynchronous arc. The
synchronous arcs transfer control flow when the
shobi-PN meta-model firing rules are checked.
Contrarily, the asynchronous arcs do not need to

NCS3 n

NCS3 n

Init_Node (NCS3 n)

NBSA ,n

NBSC ,nNBSB ,n

NCS3 n

NCS3 n

NCS3 nNCS3 n

NCS3 n NCS3 n

NCS3 nNCS3 n

NCS3 n

NCS3 nNCS3 n

NCI3n

NCI3n

Init_Node (NCI3n)

NBID ,n

NBIF ,nNBIE ,n

NCI3n

NCI3n

NCI3nNCI3n

NCI3n NCI3n

NCI3n
NCI3n

NCI3n

NCI3nNCI3n

NBe ,nNBe ,n
NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

Init_E (NBe ,n , up)

NBe ,n

NBe ,n

NBe ,n

NBe ,n

Init_E (NBe ,n , down)

NBe ,n

NBe ,n NBe ,n

NBe ,nNBe ,n

NCI3nNCS3 n

s1

s2

s3 s4

s5

s7

s8 s9

s10

s6

s11

s12 s13

s14 s15

s16

t1

t3t2

t4 t5

amt1

t6

t8t7

t9 t10

amt2

t12t11

t13 t14

t15 t16

t17 t18

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Figure 3. Middle level behaviour of an industrial controller specified with a shobi-PN v2.0.

transfer flow in a synchronous way with the net
evolution. This is the main reason why asynchronous
arcs are only allowed to transport replicas and not
objects. This limitation of the asynchronous arcs
ensures the innocuity of its asynchronism. Even if the
potential loss of control during the net evolution is
taken into consideration (due to a subversive use of
asynchronous arcs), the introduction of this
asynchronism in the shobi-PN v2.0 meta-model results
from the need to complement the hierarchical levels
violation mechanism, whenever the communication
with the external objects is made without knowing its
internal state.

The synchronous arcs are allowed to transport
objects (and never replicas) as a way to support a
precise control over the critical regions, on the
management of multiple accesses of shared resources.
This limitation of the synchronous arcs is crucial, due
to the dynamic and parallel nature of PNs.

2.2.4. Initialising vs Non-initialising. Due to the
asynchronism of invocations and also to the
hierarchical levels violation, there is frequently the
need to manipulate, at the arc level, objects not
previously declared. Thus, the initialising arcs possess
the ability to create or destroy an object (or the
corresponding replica), respectively, immediately
before or after its effective transport.

Since the shobi-PNs are conservative in relation to
the data path objects, the usage of this type of arcs is
restricted to the manipulation of objects external to the
net under consideration.

In fig. 2 and fig. 3 there are two shobi-PNs v2.0 that
partially specify the behaviour of an industrial
embedded controller.

The upper net (fig. 2) specifies the access control to
the system’s critical resources (the object NBe,n),
while the middle net (fig. 3) specifies the algorithmic
life-cycle execution of the NBe,n object. These

*1: Default_Dest (NBe ,n , T ime_GL, T ime_BL, !dest>>dest)

Ret

res_ack = OK

NB l i n e ,n

NB l i n e ,n

res_ack = KO

Send_Same (NB l i n e ,n , id, e, Time_GL, T ime_BL, res_ack)

* 2: Send_Same (NBe ,n , id , dest , T ime_GL, Time_BL, ! res_ack>>res_ack)

* 3: Move_E (NBe ,n , down, empty, T ime_GL, Time_BL, ! res_ack>>res_ack1)

NBe ,n

NBe ,n

Move_E (NBe ,n , sense, ful l , Time_GL, T ime_BL, res_ack)

res_ack = OK

Calc_Dest (id, NB l i n e ,n .N, 3, T ime_BL, dummy)

dummy = X dummy != X

NBe ,n

NBe ,n

E_type = updown E_type = downE_type = up

* 2

* 1

* 3 * 4

NB l i n e ,n+NBe ,nNB l i n e ,n+NBe ,n

NBe ,n

NBe ,nNBe ,n

NBe ,n
NBe ,n

NBe ,nNBe ,n

NBe ,nNBe ,n

NBe ,n

NBe ,nNBe ,n

NBe ,n

NBe ,n NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

NBe ,n

*4: Move_E (NBe ,n , up, empty, T ime_GL, Time_BL, ! res_ack>>res_ack1)

 Send_Other (in NB l in e ,n : Node required ,
in id: Code,
in dest: Lines,
in T ime_GL: Temp, in T ime_BL: Temp)

NBe ,n

NBe ,n

NBe ,n

pre (dest > e) sense = down
pre (dest < e) sense = up

NB l i n e ,n

NBe ,n

NBe ,n

NB l i n e ,n

E_type = updown
or

E_type = sense

E_type != updown
and

E_type != sense

NB l i n e ,n

NB l i n e ,nNB l i n e ,n

NB l i n e ,n

NB l i n e ,n

NB l i n e ,n

C1 .MSG ("sense_error", NB l i n e ,n , $TIME_SYS)
res_ack = KO res_ack = KO

C1

sei

seo

te

Ret

t2

s2

s1

s0

t0

t1

t3 t4

t5 t6

t7

t8 t9

t10

t11 t12 t13

t14 t15

t16

s3

s4

s6

s5

s7

s8

s9 s10

s11

s12

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Figure 4. Generatrix shobi-PN v2.0 of an industrial knitting machine embedded supervisor.

shobi-PNs v2.0 are related with each other by the AMTs
amt1 and amt2 of the upper net that allow the
injection of the object NBe,n, using synchronous
hierarchical control arcs, into the place sei of the
middle net.
The AMTs allow a true hierarchical level violation,
since the middle net is not the immediate sub-net of
the upper net. The NBe,n object located in place sei can
be used inside the middle net when it is initialised with
a NBline,n object. In this situation, the replica of the
NBe,n object located in place sei is injected in the place
s2 of the middle net by using an asynchronous
hierarchical closing arc and the NBe,n object is located
in place seo by the firing of the te transition. When the

replica of the NBe,n object reaches the place s12 of the
middle net, the NBe,n object leaves the middle net and
return to the upper net to place s11, passing throughout
the AMT.

3. Software Components

Component based design (CBD) is strongly based on
the reuse of previously designed components, avoiding
the design from scratch of each system part. The use of
the CBD approach demands:

(1) a cautious selection of the components that
should be used in a specific situation, to assure a
minimal integration and parameterisation effort;

KM+C2

t
22

s
1

t
20

s9s
11

KM .end_ lo t = ON
t

17

t18
KM .s tar t_out = ON

KM .on_ou t = OFF

C2 .au to = ON
and

KM .on_ou t = OFF

t0

t
24

s
12

s
10

t
14

t
19

t21t23t25

s
3

ActuarTear (star t_ in, star t_out, val idat ionTime, 0, ErrorStart)

s2

t1
KM .on_out = ON

Specia l

S e t u p K M

s0

P_spec ia l = OFF
and

P_setup = ON
P_spec ia l = ON

P_spec ia l = ON

P_setup = ON

P_setup = ON

KM .s tar t_out = ON

KM .s tar t_ou t= ON

KM .s tar t_out = ON

s6

C2 .au to = ON

t12

P_se tup = OFF
and

C2 .au to = ON
s4

s
5

s
7

t2 t3 t4 t5 t28

t
7

t
8

t9t10

t11

t13

Timer1

KM .s tar t_sensor = ON

C2.wr i te (s tar t_sensor, ON)
ActuateKM (star t_ in, s tar t_out , val idat ionTime, 0, ErrorStar t)

KM . sensor = OFF KM . sensor = ON

C2.wr i te (s tar t_sensor , OFF)

C2.wr i te (s tar t_sensor, ON)

KM . sensor = OFF

s14
s15

s16

t26

t
27

t
6

t29

C2.wr i te (s tar t_sensor , OFF)

s17

t
30

s
18

t31

T_product ive = TRUE
T_star t = FALSE

t
35

Process

Timer1.va lue = 0

KM+Timer1

Timer1. In i t (P_dataProcessTime)
Timer2. In i t (P_processTime)

t
32

t33

s19

s
20

t34

T_product ive = FALSE
T_s top = FALSE
T_star t = TRUE
C2 .wri te(start)

T_product ive = FALSE
T_s top = FALSE
T_star t = TRUE
C2 .wri te (start)

T_product ive = TRUE
T_star t = FALSE
C2 .wri te (run)

T_product ive = TRUE
T_s top = FALSE
KM .Rese tCounte r
C2 .wri te (run)

KM+C2

KM
C2

KM+C2 KM+C2

C2

ActuateKM (on, on_out , t ime, autotest , ErrorOn)

KM . s ta r t_sensor = OFF

Timer2

C2

C2

C2

C2

C2

KM+C2 KM+C2
KM+C2

KM+C2KM+C2 KM+C2

KM+C2 KM+C2

KM+C2 KM+C2

KM+C2 KM+C2

KM+C2KM+C2

KM+C2

KM+C2

KM+C2
KM+C2

KM+C2

KM+C2

KM+C2 KM+C2

KM+C2KM+C2

KM+C2KM+C2 KM+C2

KM+C2 KM+C2

KM+C2

KM+C2

KM+C2

KM

KM

KM

KM
KM+Timer1

KM+Timer1

KM+Timer1

KM KMKM
KM

KM KM

KM

KM KM KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

t15

T_s top = TRUE
T_product ive = FALSE
C2.wr i te (OFF)

KM

s
13

KM . sensor_out = ON

C2 .wr i te (sensor_out , ON)

KM .L_s top = ON
or

KM .b_s top = ON

ExecStop (b_stop)
T_s top = TRUE

KM .end_un i ty = ON

INC(Uni tyCounter) TestP_stop C2

KM

KM+Timer2

Timer2

* 1

Timer2.va lue = 0

min imum pr ior i ty max imum pr ior i ty

t30 t35 t32 t24 t17 t20 t22

* 1: C2.wr i te (Uni tyCounter , Star tTime, Product iveTime, StopTime, Ef f ic iency, Product iv i ty)

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Figure 5. Parameterised shobi-PN v2.0 of an industrial knitting machine embedded supervisor.

(2) a correct component parameterisation to commit it
to the final context;
(3) a careful interconnection with the other
components to obtain the desired system.

One of the problems that arise from the CBD
approach is related to the specification of a parametric
and generic component capable of being instantiated
within a set of well-characterised behavioural class. To
solve this problem, in the context of the design of
generic components for industrial embedded systems,
the authors have used the shobi-PN v2.0 meta-model
to construct generatrix shobi-PNs v2.0. These
generatrix PNs are viewed as architectural
generalisations of all the possible shobi-PNs v2.0 that

can be obtained after parameterisation. Each generatrix
shobi-PN v2.0 has several Boolean parameters in
transitions’ propositions that allow a structural
redefinition of the PN, to obtain a parameterised
shobi-PN v2.0. Fig. 4 shows a generatrix
shobi-PN v2.0 of an industrial knitting machine
embedded supervisor system with five parameters
(P_special, P_setup, P_program, P_wait and P_stop).
This means that, in a specific context, each parameter
can be forced to a specific Boolean value imposing the
elimination or preservation of control paths and
generating a parameterised PN with a proper
behaviour. Fig. 5 depicts a parameterised
shobi-PN v2.0 generated by the generatrix

KM+C2

t
22

s
1

t
20

s9s
11

KM .end_ lo t = ON
t

17

t18
KM .s tar t_out = ON

KM .on_ou t = OFF

C2.au to = ON
and

KM .on_ou t = OFF

t0

t
24

s
12

s
10

t14

t
19

t21t23t25

s2

t1
KM .on_out = ON

s0

KM .s tar t_out = ON

s5

s7

t28

t7

Timer1

KM .s tar t_sensor = ON

C2.wr i te (s tar t_sensor, ON)
ActuateKM (star t_ in, s tar t_out , val idat ion_t ime, 0, ErrorStar t)

KM . sensor = OFF KM . sensor = ON

C2.wr i te (s tar t_sensor , OFF)

C2.wr i te (s tar t_sensor, ON)

KM . sensor = OFF

s14
s

15

s
16

t26

t27 t6

t
29

C2.wr i te (s tar t_sensor , OFF)

s
17

t
30

s
18

t31

t
35

Process

Timer1.va lue = 0

KM+Timer1

Timer1. In i t (P_dataProcessTime)
Timer2. In i t (P_processTime)

minimal pr ior i ty maximal pr ior i ty

t30 t35 t32 t24 t17 t20 t22

t32

t
33

s19

s20

t34

T_produc t ive= FALSE
T_s top = FALSE
T_star t = TRUE
C2.wri te(start)

T_product ive = FALSE
T_s top = FALSE
T_star t = TRUE
C2 .wri te (start)

T_product ive = TRUE
T_star t = FALSE
C2 .wri te (run)

T_product ive = TRUE
T_s top = FALSE
KM .Counte rReset
C2 .wri te (run)

KM+C2

KM
C2

KM+C2 KM+C2

C2

ActuateKM (on, on_out , t ime, autotest , ErrorOn)

KM . s ta r t_sensor = OFF

Timer2

C2

C2

C2

C2

KM+C2
KM+C2

KM+C2 KM+C2

KM+C2 KM+C2

KM+C2 KM+C2

KM+C2 KM+C2

KM+C2KM+C2

KM+C2

KM+C2

KM

KM
KM+Timer1

KM+Timer1

KM+Timer1

KM KMKM
KM

KM KM

KM

KM KM KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

KM

t
15

T_s top = TRUE
T_product ive = FALSE
C2 .wr i te (OFF)

KM

s
13

KM . sensor_out = ON

C2.wr i te (sensor_out , ON)

KM .L_s top = ON
or

KM .b_s top = ON

ExecStop (b_stop)
T_s top = TRUE

KM .end_un i ty = ON

INC(Uni tyCounter) TestP_stop C2

KM

KM+Timer2

Timer2

* 1

* 1: C2 .wr i te (Uni tyCounter , Star tTime, Product iveTime, StopTime, Ef f ic iency, Product iv i ty)

Timer2.va lue = 0

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

shobi-PN v2.0 of fig. 4, to synthesise a controller to a
specific knitting machine (the LONATI 409/421).

4. Oblog CASE Tool

From a pragmatic point of view, a methodology for
developing systems can only be useful for its users if
there exist tools supporting the development tasks. The
authors’ methodology is an on-going project, but there
are already some tools available for the developers.
A software environment was developed to allow
animation/simulation by generating UML sequence
diagrams. These diagrams are built from the system
specification and allow the designers to manually
compare them with similar diagrams constructed
previously in co-operation with the system’s
customers. This eases the methodology to follow the
operational approach [24], which permits the
customers to validate their requirements directly from
the system specification (i.e. without having to fully
develop a system prototype or even the system itself).
If some errors are detected, the system specification
can be modified prior to the implementation phase,
which greatly reduces the development costs and
increases the system’s correctness.

Other tools were also developed, namely graphical
editors (for specifying the systems) and compilers (for
automatically generating C code for the MCS-51
compatible microprocessors). There is already
available a preliminary version of this tool-set, which
is the successor of the tool previously developed by
the authors [25]. It supports directly the shobi-PN v2.0
meta-model, using the Oblog language/tool
(www.oblog.com) as the implementation environment.

The Oblog tool allows the construction of
object-oriented specifications and supports the
automatic code generation using the RDL scripting
language. To allow the use of the Oblog environment
for supporting the PN-based embedded systems
design, the authors have defined a collection of rules to
overcome the inherent “limitations” (characteristics) of
the Oblog language meta-model:
(1) Oblog does not directly allow a true state oriented
approach, which has demanded the emulation of the
state orientation approach over the Oblog meta-model;
(2) Oblog is essentially asynchronous with some points
of synchronism, while the shobi-PN v2.0 meta-model
is mainly synchronous with some mechanisms to
support asynchronous behaviours;
(3) the macronodes’ structural hierarchy is not directly
supported by Oblog, which has justified the
construction of aggregations of sub-controllers to

allow the definition of Oblog behavioural hierarchies
equivalent to shobi-PN structural ones.

The referred rules are organised into three main
groups:
(1) Rules for the definition of an abstract class of
parallel controllers. This set of rules is used to specify
abstract classes of parallel controllers in an
object-oriented language, from which the concrete
controllers (instances) can inherit the fundamental
behaviour and refine the properties that must be
specialised.
(2) Rules for the state-orientation emulation. This set
of rules is used to emulate the state orientation
approach, which allows an easy description of
shobi-PNs v2.0 in an object-oriented language not
supporting the state orientation approach.
(3) Rules for the construction of a collection of
sub-machines. This set of rules is used to construct the
entire parallel controller in a hierarchical and
incremental way directly supporting the
shobi-PNs v2.0 structure.

To obtain a true operational approach, in the use of
Oblog to model shobi-PN v2.0-based software
components for embedded systems, the authors have
developed a simulation environment. This
environment allows the designer to interact with the
Oblog system’s model and automatically generates
sequence diagrams showing the interaction between
the internal components of the system.

5. Conclusions

This paper presents the general characteristics of a
PN meta-model, designated shobi-PN v2.0, that
supports the design of complex embedded systems.
The shobi-PN models are used within a multiple-view
specification methodology that uses several UML
diagrams for capturing different modelling
perspectives of the systems. The authors defend the
use of shobi-PN behavioural specifications, instead of
using the UML STATECHARTS and activity diagrams,
for specifying the objects’ dynamic behaviour. In this
context, the shobi-PN v2.0 meta-model was generally
explained, in what concerns the usefulness of its GAS

and AMT concepts for allowing the easy violation of
hierarchical levels, the creation and destruction of
objects for momentary reference and the manipulation
of the original objects and not their replicas. The
shobi-PN v2.0 meta-model can be used in a
component-based development approach in the
specification of software components as architectural
generalisations of all the possible shobi-PNs v2.0 that

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

can be obtained after parameterisation. This paper also
refers the existence of the software environment the
authors have developed to directly support the design
of complex embedded controllers.

6. References

[1] R.J. Machado, J.M. Fernandes, and H.D. Santos, “A
Methodology for Complex Embedded Systems Design: Petri
Nets within a UML Approach”, Architecture and Design of
Distributed Embedded Systems, B. Kleinjohann (editor),
Kluwer A.P., Boston, U.S.A., May, 2001 (to be published).

[2] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[3] C. Kobryn, “UML 2001: A Standardization Odyssey.”
Communications of the ACM, no. 42. vol. 10, Oct., 1999,
pp. 29-37.

[4] B. P. Douglass, Real-Time UML: Developing Efficient
Objects for Embedded Systems, Addison-Wesley, 1998.

[5] A. Lyons, UML for Real-Time Overview, ObjecTime
Limited, Apr., 1998.

[6] A. Lanusse, S. Gérard, and F. Terrier, “Real-Time
Modeling with UML: The ACCORD Approach”,
International Workshop on the Unified Modeling Language:
Beyond the Notation, Mulhouse, France, 1998.

[7] M. McLaughin, and A. Moore, “Real-Time Extensions to
UML”, Dr. Dobb's Journal, no. 292, Dec., 1998, pp. 82-93.

[8] L. Kabous, and W. Nebel, “Modeling Hard Real-Time
Systems with UML: The OOHARTS Approach”, 2nd
International Conference on the Unified Modeling
Language, Fort Collins, U.S.A., Oct., 1999.

[9] R. Jigorea, S. Manolache, P. Eles, and Z. Peng,
“Modeling of Real-Time Embedded Systems in an
Object-Oriented Design Environment with UML”, 3rd IEEE
Int. Symp. on Object-Oriented Real-Time, Distributed
Computing, Newport Beach, U.S.A., March, 2000,
pp. 210-203.

[10] W. Wolf, Computers as Components: Principles of
Embedded Computing System Design, Morgan Kaufmann,
2001.

[11] M. Silva, “Logical Controllers”, IFAC World Congress,
vol. II, Milan, Italy, Nov., 1989, pp. 157-166.

[12] A. Semenov, A.M. Koelmans, L. Lloyd, and
A. Yakovlev, “Designing an Asynchronous Processor using
Petri Nets”, IEEE Micro, no. 17, vol. 2, Mar./Apr., 1997,
pp. 54-64.

[13] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli, “Synthesis of Embedded
Software Using Free-Choice Petri Nets”, In Proc. of Design
Automation Conference, New Orleans, USA, June, 1999.

[14] J.M. Fernandes, M. Adamski, and A.J. Proença, “VHDL
Generation from Hierarchical Petri Net Specifications of
Parallel Controllers.” IEE Proc.: Computers and Digital
Techniques, no. 144, vol. 2, Mar., 1997, pp. 127-137.

[15] R.J. Machado, J.M. Fernandes, and H.D. Santos, “An
Evolutionary Approach to the Use of Petri Net based
Models: From Parallel Controllers to HW/SW Co-Design”,
Hardware Design and Petri Nets, chapter 11, A. Yakovlev,
L. Gomes and L. Lavagno (editors), Kluwer A.P., 2000,
pp. 205-222.

[16] R. David, and H. Alla, Petri Nets & GRAFCET: Tools for
Modelling Discrete Event Systems, Prentice-Hall, 1992.

[17] R. Fehling, “A Concept of Hierarchical Petri Nets with
Building Blocks”, Advances in Petri Nets 1993, LNCS,
vol. 674, Springer-Verlag, 1993, pp. 148-168.

[18] K. Jensen, Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, vol. I, Springer-Verlag,
1992.

[19] C. Lakos, “The Object Orientation in Object Petri
Nets”, 1st Workshop on Object-Oriented Programming and
Models of Concurrency, Torino, Italy, 1995.

[20] R.J. Machado, J.M. Fernandes, and A.J. Proença,
“Specification of Industrial Digital Controllers with
Object-Oriented Petri Nets”, IEEE Int. Symp. on Industrial
Electronics, vol. I, Guimarães, Portugal, July, 1997,
pp. 78-83.

[21] R.J. Machado, J.M. Fernandes, and A.J. Proença, “An
Object-Oriented Model for Rapid-Prototyping of Data
Path/Control Systems - A Case Study”, 9th IFAC/IFIP Symp.
on Information Control in Manufacturing, vol. II, Nancy &
Metz, France, June, 1998, pp. 269-274.

[22] R.J. Machado, J.M. Fernandes, and A.J. Proença,.
“Hierarchical Mechanisms for High-level Modeling and
Simulation of Digital Systems”, 5th IEEE Int. Conf. on
Electronics, Circuits and Systems, vol. III, Lisbon, Portugal,
Sep., 1998, pp. 229-232.

[23] J.M. Fernandes, R.J. Machado, and H.D. Santos,
“Modeling Industrial Embedded Systems with UML”, 8th
IEEE/IFIP/ACM Int. Workshop on Hardware/Software
Co-Design, San Diego, U.S.A., May, ACM Press, 2000,
pp. 18-22.

[24] P. Zave, “The Operational vs. The Conventional
Approach”, Communications of the ACM, no. 27, vol. 2,
1984, pp. 104-18.

[25] R.J. Machado, J.M. Fernandes, and A.J. Proença,
“SOFHIA: A CAD Environment to Design Digital Control
Systems”, Hardware Description Languages and Their
Applications: Specification, Modelling, Verification and
Synthesis of Microelectronic Systems, chapter 10,
C. Delgado Kloos and E. Cerny (editors), Chapman & Hall,
1997, pp. 86-88.

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

