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Abstract

Identifying the objects that constitute a software system is a
critical task for any object-oriented system development and
several techniques have already been introduced to tackle this
problem. This paper introduces a new approach to partially
solve that problem, based on the use cases that define the
system's functionality. The application of the approach is
exemplified with a real industrial case study, which highlights
some of the approach's main characteristics for complex
embedded systems development.

1  Introduction

   Although some authors claim that “objects are there just for picking” [1], usually
identifying the objects that do constitute a real system is not a trivial task. Generally,
the objects' identification introduces some divergences among the project members
[2]. Several techniques are available for this task, and they give rise to different
object models, so selecting the proper one is a difficult choice for any project team.
   A well-known approach for identifying objects, and also attributes and methods, is
based on linguistic analysis of the requirements document, written in a natural
language [3]. The objects and attributes correspond to the nouns, and the operations
(also known as methods or services) are related to verbs [4]. This strategy must be
used with some prudence and requires strong linguistic knowledge, since it is
possible to transform a noun into a verb and vice-versa.
   For embedded and real-time systems, [5] presents 11 useful strategies to
find/identify the objects of a system, but they can not be directly applied to obtain
the objects based on the use cases, because none of them utilizes the use cases that
were identified in previous tasks. These strategies do not justify the appearance of
control objects, which are critical for this kind of systems.
   Finding methods for bridging the gap between user's requirements and system
design elements is an important problem during the development of complex



systems. This paper presents a novel approach for solving a real problem faced by
designers, which is the definition of the system's objects based on the use cases and
their respective textual descriptions. The authors' approach is based on OOSE's
approach [6], trying to make the transition as smooth as possible, which allows the
designers to relate each object with the use cases that gave origin to it. The approach
also supports the existence of control objects as the crucial components in any
embedded and real-time systems.

2  Objects in Systems Modeling

An object model can be used for 2 different purposes. One possibility is that the
object model enriches the user's requirements, i.e., it provides a conceptual
description of the entities in the application domain. In such a case, it complements
use cases in describing requirements. Another possibility is that the object model is a
design level notation, i.e., it provides an ideal architecture that first captures the
system's requirements. This last alternative is the one addressed by this paper.
   Our approach for identifying the system's objects requires the analyst to start the
development by defining the functional model that reflects the system's services
offered to its users from their perspectives. According to the authors' experience in
capturing the user's requirements, use cases are one of the most suitable technique
for that purpose. Use case diagrams are simple diagrams, since only three concepts
are needed (use cases, actors and relations). This is a crucial property for involving
non-technical customers and users in the requirements capture process.
   Although use cases are used in object-oriented projects, they do not hold any
intrinsic property that can be classified as “pure” object-oriented. Within the
research community there is a consensus that use cases are a proper technique for
object-oriented projects [7], namely for discovering and specifying the behavior of
the system, during the analysis phase. This is also highlighted by the fact that use
cases are part of the UML (Unified Modeling Language) notation [8]. Thus,
adopting use cases for user's requirements is a valid technique, but poses the problem
related to the transformation of use cases into objects.
   After the use case diagram is built, the system's analysts must identify the objects
and classes (and their relationships) that describe the system under development. As
a starting point for this identification use cases should be used to guarantee the
semantical continuity with respect to the previously captured user's requirements.
   Many software engineers still do not clearly distinguish between objects and
classes [1, 9]. This confusion is greatly related to the intangible nature of software.
Building models that simultaneously have objects and classes should not be endorsed
for two main reasons. Firstly, a class may be viewed as a pattern that allows the
creation of objects for the application under development, but also for future
applications. Secondly, objects represent the elements that do constitute the
application. Therefore, taken into account this perspective, the authors strongly
recommend, as a guideline for system's development, that it is preferable to not
incorporate simultaneously classes and objects in the same model or diagram.



2.1  Object’s categories

The analysis space can be divided in three orthogonal dimensions: information,
behavior and presentation [6]. This technique is useful to control the system's
specification complexity, creating a multidimensional modeling space to allow a
multiple-view analysis of the requirements with adequate semantic references.
   The object model is constructed by specifying objects in this tri-dimensional space.
Our approach associates, to each object found during the analysis phase, a given
category. Thus, we obtain a structure that can more easily adapt itself to the changes
and evolutions imposed to the system. Each one of these categories is intrinsically
related to one of the dimensions, but can also have minor components at the other
two dimensions. Objects can thus be classified in three main categories:
1. An interface-object models behavior and information that depend on the

system's interface, i.e. the dialogue of the system with the actors that interact
with it. An interface-object must be encapsulated in a way such that if a change
is made to the communication between the system and its actors, only the
interface-object has to be modified, leaving unchanged the other objects.

2. An entity-object predominantly models information, whose existence must be
lengthy (temporary storage should not be modeled as entity-objects). Apart from
the attributes that characterize the entity-object, the entire behavior associated to
the manipulation of that information must also be included in the entity-object.

3. A function-object models behavior that can not be naturally associated to any
other object. For instance, the functionality that operates on several objects and
that returns a result to an interface-object is an example of a function-object.

This categorization of objects can be interpreted as natural, since an object unifies in
a unique entity (i.e. itself) the models (information and behavior) that are
traditionally divided in the structured approach. It should be understood as normal
that, in some situations, a given object has higher predominance on one of the
analysis dimensions. Please notice the use of the expression “higher predominance”,
which indicates that, for example, an entity-object has its attributes as expected, but
also operations, and that a function-object has its operations, but also attributes,
since both are objects in the way object-orientation perceives them. This was the
principal motivation that made the authors adopt, for the objects categories, names
that are different from those used for the dimensions. This way, it may become more
evident that an object is rarely located at one specific axis.
   The authors believe that the categories of objects, adopted by them, make the
models more stable, in the sense that modifications made during the system
development are easier to locate and affect a smaller number of objects (preferably
just one). The most frequent changes that a system is subject to are its presentation
and its behavior, being the information the most stable component of the systems
(this is the main idea around the object-oriented paradigm). Changes to the
presentation affect only interface-objects, whilst modifications to the behavior may
perturb any object category: (1) If the functionality is associated to a system's



information, then the entity-object that represents it is affected. (2) When the
functionality to be altered is related to the way presentation is done, then the
respective interface-object has to be changed. (3) Modifications to functionalities
that involve various objects are generally local to a function-object.

2.2  Objects vs. Classes

Usually, object-oriented methodologies do not pay too much attention to the object
diagram, i.e., they are class-driven. When they do, the class diagram is built firstly
and only later the object diagram is specified. The approach presented here reverses
this order, in an object-driven perspective. To develop software for embedded and
real-time systems, the authors believe that it is more important to have a good object
model than a good class diagram, because the system is composed of objects and not
their classes. This is the main reason to first identify the objects and to later classify
them, that is, to select the classes to which those objects belong. We are not
advocating to not work out the class diagram or even to ignore it. The best situation
is having good object diagrams and good class diagrams. What the authors promote
is that the focus should be directed towards the construction of the object diagram.
   Some specialists may classify the object-driven perspective (that puts classes in an
apparently secondary role and that firstly defines the objects and later the classes) as
object-based rather than object-oriented. Nonetheless, the object-driven approach is
somehow similar to the bottom-up discovery of inheritance, as defined in [10], to
hierarchically organize the classes.
   In general terms, the process for building the object diagram can be described as
follows. The first step is identifying the objects the system under development is
composed of. Then, the objects are interrelated by establishing connections amongst
them. Later, when the objects diagram is finished, the developers must classify every
object. By classifying an object, the class diagram must be taken into consideration.
If the class of an object already exists, it can be immediately used, which shortens
the development time (and hence, the final cost of the system). Otherwise, a new
class must be defined and put in the most proper place of the class diagram. In the
next section, the authors' approach to construct the object diagram is presented.
   The emphasis on objects (instances) is justified by the fact that we are dealing with
real-time embedded systems. This object-driven approach is typically followed for
developing control-oriented systems, where the final architecture and the concepts of
abstraction, modularity and information are key topics to guarantee that the non-
functional requirements (heterogeneity, ubiquity, fault-tolerance, security,
dependability) are met. In contrast, class-driven approaches are used for data-driven
systems, where the relations among classes (types) and its hierarchical categorization
are the most important issues to taken into account. The objects' classification and
the class diagram usage are not within the strict scope of this paper.



3  The 4-Step Rule Set Approach

The need to include both functional models and object-based models in system
specification is nowadays widely accepted, as a cross-strategy approach to complex
systems modeling [11].
   Object diagrams are used to show the components that constitute the system.
Transforming the use cases that divide the system in a functional way into objects is
a critical project task, since usually there is no direct one-to-one mapping from use
cases to objects, and the system's architecture is starting to possess a shape, near the
final one. The authors present some novel guidelines and techniques for this
transition, which consists in distributing the behavior specified by the use cases to
the objects.
   The approach followed by the authors (designated 4-step rule set) to transform use
cases into objects consists on the following steps:
1. Transform each use case into three objects (one interface, one data, and one

control). Each object receives the reference of its respective use case appended
with the suffix (i, d, c) that indicates the object's category.

2. Based on the textual description for each use case, it must be decided which of
the three objects must be maintained to fully represent, in computational terms,
the use case, taking into account the whole system and not considering each use
case per si, as happens in a non-holistic approach.

3. The survival objects (those that were maintained after the execution of step 2),
for which there is an advantage in being treated in an unified way, should give
origin to aggregations or packages of semantically consistent objects.

4. The obtained aggregates must be linked to specify the associations among the
existing objects.

This approach aims to obtain an holistic set of objects, so that the inter-relations
amongst the objectified use cases can be successfully simplified in order to obtain
the reduced number of relevant and pertinent system-level objects. The proposed
approach is a partial solution to the problem of obtaining the objects from the use
cases, because there still exist some subjective interpretation in the execution of the
steps. This is natural, since, although analysis and design can be systematically
supported, it is important to leave some freedom for design space exploration.
   Actors do not need to be directly considered in the 4-step rule set strategy, since
they are only important as a means to reach the use cases. They are not an aim per si.
One of the objectives of using the 4-step rule set strategy is to assure the models
continuity along the whole analysis phase (user's requirements) and during the
models transformation to the design phase (system's requirements), as the first
“synthesis” step in the system's design cycle that introduces new design decisions
and that imposes modifications in the abstraction level.



4  Case Study Analysis

   In this paper, the example is an embedded real-time computer-based system that
supports the implementation of an Industrial Control-based Information System
(ICIS) for a textile factory. The ICIS (which is dedicated to the supervision and
monitoring of the shop-floor) and the traditional Management Information System
(MIS) constitute the Global Enterprise Information System (IS). The case study used
for analysis is responsible for monitoring the state of a set of machines that are used
to produce textile goods, namely socks. According to the authors' methodology [12,
13], the first diagram to be built is the context diagram of the system that shows
which actors interact with the system (not presented here).
   The next task consists on the definition of the use cases of the system. A use case
diagram is a powerful and useful technique for capturing the user's requirements. It is
an easy-to-read diagram that divides the system in its functional points. A use case
can be understood as a functionality or service that the system offers to its users.
   Each use case at the system-level is assigned a tagged value (example: ref=2), and
if this use case is eventually refined by other sub-use cases, each one of these will
have a reference that uses the super-use case as a prefix (example: ref=2.3). This
numbering scheme can be repeated to any depth and is used to ease the mapping
from use cases to objects.
   Fig. 1 shows the system-level (or top-level) use case diagram, where it is possible
to visualize which actors perform which functionalities.
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Figure 1. The use case diagram.

   Some use cases have a very high abstract nature, and so the project members can
refine them in order to have a better knowledge of the system. Although almost all of
the top-level use cases were refined during the project, in this paper only two



refinements are presented in fig. 2. The two use case diagrams of this figure are
related to the top-level use case 6: they are both orthogonal refinements of the top-
level use case, according to different criteria. The left use case diagram (6.a) refines
the use case by specialization (the use case is clarified according to its specialties),
whilst the right one (6.b) refines it by decomposition (the use case is divided in its
sub-tasks). This modeling technique based on orthogonal refinements is a way of
coping with the specification complexity; instead of having 20 (5x4) use cases, only
9 (5+4) have to be considered.
   Since use cases have different impact on the final system, they must be ranked
according to their importance to the main functionality of the system. This allows the
project to follow a risk-driven process, where the most important functionalities of
the system are first tackled, leaving the less important ones to be treated later.
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Figure 2. Refined use case diagrams (use case 6: operate socks).

   After identifying all the use cases of the system, the next step is to describe their
behavior. There are some forms for doing it (informal text, numbered steps with pre-
and post-conditions, pseudo-code and activity diagrams [14] and the descriptions for
the top-level use cases are next presented following the first proposal.
1. Plan production: Define production orders, based on information from the

manufacturing process and customers' order.
2. Process information: Handle the necessary information, in order to acquire

knowledge about the process.
3. Maintain equipment: Keep the system operational at the expected level, by

replacing, repairing, changing and configuring the electrical, electronic,
mechanical and software components of the production system.

4. Activate equipment: Switch on and off the machines.
5. Send/Receive information: Transfer and collect information to and from the

process under supervision.
6. Operate socks: Accomplish a set of operations in order to produce socks.

4.1  Applying the 4-Step Rule Set

In the 1st step of the rule set, the designer has to take all the use cases and transform
each of them in 3 objects (fig. 3). At this stage, the leaf use cases must be used,



instead of the most hierarchical ones. This means that use case 6 in fig. 1 must not be
considered, since it is decomposed in other sub-use cases (fig. 2). Only the non-
decomposed use cases must be considered for this step, even if later the
corresponding objects are again aggregated to obtain an object that could be
obtained directly from the top use case. This guideline is based on the fact that the
resulting diagram contains more potential relevant links among objects and also on a
practical observation that it is easier to aggregate objects rather than to divide them.
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Figure 3. The object diagram after the 2nd step.

   During the 2nd step and taking into account the textual descriptions of all the leaf
use cases, one can decide to eliminate (by drawing a cross over the object) the
control and entity objects of the use case 4, since this constitutes a typical interface
functionality. For use case 1, the fundamental perspective is the information that
results from the planning process, so the only survival object is the data one. For use
case 2, all 3 objects are important and none of them is covered by another use case
(holistic perspective), so all of them remain (objects not crossed) in the diagram.
Similar considerations were made to the other use cases.
   In the 3rd step, the system is divided into two main functional UML packages, both
defining the limits between the MIS and the ICIS components of the global corporate
IS solution. The MIS package essentially aggregates data objects, since the MIS is a
data-oriented system. On the other hand, the ICIS is fundamentally composed of
control and interface objects, because control-oriented systems must interact with the
environment and supervise its running processes. Inside both packages, the
aggregations follow analogous justifications as fig. 4 depicts. The associations that
are defined amongst the objects in the 4th step soften the partition defined on step 3
to delimit the boundaries between MIS and ICIS. Within the ICIS package there is a
link between each control object and the respective interface object that connects it
to the environment.
   After applying the last step of the rule set, the object diagram presented in fig. 4 is
obtained. This is the final object diagram and it illustrates the usage of active and
passive objects. An active object is continuously executing (it has its own thread)
and is autonomous, which means that it exhibits some behavior without the
command of another object/system. Active objects are represented by a rectangle
with wider borders. On the other hand, passive objects do not initiate computation by
their own initiative and so they just perform some action after the command of other



objects. Typically, the active objects are the basis for the control of the system under
consideration, while the passive objects offer services to the active objects when
asked for.
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Figure 4. The final object diagram.

   Notice that use cases specify the functionality of the system, while the object
diagram is related to the structure of the system, which is used as the foundation for
the design and implementation phases. The last object diagram represents an ideal
architecture for the system, because its construction is supposedly independent of
any implementation constraint [15].

5  Conclusions

The definition of the proposed approach was made with the purpose of coping with
the complexity of deriving system's requirements from user's requirements and
assuring that the models maintain an explicit and rigorous continuity.
   Although the authors believe that the approach is helpful, it must always be used
with some care and criticism, because it is not a panacea for solving all the problems
that analysts have to face while specifying a system. It should, with no doubt, be
complemented by other techniques the designers found useful or that they are already



familiar with. The main weaknesses of the approach are the explosion on the number
of objects in step 1 and its non-formal nature.
   The analysis phase is still very diverse and unpredictable in nature, so creativity
still plays a major role. Experience can not be totally replaced by theoretical
knowledge, so only with it can an analyst become a good one. This approach means
to be a contribution, as an heuristic regulator mechanism, to the engineering of
complex systems, where rigorous techniques should be consciously mixed with the
necessary design freedom in the exploration of the best possible system solutions.
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