
Execution of UML Models with CPN Tools for
Workflow Requirements Validation ∗

Ricardo J. Machado1, Kristian Bisgaard Lassen2
Sérgio Oliveira1, Marco Couto1, Patrícia Pinto1

1 Dept. of Information Systems, University of Minho, Portugal
2 Dept. of Computer Science, University of Aarhus, Denmark

Abstract. Requirements validation is a critical task in any engineering project.
The confrontation of stakeholders with static requirements models is not
enough, since stakeholders with non computer science education are not able to
discover all the inter-dependencies between the elicited requirements. Even
with simple UML (unified modelling language) requirements models it is not
easy for the development team to get confidence on the stakeholders’ require-
ments validation. This paper describes an approach, based on the construction
of executable interactive prototypes, to support the validation of workflow re-
quirements, where the system to be built must explicitly support the interaction
between people within a pervasive cooperative workflow execution. A case
study from a real project is used to illustrate the proposed approach.

1. INTRODUCTION

Clients (normally, stakeholders) and developers (system designers and requirements
engineers) have, naturally, different points of view towards requirements. A require-
ment can be defined as “something that a client needs” and also, from the point of
view of the system designer or the requirements engineer, as “something that must be
designed”. The IEEE 610 standard [1] defines a requirement as: (1) a condition or
capability needed by a user to solve a problem or achieve an objective; (2) a condition
or capability that must be met or possessed by a system or system component to sat-
isfy a contract, standard, specification or other formally imposed documents; (3) a
documented representation of a condition or capability as in (1) or (2).

Taking into account these two distinct perspectives, two different categories for
requirements can be conceived:
• User requirements result directly from the requirements elicitation task [2], as an

effort to understand the stakeholders’ needs. They are, typically, described in
natural language and with informal diagrams, at a relatively low level of detail.
User requirements are focused in the problem domain and are the main communi-
cation medium between the stakeholders and the developers, at the analysis phase.

• System requirements result from the developers’ effort to organize the user re-
quirements at the solution domain. They, typically, comprise abstract models of
the system [3], at a relatively high level of detail, and constitute the first system
representation to be used at the beginning of the design phase.

∗ This work has been supported by projects uPAIN (AdI/IDEIA/70/2004/3.1B/00364/007) and STACOS (FCT/POSI/CHS/48875/2002).

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 2

The correct derivation of system requirements from user requirements is an impor-
tant objective, because it assures that the design phase is based on the effective stake-
holders’ needs. Some existent techniques [4-7] can be used to support the transforma-
tion of user requirements models into system requirements models, by manipulating
the corresponding specifications. This also guarantees that no misjudgement is arbi-
trarily introduced by the developers during the process of system requirements speci-
fication.

However, this effort of maintaining the model continuity by applying transforma-
tional techniques can prove to be worthless, if the user requirements models are not
effectively validated. Typically, the confrontation of stakeholders with static require-
ments models is not enough, since stakeholders with non computer science education
are not able to discover all the inter-dependencies between the elicited requirements.
Even with simple UML requirements models (use case diagrams and some kind of
sequence diagrams) it is not easy for the development team to get confidence on the
stakeholders’ requirements validation. In fact, according to [8] there are three kinds
of analysis that should be accomplished before a workflow is put into production:
(1) validation, to check if the workflow behaves as expected; (2) verification, to study
the correctness of a workflow; (3) performance analysis, to estimate the solution con-
formance with throughput times, service levels, and resource utilization. This paper is
solely devoted to the first kind of analysis at the process level; i.e., we are neither
considering the resource dimension where resources estimation is supposed to be
reached, nor the case dimension where a concrete instance of a workflow process is
analysed both in its commonalities and exceptions.

This paper describes the usage of CPN Tools [9] in the generation of interactive
prototypes to allow stakeholders to be confronted with executable versions of previ-
ously elicited UML use case and sequence diagrams. This approach towards user
requirements validation is illustrated with a real case study where a healthcare infor-
mation system must be built to explicitly support the interaction between people
within a pervasive workflow execution.

The remaining of this paper is organized as follows. Section 2 presents the case
study by informally describing the purposes of the uPAIN system. Some UML mod-
els of the uPAIN system are also presented to support the discussion on the difficul-
ties of achieving effective requirements validation based on static user requirements
models. In section 3, we describe the construction of coloured Petri nets for animation
of the dynamic properties of UML models. Here, the relation between the adopted
stereotyped UML sequence diagrams and the coloured Petri nets is explained. Section
4 contains the global architecture of the tool environment used to generate the interac-
tive animation prototype. Since some interoperability issues are not technological
transparent when CPN Tools are used together with the BRITNeY Animation tool, some
examples of the required XML files to perform the integration are discussed. In sec-
tion 5, the strategies used to design the graphical user interface of the interactive
animation prototype are discussed and some usability issues are referred. This section
is devoted to the discussion of the efforts that must devote to obtain an animation
artefact that effectively involves the stakeholders in the workflow requirements vali-
dation. Section 6 concludes the paper with some final remarks, mainly devoted to the

Execution of UML Models with CPN Tools for Workflow Requirements Validation 3

synthesis of the proposed approach limitations and of the accomplishments achieved.
Future work is also briefly referred.

2. REQUIREMENTS MODELING

The case study considered in this paper consists of an information system (uPAIN
system) whose main concern is the process of pain control of patients in a hospital,
who are subjected to relatively long periods of pain during post surgery recovery.
When a surgery is concluded, the patient enters a recovery period, during which anal-
gesics must be administered to him in order to minimize the pain that increases as the
effects of the anaesthesia gradually disappear. This administration of analgesics must
be controlled according to a program which depends on factors like some personal
characteristics of the patient (weight, age …) and the kind of surgery to which the
patient has been submitted. The quantity of administered analgesics must be high
enough to eliminate the pain, but low enough to avoid exaggerated or dangerous
sedation states. This controlled analgesia is supplied to the patient by means of spe-
cialized devices called PCAs (patient controlled analgesia). PCA is a medica-
tion-dispensing unit equipped with a pump attached to an intravenous line, which is
inserted into a blood vessel in the patient’s hand or arm. By means of a simple
push-button mechanism, the patient is allowed to self administer doses of pain reliev-
ing medication (narcotic) on an “as need” basis. This is called a bolus request.

The motivation for the development of the uPAIN system arises from the fact that
different individuals feel pain and react to it very differently. Also, although narcotic
doses are predetermined as mentioned previously, there is a considerable variability
of their efficiency from patient to patient. This is why anaesthesiologists are inter-
ested in monitoring several variables, in a continuous manner during patients’ recov-
ery, in order to increase their knowledge on what other factors, besides those already
known, are relevant to pain control, and in what measure they influence the whole
process. To achieve this, the main idea behind the uPAIN system is to replace the
PCA push-button by an interface on a PDA (personal digital assistant), which still
allows the patient to request doses from the PCA, but with the addition of the func-
tionality of creating records in a database of all those requests, along with other data
considered relevant by the medical doctors, like the values of some pre-determined
physiological indicators measured by a monitor, and/or other data related to a particu-
lar patient’s state, symptoms, etc. These questions may be automatically asked by the
system, via the PDA, when the patient requests a dose or at regular time intervals, or
even when a medical doctor decides to ask for it.

So, the uPAIN system is intended to provide a platform that enables the registra-
tion of patients’ pain levels and the occurrence of several symptoms related with
analgesia processes, as frequently as desired, while allowing the medical staff to be
permanently aware of the occurrence of all the relevant facts of the patients’ recovery
and pain control processes and, simultaneously, allowing permanent remote wireless
communication among system, patients and medical staff.

Requirements elicitation is all about learning and understanding the needs of users and
project sponsors with the ultimate aim of communicating these needs to the system devel-
opers [2]. Getting the right requirements is considered as a vital and difficult part of soft-

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 4

ware development projects. Modelling and model-driven approaches provide ways of
representing the existing or future processes and systems using analytical techniques with
the intention of investigating their characteristics and limits [3].

UML use case diagrams are a quite adequate tool to describe user requirements at
a first high-level of abstraction. These diagrams constitute a suitable means for delim-
iting the system boundaries, for identifying the functionalities that should be provided
by the system, and for affecting external actors with specific use case functionalities.
Additionally, brief textual descriptions may be provided in natural language for each
use cases. These diagrams are normally constructed by the developers in a tentative to
document the elicited requirements. Stakeholders can read and use these diagrams to
recognize the main functional areas of the system to be designed.

General functionalities of the uPAIN system are inscribed in the UML use case
diagram depicted in Fig. 1. A set of additional use case diagrams have been con-
structed to refine some of the use cases existent in Fig. 1. The corresponding textual
descriptions have also been obtained.

{U0.2} Register
Patient Symptoms

{U0.1} Administer
Drug

{U0.3} Establish
Communication Link

{U0.4} Consult
Historical Data

{U0.5} Consult
Patient State (EPR)

{U0.6} Get Monitor
Data

{U0.7} Generate
Alert

{U0.8} Service
Admin

Patient

Medical Staff«uses»
«uses»

«uses»

{U0} Upain

«uses»

«uses»

Med.Doctor

Nurse

Chief Med.Doctor

{U0.9} Register
Staff Observations

PCA

Monitor

Fig. 1. UML use case diagram for the uPAIN system.

With the exception of just a few «uses» and «extends» relationships that may already
be shown between use cases, it turns out to be obvious that use case diagrams do not
practically say anything about how the system should be designed, in order to supply
the identified functionalities. A further step on that direction may be provided by
sequence diagrams in order to illustrate the desired dynamic behaviour in what con-
cerns its functional interaction with the environment. These diagrams are also to be
constructed by the developers. Stakeholders can also read them. However, they are
not comfortable with all the details these diagrams can entail.

Fig. 2 depicts one UML sequence diagram for the uPAIN system that describes
one macro-scenario where a patient requests a bolus. That request may be accepted by
the system or originate a request for an explicit medical decision. In the later case, the

Execution of UML Models with CPN Tools for Workflow Requirements Validation 5

doctor may decide to authorize the bolus or to reconfigure the PCA parameters. The
integration of several scenarios into only on sequence diagram (for a macro-scenario)
is possible due to the new mechanisms of UML 2.0 in supporting different kinds of
frames.

Fig. 2. UML sequence diagram for the uPAIN system.

Some more UML sequence diagrams have been constructed to capture the main
system scenarios. At the analysis phase of system development, we adopt a stereo-
typed version of UML sequence diagrams, where only actors and use cases are in-
volved in the sequences, since no particular structural elements of the systems are
known yet. This kind of sequence diagrams allow a pure functional representation of
behavioural interaction with the environment and are particularly appropriate to illus-
trate workflow user requirements.

Our stereotyped UML sequence diagrams contrast with the traditional ones that al-
ready involve system objects in the interaction with external actors, implying that
those objects must be previously identified. One important issue concerning objects
identification and building object diagrams is that they already model structural ele-
ments of the system, which is clearly beyond the scope of the user requirements.
Additionally, the use of this kind of traditional sequence diagrams at the first stage of
analysis phase (user requirements modelling and validation) require a deeper inter-
vention of modelling skills that are hardly understandable to most stakeholders, mak-
ing more difficult for them to establish a direct correspondence between what they
initially stated as functional requirements and what the model already describes. So, a
validation of the user requirements resulting from such an advanced model is not only

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 6

more difficult to achieve, but also less trustworthy and less ensuring that the resulting
system will correspond effectively to the stakeholders expectations.

3. CPNs FOR ANIMATION PROTOTYPES

The effort to use only elements from the problem domain (external actors and use
cases) in the user requirements models (use case and stereotyped sequence diagrams)
and to avoid any reference to elements belonging to the solution domain (objects and
methods) is not enough to obtain requirements models that are capable of being fully
understandable by common stakeholders. This difficulty is mainly observable in what
concerns the comprehension of the dynamic properties of the system within its inter-
action with the environment. This means that, even with the referred efforts, those
static requirements models should not be used to directly base the validation of the
elicited user requirements by the stakeholders. Instead, we use those static require-
ments models to derivate animation prototypes.

User friendly visualizations of the system behaviour, automatically translated from
formal systems’ models specifications, accepting user interaction for validation pur-
poses, have been generically called animations. Despite seeming a good idea, in a
context where IT is offering more and more powerful multimedia capabilities, the use
of animation in user requirements validation, as a means of improving the under-
standability of systems’ models by stakeholders, has been considered by only a small
number of researchers.

In [10] an empirical study has been carried out to comparatively evaluate the effec-
tiveness of animation and narration (voice recordings of diagram explanations com-
plemented with PowerPoint slides) in the process of communication of domain informa-
tion to stakeholders for validation purposes, which may be seen as a sign that anima-
tion is increasingly drawing the software engineers’ attention as a potentially valuable
instrument for user requirements validation. The results of that empirical study were
inconclusive about the effectiveness of animation, as opposed to the success of narra-
tion, but in our opinion that was due to the fact that, instead of using a meaningful
user interface, the animations were of a very rudimentary type by highlighting the
graphical elements of the diagrams while narration is being executed.

Some other papers have been published, reporting the use of animations to ease
validation by stakeholders, as is the case in [11], where a CORBA API has been used to
directly interpret VDM-SL specifications of requirements to generate a graphical user
interface. Scenario-based approaches have also been used in [12] as a means of ensur-
ing user-orientation, and also in [13], where fluents (boolean system states that model
pairs of system actions) have been used to relate goals with scenarios and, simultane-
ously, support animation. In [14], virtual reality is used to support animation tech-
niques when modelling high consequence systems (systems where errors in develop-
ment have consequences of high cost).

The behaviour of the animation prototypes (proposed in this paper) results from
rigorous translations of the sequence diagrams into Coloured Petri Nets (CPNs) [15,
16]. The transitions of these CPNs present a strict one-to-one relationship with the
messages in the sequence diagrams. So, for each message in a sequence diagram, one
transition, in the corresponding CPN, is created. The name of each transition matches

Execution of UML Models with CPN Tools for Workflow Requirements Validation 7

exactly the corresponding name of the message in the sequence diagram. Two simple
rules were used for that translation: (1) Fig. 3 illustrates the rule for translating two
successive messages in a sequence diagram (Fig. 3a) into a CPN (Fig. 3b); (2) Fig. 4
illustrates the rule for translating an alternative block in a sequence diagram (Fig. 4a)
into a CPN (Fig. 4b).

Fig. 3. Transformation of successive messages.

alt

Message1

UseCase1

Message2

UseCase2 UseCase3

Message3

a) b)

Message1

Message2

PreCond1

PreCond2

Message3

PreCond3

[true] [false]

Fig. 4. Transformation of an alternative block.

Each output place of a transition (corresponding to a message in a sequence dia-
gram that ends in a life line of a use case) represents the reaction of the system to the
message request. Although CPN Tools do not support the creation of pages for the
addition of refinement subnets for places (that is the reason why we use the expres-
sion “refinement subnets”, instead of “refinement subpages”), those output places
may be replaced, at the same hierarchy level, by refinement sub-nets (composed of
one input place, one output place, and one substitution transition between them) to
support the refinement of use cases. The refinement subpage for each substitution
transition describes one refined use case.

Typically, the refinement subnets will be built after the application of the 4SRS (4
step rule-set) technique [7] that transforms users requirements into architectural mod-
els representing system requirements, by mapping use cases into system-level objects
within a four step approach: (1) object creation, (2) object elimination, (3) object pack-
aging and aggregation, and (4) object association. Therefore, each transition in those
subnets will correspond to the invocation of a method of a system object.

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 8

Fig. 5. CPN responsible for the animation of the use case {U0.1} administer drug.

The CPN of Fig. 5 is responsible for the animation of the use case {U0.1} administer drug
(see Fig. 1) by executing three different sequence diagrams, each one corresponding
to one of the three branches of the CPN. The middle branch is responsible for the
execution of the sequence diagram of Fig. 2. Those nodes and arcs drawn with thin-
ner lines were added in a later phase, and have no semantic correspondence to the
sequence diagrams. They were included for the purpose of tools interoperability, as
explained in section 4.

The CPN represented in Fig. 6 corresponds to the top-level net of the animation
prototype for the uPAIN system. Thick lines were used to represent the elements that
correspond to the main animation paths. Most of the transitions of this CPN

Execution of UML Models with CPN Tools for Workflow Requirements Validation 9

correspond to the use cases in Fig. 1. The refined CPN of the substitution transition
bolus request of Fig. 6 corresponds to Fig. 5.

Fig. 6. Top-level CPN of the animation prototype for the uPAIN system.

With the transformation rules depicted in Fig. 3 and Fig. 4, direct links between
the use case diagram (Fig. 1) and the CPNs (Fig. 5 and Fig. 6) are not intended, nor
considered of interest. Instead, the link between the UML diagrams and the CPNs is
obtained in two steps: the first is supported by the fact that the sequence diagrams are
directly derived from the use cases; the second is ensured by a direct transformation
of the sequence diagrams into CPNs.

Sequence diagrams transmit partial views for the interaction between the system
and its environment, allowing the adoption of an evolutionary approach, by consider-
ing a set of sequence diagrams to have a partial evaluation of the requirements and
then progress with more detailed requirements. In the uPAIN system, the animation
prototype reflects only a top-level description of the system. After the validation of
this top-level model, a set of additional animations, based on refined sequence dia-
grams at the solution level (where objects would already appear), can be constructed.

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 10

4. TOOLS INTEGRATION

The implementation of the interactive animation prototype demanded the usage of
several technologies. The integration of tools was mainly based on XML files. Fig. 7
shows the global architecture of the tool environment used to generate the animation
prototype. It is composed of a model executor and an animation tool. The model
executor includes a CPN editor and a CPN simulator, both from CPN Tools. The animation
tool used corresponds to the BRITNeY Animation tool [17].

With BRITNeY Animation tool it is possible to use pre-defined plug-ins (or write our own
plug-ins) for executing some animation behaviour in the model. The pre-defined
plug-ins include SceneBeans [18] (an animation framework), message sequence charts
(for displaying the passing of messages) and plot graphs. The writing of our own
plug-ins involves the coding of Java classes and the creation of an XML description
of the plug-in. BRITNeY Animation tool will automatically generate the code needed for the
simulator to know of and use those plug-ins.

Fig. 7. Global architecture for prototype animation.

It is possible to execute behaviours in the BRITNeY Animation tool while simulating mod-
els in CPN Tools. Behaviours are executed through certain SML functions which in
turn call the corresponding Java methods. The names of the functions correspond to
those of the Java methods. When an SML function calls a Java method it simply
corresponds to the logic of an RMI call. The method name and arguments are passed
over to the interface of the BRITNeY Animation tool and the return value of the executed
method is passed back from the interface. If the method M in class C has the signature
int M (int x, string y), then it could be invoked as C.M (42, "Hello World"). However, this is just an
example to explain the way to use the Java methods in the CPN model (see [17] for
complementary explanations). These behaviours, or methods, can be executed any-
where in the CPN model where an expression is allowed. So, it can be on an arc ex-
pression, code segments on transitions (these are specific for CPN Tools), and so on.

Execution of UML Models with CPN Tools for Workflow Requirements Validation 11

This is a nice feature for debugging and for understanding the way the model affects
the animation.

The BRITNeY Animation tool can also be executed as a standalone program, using e.g.
Java WebStart to enable web browser integration. This feature is very useful to gen-
erate an autonomous animation prototype which allows stakeholders to “play with”
without the interference and the presence of elements from the development team.
This approach to validation was experimented with and proved to be very effective.
This empowerment of the stakeholders promoted a deeper involvement of them in the
analysis phase that not only assured better validation results, but also allowed the
complementary elicitation of workflow requirements.

The interactive animation prototype for the uPAIN system is depicted in Fig. 8.
The usage of SceneBeans allowed the animation of actors and message passing. Scene-
Beans provides a parser that translates XML documents into animation objects. A
SceneBeans document is contained within a top-level <animation> element that contains
five types of sub-elements: (1) a single <draw> element defines the scene graph to be
rendered (e.g. the representation of the doctor, the nurse, the patient); (2) <define> ele-
ments define named scene graph fragments that can be linked into the visible scene
graph; (3) <behaviour> elements define behaviours that animate the scene graph (e.g. the
animation of the drug injection from PCA to the patient); (4) <event> elements define
the actions that the animation performs in response to internal events (e.g. the clean-
ing of the info text at the end of the drug injection animation); (5) <command> elements
name a command that can be invoked upon the animation and define the actions taken
in response to that command (e.g. the invocation of the behaviours responsible for the
drug injection animation).

Fig. 9 shows an example of a code segment that was used in our <draw> element.
This code segment is responsible for the creation of the icons for the patient, the
uPAIN system and the black ball that represents the messages between actors. To
animate the ball, we used the <animate> element, that means that parameters x and y will
be animated by the behaviours xf_patient_to_system and yf_patient_to_system, respectively.

Fig. 10 shows the behaviours, the commands and the events that are responsible
for moving the ball from the patient to the uPAIN system. When the simulator in-
vokes the command f_patient_t_system_cmd, the behaviours corresponding to the move-
ment of the ball and the displaying of its textual info are started. When the execution
of a behaviour ends, the animation will trigger the associated event, and this will start
other behaviours, like xball_out (to hide the ball), fadeout_info (to hide the textual info), or
hide_patientpda_icon (to hide the patient PDA icon). At the end, the event will be an-
nounced, which is crucial, because it allows the CPN simulator to capture it.

Communication between SceneBeans objects in the animation and the CPN model
can be done in two ways: (1) asynchronously, here the CPN model simply invokes a
command on a SceneBeans object and proceeds simulating, not caring for the moment
when the animation behaviour that was executed terminates; (2) synchronously, here
the CPN model, again, invokes a command on a SceneBeans object, but, instead of just
proceeding, the CPN model waits for a particular event to arrive (e.g. the event “ball
moved from patient to system”). This event would be broadcasted by the animation
command that was executed when it terminates to let the CPN model know that this
animation has completed. Synchronous interactions with SceneBeans objects must be

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 12

carefully analyzed; otherwise, animations that should be executed in sequence will be
executed concurrently. It is necessary to determine which animation behaviours are to
be completed before any other can proceed (synchronous) and those which can occur
in any order (asynchronous). Invocations on SceneBeans objects are asynchronous in
the sense that, per default, they do not broadcast any event; this has to be specified in
the SceneBeans XML specification.

Fig. 8. Interactive animation prototype for the uPAIN system.

After creating all the behaviours, commands and events, which allow the
animation to announce events and receive commands from the CPN simulator, the next
step is to create Java classes. SceneBeans have the limitation of not allowing the user to
input dynamic contents. In fact, SceneBeans only allows the creation of animations,
based on static behaviours, defined in an XML file. The Java classes we created are
responsible for showing the graphical interfaces of the PDAs and for sending the
corresponding user (of the animation prototype) inputs to the CPN simulator. For
instance, the Log Window that shows all the messages sent between actors demanded
the creation of a Java class (Messenger) that receives the messages from the CPN simulator.
To add a new message to the list of messages of the Log Window, we simply invoke
Messenger.createAndShowGUI(“message”). After creating the Java classes, an XML description
must be constructed so that the BRITNeY Animation tool recognizes them as plug-ins (see
Fig. 11).

Execution of UML Models with CPN Tools for Workflow Requirements Validation 13

Fig. 9. Drawing in SceneBeans.

Fig. 10. Defining behaviours, commands, and events in SceneBeans.

To access public methods of previously written Java classes (Chat, ScenarioSelector,
Messenger, Ppda, Dpda, and Npda) and to invoke commands of the SceneBeans object (object
anim) from the CPN Tools, plug-ins must be declared and instantiated as objects in the
index of CPN Tools (see Fig. 12).

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 14

Java classes in defined animation plug-ins can be instantiated through SML
(Standard Meta Language) functors that BRITNeY Animation tool generates. SML functors
are “abstract” SML structures which can be instantiated. A Java object is instantiated
by, e.g., structure anim = SceneBeans(val name = "Name"), which instantiates an object from the
SceneBeans class. Methods on the instantiated anim are accessed as public methods
defined in the SceneBeans class. Another example is the function SPO () in the transition
Select Patient Options of Fig. 6 that contains the following code to invoke methods to our
Java objects:

Messenger.cleanText ();
Ppda.createAndShowGUI (“mainmenu”);
Ppda.getValueString ();

SceneBeans objects provide also some methods to control the animation. For in-
stance, the calling of function move () in the CPN of Fig. 5 consists in an invocation of
the method invokeCommand to the SceneBeans object anim (Fig. 12), which is responsible for
invoking the previously defined commands in the XML file (Fig. 10). In this case, the
invoked command corresponds to the movement of the black ball between the actors
of the animation.

Fig. 11. Defining Java classes as plug-ins of BRITNeY Animation tool.

Additionally, it is possible to capture events announced by the animation. In our
animation prototype we included one CPN subpage called Events (Fig. 13) that is com-
posed by two distinct parts: one is responsible for the initial loading of the XML
animation description (places Start and Running, and transition Init); the other part in-
cludes the transition Capture Event (captures all the events announced by the SceneBeans
animations and places them, in the form of a string list, in the place Events) and the
place Events. This place Events can be cloned and connected to any transition where the
capture of specific events is required (see, for instance, the nodes and arcs drawn with
thinner lines in Figs. 5-6). These cloned places are named EventN (where N is a digit
that serves only as a distinguishing character, because CPN Tools do not accept
places with the same name, in the same page) and have no semantic meaning from the
workflows’ point of view. They are only needed for tool interoperability.

Execution of UML Models with CPN Tools for Workflow Requirements Validation 15

Fig. 12. Declaring and instantiating objects in CPN Tools.

Fig. 13. Events CPN subpage.

5. USABILITY ISSUES

According to [19], usability is considered “the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. This means that, besides all the technical
efforts described in the previous two sections of this paper, the effectiveness of the
implemented animation prototype to involve stakeholders in the interactive execution
of the elicited sequence diagrams, complementary elicitation of workflow require-
ments and validation of the requirements model was also a result of a strong invest-
ment in using usability techniques in the construction of this software artefact,
namely in what concerns its GUI (graphical user interface) and the comfort of exploi-
tation of the animation prototype.

The adopted GUI makes use of eight icons on the display: three proactive actors
(one patient, one medical doctor and one nurse); four reactive actors (one monitor,
one PCA device and two databases in use at the hospital); and the uPAIN system
represented by a cloud. The adopted GUI should be obvious and intuitive to the

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 16

stakeholders and thus, with the exception of the cloud and the databases, we opted for
“concrete” icons. When real-world objects are represented in an icon (“concrete”
icon), individuals are likely to find it more meaningful, are often familiar with the
items depicted, and find it easy to make links between what is shown in the icon and
the function it is supposed to represent [20]. To symbolize the uPain system (a con-
cept which is difficult to materialize and to represent), we chose a cloud which consti-
tutes an “abstract” icon. Forming strong systematic relations between icons and func-
tions is very important, particularly when there are no pictorial alternatives for a
given icon function [21]. To represent the uPain system we wanted an icon that em-
phasized its pervasive and wireless nature. Databases are also represented through an
“abstract” icon which is a standard way to represent software-technology databases.
We also opted for uniform icons in terms of size because we wanted to avoid stake-
holders focusing on some of the icons and not others due to size differences; we
wanted them to have, at the first glance, the notion of the whole GUI. On the other
hand, the real sized PDA is the bigger element and the only one which detaches from
the GUI in terms of size, in order to improve the legibility of its contents.

Fig. 14. Message passing in the animation prototype for the uPAIN system.

Whenever one proactive actor is clicked with the mouse, a PDA icon appears
above it and then, a real sized version of the PDA is also displayed, showing the pre-
defined options, corresponding to possible requests (see Fig. 8). Through each proac-
tive actor’s PDA, the stakeholder just has to select the desired option and then the
corresponding sequences are executed (each one of these is formally related with one
of the UML stereotyped sequence diagrams).

Execution of UML Models with CPN Tools for Workflow Requirements Validation 17

Each time one of the proactive actors is clicked, a black ball (representing the ac-
tor’s request) is sent from the actor towards the cloud. In Fig. 14, the stakeholder
interacting with the animation prototype chose the “consult patient state” option by
using the PDA of the medical doctor. The snapshot in Fig. 14 corresponds to the
exact moment in which the monitor is sending to the uPAIN system some physiologi-
cal indicators about the patient; this data exchange is graphically represented by the
black ball trajectory in the display. This snapshot also shows a log window, where all
the requests and interactions are registered. At the same time, underneath the cloud, a
textual expression “receiving patient data” identifies the ongoing request/interaction.
A caption, identifying the selected option is displayed during the whole action in the
upper left corner of the display to prevent stakeholders from forgetting the task at
hand and to provide them feedback, a golden rule of GUI design suggested in [22]. It
is crucial for stakeholders that the animation prototype lets them know at what point
they are, at any given time in a clearly understandable way. Additionally, in Fig. 8 it
is possible to observe a green coloured “Ready…” message informing that the anima-
tion prototype is ready to accept one mouse click in one of the buttons of the dis-
played PDA. If, in any point of the simulation, the actor “uPAIN system” is in proc-
essing state, then a spinning globe appears inside the cloud and a red coloured “Run-
ning…” message is presented (see Fig 12).

To assure that the purpose of any graphical entity is clearly apparent and inferred
(an important cognitive dimension in GUI design to deal with expressiveness [23]), a
green dashed line contour was added around each proactive actor to make clear that
only these are the proactive actors on which it is possible to click to produce some
kind of interaction (Fig. 15). The green coloured “Ready…” message also appears
when these green dashed line contours are displayed. We also used a dashed line and
different background colours to help delimit the three main areas of the GUI and
grouping actors in a logical way, according to the areas in the hospital where they
may be: the patient, the monitor and the PCA are always in the infirmary; the two
databases are installed in the server’s room; the medical doctor and the nurse can be
elsewhere due to the nature of uPain system (ubiquitous); and the uPain system is
“everywhere” in the hospital and so the cloud is placed in the middle of the three
dashed areas. Below each actor, and to ensure that the actor is clearly identified im-
mediately, the respective caption was added, since good labelling can guide stake-
holders through the GUI with minimal search time. We also labelled the three dashed
areas. This approach in GUI design contributes for a reduced cognitive load and im-
mediate recognition in detriment of recalling in order to let stakeholders make opti-
mal use of their high level cognitive abilities and save them to perform the essence of
work; i.e., using the high level cognitive capacity for the more demanding work tasks
such as workflow requirements validation, which is the real aim of the animation
prototype.

The reduction of short-term memory load [23] was another intended goal, once in
that part of memory only few information elements (typically, 5 to 8) can be stored
simultaneously and the decay time is short (approximately 15 sec.). Thus, we avoided
a dense area with many elements and presented only the necessary information.

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 18

Fig. 15. Dashed line contours in the animation prototype for the uPAIN system.

The animation prototype was first demonstrated to the stakeholders with a strong
involvement of the developers to explain the main approach to its usage as a software
artefact to support the early execution of functional requirements. After that, the
stakeholders have been given a standalone version of the animation prototype. This
usage of the animation prototype has enabled the effective validation of requirements,
since stakeholders generate frequently change requests to incorporate new scenarios
and to adjust others already elicited, which has definitively contributed to the rapid
evolution of the requirements model maturity, prior to design phase. We believe the
usability concerns we adopted in designing the whole animation prototype was de-
terminate to the success of the uPAIN project.

6. CONCLUSIONS

Static requirements models should not be used to directly base the validation of the
elicited user requirements by the stakeholders, since the effort to use only elements
from the problem domain in the user requirements models and to avoid any reference
to elements belonging to the solution domain is not enough to obtain requirements
models that are capable of being fully understandable by common stakeholders. The
stakeholders’ comprehension of the dynamic properties of the system within its inter-
action with the environment is better assured if animation prototypes, formally de-
duced from the elicited static requirements models, are used.

The behaviour of the animation prototypes can be specified by using CPNs rigor-
ously translated from use case and stereotyped sequence diagrams. An effective exe-
cution of UML models can be achieved by using CPN Tools to operationally imple-

Execution of UML Models with CPN Tools for Workflow Requirements Validation 19

ment the interaction with the stakeholders within their efforts to validate the previ-
ously elicited workflow requirements models. Presently, the referred transformations
are executed manually, which can be considered a major drawback of the proposed
approach when the system to animate is of large dimension, presenting a great num-
ber of use cases and a large amount of behavioural scenarios to transform into CPNs.

The generation of standalone versions of the interactive animation prototypes mo-
tivates stakeholders to get a deeper involvement in the analysis phase (without the
interference of the development team). Usability features of the animation prototypes
must also be carefully studied and experimented, before reaching the final version of
the prototype in supporting the interactive execution of the elicited sequence dia-
grams, complementary elicitation of workflow requirements and validation of the
requirements models. CPN Tools and BRITNeY Animation tool should evolve to support
better the transparent generation of this kind of standalone versions and to allow a
simpler start-up of an animation.

As future work, we intend to automatically generate CPN skeletons from work-
flows requirements models (use case and stereotyped sequence diagrams). Addition-
ally, we will study the possibility of using CPNs, constructed for specifying the be-
haviour of the animation prototype, to base the behavioural specification of the ele-
ments that will compose the architecture of the system within the design phase. If
data-flow languages (such as LabVIEW, as described in [24, 25]) are used to develop
the semantic layer responsible for integrating the whole ubiquitous system (embedded
and mobile devices, database accesses and a service-oriented architectural platform),
the asynchronous nature of CPNs will smooth the transition from analysis to design
phases in what regards behavioural models. A semantic layer in the Arena environ-
ment [26], capable of accepting CPN-based workflow specifications, will also be
developed to allow the stochastic execution of workflow scenarios as a complement
to the current validation approach based on CPN Tools.

References
1. IEEE 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology, 1990.
2. D. Zowghi, C. Coulin. Requirements Elicitation: A Survey of Techniques, Approaches, and Tools.

In A. Aurum and C. Wohlim (Eds.), Engineering and Managing Software Requirements, pp. 19–46,
Springer-Verlag, July, 2005.

3. R.J. Machado, I. Ramos, J.M. Fernandes. Specification of Requirements Models. In A. Aurum and
C. Wohlim (Eds.), Engineering and Managing Software Requirements, pp. 47-68, Springer-Verlag,
July, 2005.

4. Y. Liang. From Use Cases to Classes: a Way of Building Object Model with UML. Information and
Software Technology, no. 45, pp. 83–93, 2003.

5. J. Whittle, R. Kwan, J. Saboo. From Scenarios To Code: An Air Traffic Control Case Study. Soft-
ware and Systems Modeling, vol. 4, no. 1, pp. 71-93, Springer-Verlag, Feb/2005.

6. I. Krüger, R. Grosu, P. Scholz, M. Broy. From MSCs to Statecharts. In F.J. Rammig (Ed.), Distrib-
uted and Parallel Embedded Systems, pp. 61-72, Kluwer Academic Publishers, 1999.

7. R.J. Machado, J.M. Fernandes, P. Monteiro, H. Rodrigues. Transformation of UML Models for
Service-Oriented Software Architectures. 12th IEEE Int. Conference on the Engineering of Com-
puter-Based Systems (ECBS 2005), Greenbelt, Maryland, U.S.A., pp. 173-182, IEEE CS Press,
April, 2005.

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco Couto, Patrícia Pinto 20

8. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models, Systems

and Standards for Workflow Management. In J. Desel, W. Reisig, G. Rosenberg (Eds.), Lecture
Notes in Computer Science 3098, pp. 1-65, Springer-Verlag, 2004.

9. M. Beaudouin-Lafon, W.E. Mackay, P. Andersen, P. Janecek, M. Jensen, M. Lassen, K. Lund, K.
Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, K. Jensen. CPN/Tools: A Post-WIMP
Interface for Editing and Simulating Coloured Petri Nets. 22nd International Conference on Appli-
cations and Theory of Petri Nets (ICATPN 2001), Newcastle upon Tyne, UK, June, 2001.

10. A. Gemino. Empirical Comparisons of Animation and Narration in Requirements Validation.
Requirements Engineering, vol. 9, pp. 153-168, Springer-Verlag, November, 2003.

11. P. Fenkam, H. Gall, M. Jazyeri. Visual Requirements Validation: Case Study in a Corba-supported
Environment, IEEE Joint International Conference on Requirements Engineering (RE’2002), 2002.

12. M.B. Ozcan, P.W. Parry, I.C. Morrey, J. Siddiqi. Requirements Validation Based on the Visualisa-
tion of Executable Formal Specifications. International Conference on Computer Software &
Applications, pp. 381-386, Austria, IEEE CS Press, 1998.

13. S. Uchitel, R. Chatley, J. Kramer, J. Magee. Fluent-based Animation: Exploiting the Relation
between Goals and Scenarios for Requirements Validation, 12th IEEE Requirements Engineering
International Conference (RE’04), 2004.

14. V. Winter, D. Desovski, B. Cukic. Virtual Environment Modeling for Requirements Validation of
High Consequence Systems, Proceedings of the IEEE International Conference on Requirements
Engineering, pp. 23-30, 2001.

15. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Volumes 1-3.
Monographs in Theoretical Computer Science. Springer-Verlag, 1992-1997.

16. L.M. Kristensen, S. Christensen, K. Jensen. The Practitioner’s Guide to Coloured Petri Nets. Inter-
national Journal on Software Tools for Technology Transfer, no. 2, pp. 98-132, 1998.

17. BRITNeY Animation tool. wiki.daimi.au.dk/tincpn
18. N. Pryce, J. Magee. SceneBeans: A Component-Based Animation Framework for Java.

http://www-dse.doc.ic.ac.uk/Software/SceneBeans/
19. ISO 9241-11: Guidance on Usability, 1998.
20. S.J.P. McDougall, M.B. Curry, O. de Bruijn. Exploring the Effects of Icon Characteristics on User

Performance: The Role of Icon Concreteness, Complexity, and Distinctiveness. Journal of Experi-
mental Psychology: Applied, vol. 6, no. 4, pp. 291-306, 2000.

21. S.J.P. McDougall, M.B. Curry, O. de Bruijn. The Effects of Visual Information on Users` Mental
Models: An Evaluation of Pathfinder Analysis as a Measure of Icon Usability. International Journal
of Cognitive Ergonomics, vol. 5, no. 1, pp. 59-84, 2001.

22. M. Welie, G. van der Veer, A. Eliëns. Breaking Down Usability. Interact 99, Edinburgh, Scotland,
1999.

23. J.F. Pane. A Programming System for Children that is Designed for Usability. PhD Thesis, Com-
puter Science Department, Carnegie Mellon University, Pittsburgh, USA, May, 2002.

24. R.J. Machado, J.M. Fernandes.. Heterogeneous Information Systems Integration: Organizations and
Methodologies. In M. Oivo, S. Komi-Sirviö (Eds.), 4th International Conference on Product Fo-
cused Software Process Improvement (PROFES’02), pp. 629-643, Rovaniemi, Finland, Lecture
Notes in Computer Science Series 2559, Springer-Verlag, December, 2002.

25. R.J. Machado, J.M. Fernandes. Integration of Embedded Software with Corporate Information
Systems. In A. Rettberg, M.C. Zanella, F.J. Rammig (Eds.), From Specification to Embedded
Systems Application, IFIP Series vol. 184, Springer-Verlag, September, 2005.

26. W.D. Kelton, R.P. Sadowski, D.A. Sadowski. Simulation With ARENA, 2nd edition, McGraw-Hill,
2002.

