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Abstrac t: The main aim of this chapter is to present and discuss a set of modeling 
and specification techniques, in what concerns their ontology and support in the 
requirements representation of computer-based systems. A systematic classifica-
tion of meta-models , also called models of computation, is presented. This topic is 
highly relevant since it supports the definition of sound specification methodolo-
gies in relation to the semantic definition of the modeling views to adopt for a 
given system. The usage and applicability of UML diagrams is also related to their 
corresponding meta-models. A set of desirable characteristics for the specification 
methodologies is presented and justified to allow system designers and requirements 
engineers to, more consciously, define or choose a particular specification meth-
odology,. A heuristic-based approach to support the transformation of user into 
system requirements is suggested, with some graphical examples in UML nota-
tion. 
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3.1 Introduction 

Computer-based systems integrate, as information processing sub-systems, one 
or more computing systems able to capture, store, process, transfer, present and 
manage information. Within the design of computer-based sys tems, this justifies 
the need for the incorporation of several technological entities: (1) software, firm-
ware, and (analog and digital) hardware , to process and store information; 
(2) communication network services to transport information; (3) sensors and ac-
tuators to interact with the physical environment; and (4) human-machine inter-
faces to exchange information with human operators. Although computer-based 
systems can be strictly based on computer technologies, they normally include 
other entities such as human operators, organizational sub-systems , documenta-
tion, and manuals. 

Since computer-based systems  are, by nature, heterogeneous, modeling and 
specifying their requirements demands a holistic approach. 

A requirement can be defined as “something that a client needs”. From the point 
of view of the system designer or the requirements engineer, a requirement could 
also be defined as “something that must be designed”. The IEEE 610 standard [21] 
defines a requirement as: (1) a condition or capability needed by a user to solve a 
problem or achieve an objective; (2) a condition or capability that must be met or 



 

 

possessed by a system or system component to satisfy a contract, standard, speci-
fication or other formally imposed documents; (3) a documented representation of 
a condition or capability as in (1) or (2). 

Clients and developers (system designers and requirements engineers ) have, natu-
rally, different points of view towards require ments, which imply that require-
ments can be divided into two different categories: user and system requirements. 

User requirements result directly from the requirements elicitation task (see 
chapter 2 for further details on requirements elicitation techniques ), as an effort to 
understand the clients’ needs. They are, typically, described in natural language 
and with informal diagrams, at a relatively low level of detail. User requirements 
are focused in the problem domain and are the main communication medium be-
tween the clients and the developers, at the analysis phase. 

System requirements result from the developers’ effort to organize the user re-
quirements at the solution domain. They, typically, comprise abstract models of 
the system, at a relatively high level of detail, and constitute the first system repre-
sentation to be used at the beginning of the design phase. 

The correct derivation of system requirements from user requirements is an im-
portant objective, because it assures that the design phase is based on the effective 
clients’ needs. This also guarantees that no misjudgment is arbitrarily introduced 
by the developers during the process of system requirements specification. 

The aim of this chapter is to present and discuss a set of modeling and specifica-
tion techniques, in what concerns their ontology and support in the requirements 
representation of computer-based systems . This chapter is not intended to be used as 
an exhaustive survey and summary of existing modeling approaches. It provides some 
guidelines to system designers and requirements engineers  so that they select the mo d-
eling approach that better fits their problems . The intended audience of this chapter is 
system designers and requirements engineers who wish to expand their background 
knowledge on meta-modeling and improve their development strategy options. 

Section 3.2 discusses the differences between the modeling and the specification ac-
tivities. In this chapter, specification is only related to models, and not to other possi-
ble forms. Section 3.3 presents a systematic classification of meta-models as a key 
issue for the semantic definition of the modeling views to adopt for a given sys-
tem. Some authors use the term ‘modeling techniques ’, instead of ‘meta-models ’. Sec-
tion 3.4 describes a set of desirable characteristics for specification methodologies, 
so that system designers and requirements engineers  can, more consciously, define 
or choose a particular specification methodology. Section 3.5 briefly describes a 
heuristic-based approach to support the transformation of user into system re-
quirements. This section shows that model continuity is a key issue and highlights 
the importance of having a well defined process to relate, map and transform re-
quirements models. 

3.2 Modeling vs. specification 

The first decision of developers , when they want to specify a system, is to select 
which part of the system they wish to take into account. The selection of that part 



 

 

defines the system view, i.e., the system perspective that needs to be represented 
[5]. This view has a merely conceptual existence in the human mind and according 
to an unstructured and informal representation, at least at the conscious level of the 
developers . 

The formalization of the system view occurs when it originates a model. This 
model consists in a representation, still conceptual, of the view of the system, ac-
cording to a particular meta-model. This meta-model corresponds to a set of (func-
tional or structural) composition elements and of composition rules that permits to 
build a model representing the system view. This model serves the purpose of ex-
plaining and sharing the conceptual view held in the human mind. In this way, de-
velopers  make their view available to the judgment of others and to further refor-
mulation. 

The accuracy of a particular modeling approach depends on its capability to se-
lect the meta-model that semantically supports the characteristics of the system to 
be modeled. The selected meta-model defines the semantic limits of the system 
representation, at the model level. Meta-models characterization is of central im-
portance due to its impact on the systems modeling accuracy. 

Although the system model is already the result of a formalization effort of the 
system view, its existence is still at the conceptual level. To become ‘tangible ’ it 
must be transformed into a concrete representation called ‘specification’, i.e., a 
real representation of the system model in a given language [41]. The conceptual 
model adopted in the definition of the language corresponds to the language 
meta-model, which allows the description of the system model by means of a 
graphical, textual or other kind of representation; see fig. 3.1. 
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Fig. 3.1. Specification of systems 

According to the terminology used here, the difference between modeling and 
specification, activities that are often misunderstood, is now clearer. Modeling 
corresponds to the activity of selecting a meta-model to formalize, at the concep-
tual level, a given system view, while specification is related to the adoption of a 
language to make a system model tangible. 



 

 

Obtaining a specification, that adequately represents the system, depends both 
on the characteristics of the selected meta-model for the modeling activity, and on 
the meta-model of the chosen representation language. Thus, to avoid semantic 
mismatches, the two adopted meta-models must be compatible. Whenever possi-
ble, the language meta-model should be the same as the one used in the system 
modeling activity. In this context, it becomes clear that the characterization of 
meta-models is a fundamental issue for accomplishing both the modeling and the 
specification activities. 

3.3 Meta-models categories 

Although the two meta-models involved in the construction of a system specifi-
cation may not be exactly the same, one can assume, for simplification purposes, 
that the representation language has been consciously selected taking into account 
the characteristics of its meta-model (which is not always true). 

Ideally, representation languages should allow the specification of the desired 
system characteristics, in a non ambiguous way. This is possible, if the 
meta-model of the language is: (1) formal (accurate, rigorous), to avoid ambigui-
ties in the interpretation of the system representation; (2) complete, to allow the 
construction of a representation that totally describes the system view. These are 
not absolute properties, since they depend on the particular system to be specified. 

In [17], Gajski et al. organize  the most common meta-models into five distinct 
groups. A brief description of each meta-model category is  presented next . 

3.3.1 State oriented meta-models 

State oriented meta-models allow modeling a system as a set of states and a set 
of transitions. The transitions between states evolve according to some external 
stimulus. These meta-models are adequate to model systems in which temporal 
behavior is the most important aspect to be captured. Finite state machines 
(FSMs), finite state machines with data paths (FSMDs), StateCharts and Petri nets 
are examples of state oriented meta-models.  

FSMs [32], also known as ‘finite state automata’, correspond to the most used 
meta-model in the description of control systems, since the temporal behavior of 
these systems  is naturally represented in the form of states and transitions between 
states. The two basic alternatives to construct state machines (Mealy or Moore) 
differ only in the output function. On Mealy machines the output function depends 
both on the state and the inputs, while on Moore machines the output function de-
pends only on states. Graphical diagrams that represent state machines are usually 
called ‘state transition diagrams ’ (STDs). 

FSMDs [16] are an evolution of FSMs to solve, in a simple way, the problem of 
state explosion. FSMDs extend FSMs by using integer or floating variables to re-
place thousands of states in the corresponding FSM. While FSMs can only repre-



 

 

sent control systems, FSMDs are also able to represent computing systems. These 
meta-models are not able to capture complex behaviors, since they lack the ability 
to deal with concurrency and hierarchy. 

HCFSMs are another FSM extension, since they support the representation of 
concurrency and allow the construction of hierarchical models. HCFSMs are rela-
tively limited in dealing with complex data structures. The meta-model behind 
HCFSMs is the same as Harel’s StateCharts graphical representation language 
[18]; see fig. 3.2. UML’s state diagrams have their origins in Harel’s StateCharts. 
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Fig. 3.2. Example of a StateChart 

Petri nets [34, 35] constitute another state oriented meta-model. Petri nets are 
appropriate to model concurrent actions, since they can deal with parallelism, syn-
chronization, resource sharing and memorization; see fig. 3.3. Petri nets enclose a 
solid mathematical base, enabling models to be formally analyzed. Additionally, 
Petri nets are one of the meta-models that offer more extensions, allowing an 
enormous variety of utilizations, from system specification and performance 
analysis to system synthesis and implementation. Several Petri net extensions in-
clude powerful semantic mechanisms, such as hierarchical approaches and ob-
ject-orientation, allowing to cope with complex system modeling [24, 31]. There 
are some languages that directly support some of the existing Petri net extensions 
[25, 28]. 
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Fig. 3.3. Example of a Petri net 
 



 

 

3.3.2 Activity oriented meta-models 

Activity oriented meta-models allow modeling a system as a set of activities re-
lated by data or by execution dependencies. These meta-models are well suited to 
model systems where data are affected by a sequence of transformations at a con-
stant rate. Data flow diagrams (DFDs) and flowcharts are two examples of activity 
oriented meta-models. 

A DFD [10], also known as a ‘data flow graph’ (DFG), consists  in a set of inter-
connected activities or processes with arcs representing the data flow among them. 
DFDs support hierarchy, since each activity can be further detailed by another 
DFD. DFDs can not express temporal behavior, or action control. UML does not 
have any kind of diagram based on this meta-model [12]. Neither UML’s use case 
diagrams, nor UML’s activity diagrams  are  DFDs, although some developers argue 
that there are some graphical resemblances. 

Flowcharts [9], also known as ‘control flow graphs’ (CFGs), model control flow 
among activities. While in FSMs transitions are activated by external events, in 
flowcharts transitions are activated as soon as an activity is complete. This 
meta-model is suitable for modeling systems with well defined activities and that 
do not depend on external stimulus, allowing the representation of sequences of 
activities related by control flow. UML’s activity diagrams are essentially based 
on this meta-model. However, fork and join primitives of activity diagrams are in-
spired by Petri net transitions. 

3.3.3 Structure oriented meta-models 

Structure oriented meta-models allow the description of system physical mo d-
ules and their interconnections. These meta-models are dedicated to the charac-
terization of the physical composition of a system, instead of its functionality.  

Block diagrams, also called ‘component-connectivity diagrams ’ (CCDs), are the 
most frequently used structure oriented meta-model. UML’s deployment and 
component diagrams are based on this meta-model. 

3.3.4 Data oriented meta-models 

Data oriented meta-models allow modeling a system as a collection of data re-
lated by some kind of attribute. These meta-models dedicate more importance to 
the organization of data than to the system functionality. UML does not have any 
kind of diagram exclusively based on these meta-models, since it favors object 
oriented systems and does  not promote the usage of diagrams mainly dedicated to 
data modeling. Nevertheless, it is possible to argue that UML’s class diagrams are 
partially data oriented meta-models. 

Data oriented meta-models are, typically, used within methodologies based on 
the traditional structure analysis and design techniques [46]. Entity-relationship 



 

 

diagrams (ERDs) and Jackson’s structured diagrams (JSDs) are two examples of 
data oriented meta-models.  

ERDs [6] describe a system as a collection of entities and the existing relation-
ships among them. Each entity corresponds to a unique type of data with one or 
more specific attributes. This meta-model is useful when developers  want to organ-
ize complex relationships between different data types. ERDs cannot model func-
tional or temporal characteristics. 

JSDs [42] model the structure of each data type, through subtype decomposi-
tion. Decomposition is performed in a tree structure in which the leaves corre-
spond to the basic data types and the other nodes to the composite data, obtained 
through various operations such as composition (AND), selection (OR), and itera-
tion (*). While ERDs are suitable to model different data entities with complex in-
ter-relations, JSDs are adequate to mo del complex data structures. The limitations 
of JSDs are similar to the ones referred for ERDs. 

3.3.5 Heterogeneous meta-models 

Heterogeneous meta-models allow the usage, in the same system representation, 
of several characteristics from different meta-models, namely the four categories 
described before. These meta-models are a good solution when relatively complex 
systems must be modeled. Control/data flow graphs (CDFGs), object-process dia-
grams (OPDs) and program-state machines (PSMs) are examples of heterogene-
ous meta-models. 

CDFGs  [16] embody DFDs (to model data flow between system activities) and 
flowcharts (to impose the sequence of DFDs execution). CDFGs succeed in mo d-
eling, in a single representation, data dependencies and system control sequence, 
simultaneously benefiting from DFDs and flowcharts advantages; see fig. 3.4. 

Within the Object-Process Methodology (OPM), the combined usage of objects 
and processes is recommended [11]. An OPD can include both processes and ob-
jects, which are viewed as comp lementary entities that together describe the struc-
ture and behavior of the system. Objects are persistent entities and processes trans-
form the objects by generating, consuming or affecting them. In addition, states 
are also integrated in OPDs to describe the objects. 

PSMs [33] allow the integration of HCFSMs with a textual programming lan-
guage. This meta-model basically consists in a hierarchy of program states, in 
which each state represents a distinct computation mode. At any instant, only a 
subset of the program states is  simultaneously executing their computations. PSMs 
are more powerful than HCFSMs to model systems that possess complex data 
structures, since they are able to incorporate, in a unique model, data, activities 
and states. HCFSMs and programming languages delimit the two opposite ex-
tremes of using PSMs. A program may be considered a PSM with only one speci-
fied state, and a HCFSM may be viewed as a PSM in which none of their states 
possess descriptions in the programming language. SpecCharts is a representation 
language for the PSM meta-model; see fig. 3.5. 
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Fig. 3.4. Example of a control/data flow graph 

If PSMs are considered a heterogeneous meta-model, it is also acceptable to 
consider programming languages as a meta-model themselves. There exits a con-
siderable number of developers  that make use of programming languages to spec-
ify systems, usually, their behavior and data structures. This approach to specifica-
tion imposes a considerable amount of design and implementation decisions at the 
analysis phase, which can have an undesired effect on the specifications.  

Programming languages allow the modeling of data structures, activities and 
control. The modeling ‘style’ imposed by a particular programming language is 
called paradigm in computer science terminology. The meta-model behind a pro-
gramming language is its paradigm and not the language itself. Programming lan-
guages should be considered representation languages at the implementation level. 

Historically, there are two different meta-models (paradigms) for programming 
languages: imperative and declarative. The imperative paradigm (where C and 
Pascal are included) follows von Neumann’s computational model, since it adopts 
the sequential execution of the computing primitives. The declarative paradigm 
(where Lisp and Prolog are included) does not define an explicit order of execu-
tion of the primitives , focusing in defining the target of computation, through 
functions and logic rules declaration. More recently, the object oriented paradigm 
has emerged, which is based on the heterogeneous object oriented meta-model. 

Object oriented meta-models evolved from data oriented meta-models, being 
characterized by its tendency in describing the system as a collection of cooperat-
ing objects. Each object consists in a data collection and in operations to transform 
its data. This meta-model supports data abstraction (information hiding), through 
encapsulation of data in each object, making data invisible to other objects. They 
can easily represent concurrency, since each object co-exists with the others and 
can potentially execute its tasks in parallel with tasks in other objects. 



 

 

 

wait_for_start 
 
parity_error <= ‘0’; 
read_enable <= ‘0’; 

allow_read  
 
read_enable <= ‘1’;  

parity_error  
 
parity_error <= ‘1’; 

read_bits 
 
for i in 0 to 7 loop 

wait until rising (clk); 
rx_reg[i] := line;  
parity_bit := parity_bit xor line; 

end loop; 

parity_bit = line 

parity_bit /= line 

receive 

line = ‘1’ 

 
Fig. 3.5. Example of a PSM model specified in the SpecCharts language 

3.3.6 Multiple-view approach 

With the increasing complexity of systems, the use of different meta-models to 
represent different kinds of system characteristics is becoming a common practice. 
A system is modeled by a set of different models, each one corresponding to a dif-
ferent view of the system, devoted to represent a well-delimited set of the system 
characteristics; see fig. 3.6, where the criteria shown are related to the characteris-
tics each view is intended to capture. This multiple-view approach does not corre-
spond to the usage of a heterogeneous meta-model, since the information in dif-
ferent views may not be explicitly related through common information structures. 
On the contrary, in a heterogeneous meta-model the different views must hold 
common information structures within a unique integrated representation. UML 
notation permits the adoption of mult iple-view approaches. 
 

Multiple-view modeling can adopt orthogonal views: (1) the function view is re-
sponsible for representing the processes of the system and UML’s activity dia-
grams can be used to support this view; (2) the data view defines system informa-
tion, that can be supported by UML’s class diagrams ; (3) the control view 
characterizes the system dynamic behavior that can be described by UML’s state 
diagrams. Several authors have defined different multiple-view approaches, where 
views are vehicles for separation of concerns [1, 14, 27, 29]. 
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Fig. 3.6. The multiple view approach 

3.4 Specification methodology 

Formal description, comparison, and construction of methods and techniques for 
systems development are the main goals of the method engineering community 
[19]. Meta-models of the development process are also called ‘meta-process mo d-
els ’, and meta-models of the development products, or deliverables, are called 
‘meta-data models ’ (in this chapter we call these just ‘meta-models’). Some well 
known approaches to the method engineering are: ISO/IEC 12207 [22], OPEN 
[15] and PIE [8]. 

The act of defining our own specification methodology is called ‘situational 
method engineering’ [44] and it is in this context that it is important to take into 
consideration the following three key issues [39]: specification language, com-
plexity control, and model continuity. 

3.4.1 Specification language 

Specification languages must allow the representation of a particular system 
view, without ambiguities. This is the main purpose of specification languages and 
their relation with the meta-models has already been discussed. Additionally, 
specification languages must offer support for analyzing and reasoning about the 
specification. The available analysis mechanisms depend on the specification lan-
guage itself. However, there are essentially two different kinds of mechanisms: 
formal analysis and specification execution. Formal analysis is important to verify 
if a  specification is incoherent, but its existence is only possible if the specification 
language owns a solid mathematical base. Executable specifications allow an early 
testing of system prototypes for requirements validation, rendering a more robust 
and understandable specification process. 



 

 

3.4.2 Complexity control 

The control of the complexity of the specification process can be carried out 
within two different dimensions: representational complexity and development 
comple xity. The complexity of a system does not only depend on the cardinality 
of its parts, but mainly on the way its parts interact among them; see fig. 3.7, 
where systems are represented by circles and interactions by arrows. 

The first dimension of complexity control refers to the representational com-
plexity. It essentially depends on the specification language and, if correctly man-
aged, permits concise and comprehensible specifications to be obtained. Comple x-
ity control at the representation level can be achieved by making use of three 
different techniques: hierarchy, orthogonality, and representation scheme. Devel-
opers  must be able to decide the appropriate abstraction level to be used. Typi-
cally, the adoption of higher levels of abstraction improves the understanding of 
the system as a whole, while details are being hidden. 
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Fig. 3.7. Complexity 

Model hierarchization corresponds to grouping similar (structural or behavioral) 
system parts together into a new element that represents the group; see fig. 3.8. 
Model orthogonalization consists in describing a set of system behaviors inde-
pendently fro m each other (whenever possible). In what concerns the representa-
tion scheme, complexity control effort can decide either for textual representations 
or for graphical representations. Graphical representation schemes imply visual 
formalisms where both syntactic and semantic interpretations are assigned to 
graphical entities. Graphical approaches are usually easier to understand than tex-
tual ones and thus improve the readability and the understandability of system 
view. UML adopts  a graphical approach. 

The second dimension of complexity control (development complexity) refers to 
the control of the evolution of the system specification from initial conceptualiza-
tion of requirements. This control can be accomplished by deferring certain details 
to the next phases of system development and by adopting different specification 
evolutions throughout the specification process (top-down, bottom-up or mid-
dle-out). 



 

 

 

 
Fig. 3.8. Abstraction levels 

3.4.3 Model continuity 

Models obtained in the initial phases of the development must be persistent, 
avoiding their rewriting at each step. To support design and implementation meth-
odologies, this  model continuity concern must assure conformity in models evolu-
tion throughout the whole development process. This is possible by allowing 
models to be refined through the inclusion of new behavioral and structural attrib-
utes acquired along the design and implementation phases; see fig. 3.9. 

 design requirements  implementation analysis  

system 

 
Fig. 3.9. Model continuity 

The first model must be independent of implementation, allowing developers to 
focus in the system behavioral modeling. When constructing the first specifica-
tion, design or implementation decisions and unnecessary restrictions should be 
avoid. Within a full model continuity approach, it is desirable that the automatic 
synthesis of the solution is completely based on the system specification. This 
synthesis technique, carried out at the system-level, is not yet sufficiently efficient. 
It is usually based on the structural characteristics of the specifications and it has 
the disadvantage of limiting the design space exploration, generating non-optimal 
solutions for system implementation. 

3.4.4 Non-functional requirements 

Non-functional requirements limit the design space exploration, since they typi-
cally impose, at early stages of development, particular design and implementation 
solutions. This kind of requirements can be classified into three different groups: 
design objectives, design decisions, and design constraints.  

Design objectives are related to general requirements of qualitative system per-
formance. Typical design objectives appear in the form of “it must be as fast as 



 

 

possible”, “it must be cheap” or “it must be easy to adapt”. Although, these design 
objectives are not really requirements, they can be transformed into design con-
straints, if some metrics can be devised. Otherwise, design objectives should only 
be used to select amongst functional equivalent alternatives, when there is no 
firmer criterion for the decision; see chapter 12 for further details on decision sup-
port in requirements engineering. 

Design decisions can be related, for example, to the inclusion of the system in a 
given family of commercial products or with the incorporation into a bigger prod-
uct. These non-functional requirements can affect the technological decisions or 
interfere with the functionality of the system, so they should always be questioned 
and justified. UML’s OCL (Object Constraint Language) can be used to describe 
architectural or functional design decisions. 

Design constraints include, for example, performance, reliability, cost and size. 
Timing requirements can be classified as reply time, repetition rate and correlation 
time. This kind of non-functional decisions is , typically, quantifiable and syntacti-
cally incorporated in the system models as tagged values or object stamps. UML’s 
sequence diagrams can support the inscription of timing and performance re-
quirements. 

In [7, 36] non-functional requirements are thoroughly treated both on how to 
discover and on how to specify them. 

3.5 Requirements transformation 

The problem of obtaining system requirements models from user requirements 
that can be directly used within the design phase is not simple and easy and faces 
several difficulties [26]. Generically, it involves several decisions that can not be 
made by a method or a tool, due to the natural discontinuity between functional 
and structural models. Holland and Lieberherr consider that the identification of 
objects and the description of the relationships between them are two of the three 
challenges of object oriented design in the construction of object oriented models 
[20]. 

There are many authors that propose solutions to tackle this problem, namely by 
guiding the transformation of use case models into object/class models [2, 3, 23, 
37]. Some approaches [30, 38] propose a use case rationale based on goal identifi-
cation and can be used to better support the transition for the architectural design 
issues. However, they lack an explicit scenario framework for capturing the se-
mantic intentionality of each use case. This could be incorporated by adopting 
some scenario-based requirements engineering techniques, such as those sug-
gested in [43, 45]. See chapter 5 for further details on requirements interdepend-
encies. 

In this section, we describe an approach for defining the system objects based 
on use cases and their respective textual descriptions. The strategy uses the object 
categories (interface, data and control) defined in [23] and incorporates some 
mechanisms that allow each object to be related to the use cases that gave origin to 



 

 

it. Due to the relatively weak support of UML 1.5 to component-based design, 
UML object concept was chosen to represent system-level entities or components. 
UML 2.0 was not used here since its final approval as an ISO standard was not 
taken at the time we finished the writing of this chapter. 

3.5.1 User requirements modeling 

The identification of the system components requires the definition of a model 
to capture the system functionalities offered to its users. Use cases are one of the 
most suitable techniques for that purpose, since they are simple and easy-to-read. 
In fact, they only include three main concepts (use cases, actors and relations). 
This low number of concepts is a fundamental characteristic for involving 
non-technical stakeholders in the requirements capture process.  

Although use cases are used in several object oriented projects, they do not hold 
any intrinsic characteristic that can be classified as ‘pure’ object oriented. How-
ever, there is a large consensus on the recognition that use cases are a proper tech-
nique for object oriented projects [4], namely for discovering (and later specify-
ing) the behavior of the system, during the analysis phase. This is also highlighted 
by the fact that use cases are part of UML. Thus, adopting use cases for user 
requirements is undoubtedly a valid technique, but poses the problem related to 
the transformation of use cases into objects or components.  

The requirements for the case study used in this chapter were acquired using re-
quirements engineering techniques, and the end-result was a collection of artifacts, 
including UML diagrams. Some of the artifacts are presented in figs. 3.10-11. 

After identifying all the use cases of the system, the next step is to describe their 
behavior. There are some alternatives for describing use cases, namely informal 
text, numbered steps with pre- and post-conditions, pseudo-code and activity dia-
grams [40]. As an example, the description of the top-level use case {U0a.1} with 
informal text is presented next. Similar descriptions were created for the other 
top-level use cases . 

{U0a.1} send alert: Send domain alert or disseminating domain information to the users in-
forming of domain related events and situations or unexpected domain situations that are 
happening in the region. Only users that have previously subscribed this e-service will re-
ceive the alert messages (subscription made via {U0a.4} user profile subscription). This is 
an asynchronous e-service. If technically possible, the system acquires user context raw in-
formation (location, time, etc) from external context sources. Also, a contextualization 
process will assist the system in making the level of granularity of the information adequate 
to the geographic location of the user context (geographic location context, time context 
and activity context). Examples: an alert of a dangerous hole in a street should only be sent 
to the users geographically located in that street; an alert of a street obstructed should be 
sent to the users geographically located in that street or in any of the incident streets; an 
alert of weather storm should be sent to all the users in the region. The information associ-
ated to the alert should always be up-to-date and match the user-specific request, excluding 
any extra information or undesired advertisements. For those users that require personalized 
information, a subscription must be made via {U0a.4} user profile and e-service subscrip-
tion. 



 

 

 

 

Fig. 3.10. UML top level use case diagram according to two orthogonal criteria; top: func-
tionality criterion; bottom: domain criterion 

3.5.2 4SRS techni que 

Transforming use cases into architectural models  representing system require-
ments is a difficult task. A technique called 4SRS (4-step rule set) was proposed to 
help on that task in [13]. The 4SRS technique is organized as four steps to trans-
form use cases into objects: object creation (step 1), object elimination (step 2), 
object packaging & aggregation (step 3) and object association (step 4).  

In step 1 (object creation), each use case must be transformed into three objects 
(one interface, one data, and one control). Each object receives the reference of its 
respective use case appended with the suffix (i, d, c) that indicates the object’s 
category (in this approach, object references start with an ‘O’). This is a fully 
‘automatic’ step, since there is no need to any kind of particular decisions or ra-
tionale for the specific context of each use case. From this step on, there are only 
objects as design entities. Use cases are still used in the following steps to allow 
the introduction of requirements into the object model. 



 

 

In step 2 (object elimination), it must be decided which of the three objects must 
be maintained to fully represent, in computational terms, the use case, taking into 
account the whole system and not each use case in isolation. These decisions must 
be based on the textual description for each use case. This step aims at deciding 
which of the objects created in step 1 must be kept in the object model. It also 
eliminates redundancy in the user requirements elicitation and detects missing re-
quirements.  

Object elimination is the most important step of the 4SRS technique, since the 
definitive system-level entities are decided here. To cope with the complexity of 
the step, it has been decomposed into seven micro-steps: use case identification 
(micro-step 2i), local elimination (micro-step 2ii), object naming (micro-step 2iii), 
object description (micro-step 2iv), object representation (micro-step 2v), global 
elimination (micro -step 2vi) and object renaming (micro-step 2vii). The descrip-
tion of these micro-steps is out of the scope of this chapter. 

In step 3 (object packaging & aggregation), the remaining objects (those that 
were maintained after step 2), for which there is an advantage in being treated in a 
unified way, should give origin to aggregations or packages of semantically con-
sistent objects. This step supports the construction of a truly coherent object 
model, since it introduces an additional semantic layer at a higher abstraction 
level, that works as a ‘functional glue’ for the objects.  

Packaging is technique that can introduce a very light semantic cohesion among 
the objects. This cohesion can be easily reversed within the design phase, when-
ever needed. This means packaging can be flexibly used to obtain more compre-
hensive and understandable object models. 

In the opposite way, aggregation imposes a strong semantic cohesion among the 
objects. The level of cohesion in aggregations is more difficult to reverse in sub-
sequent stages, which suggests a more scrupulous approach in using this kind of 
functional glue. Thus, aggregation should only be used when it is explicitly as-
sumed that the set of considered objects is affected by a conscious design decision. 
Typically, aggregation is used when there is a part of the system that constitutes a 
legacy sub-system, or when the design has a pre-defined reference architecture 
that constricts the object model. 

Step 4 (object association) of the 4SRS technique supports the introduction of 
associations in the object model, completely based on the information from the 
use case model and generated in micro-step 2i.  

Regarding the information in the use case model, if the textual descriptions of 
use cases possess hints on the kind of sequences use cases are inserted in, this in-
formation must be used to include associations in the object model.  

Alternatively, the use case model can include other kinds of information to sup-
port associations, when there are UML relations between use cases. As an exa m-
ple, use case {U0a.1.1} «uses» use case {U0a.1.2}, which justifies the association be-
tween objects {O0a.1.1.d} and {O0a.1.2.c}, and between objects {O0a.1.1.i} and 
{O0a.1.2.d}; see fig. 3.12. 



 

 

 
Fig. 3.11. Refinement of UML use case {U0a.1} 

3.5.3 System requirements modeling 

The system architectural model expresses the system requirements, but also an 
informal description of the objects. 4SRS helps to define a logical architecture for 
the system, by capturing all its functional requirements and its non-functional 
intentions. The former gives origin to textual descriptions for each object in the 
model and the later has been classified as design decisions and design constraints. 
Design objectives are not allowed at system requirements models generated by the 
4SRS technique. 

The generated object model shows how significant properties of a system are 
distributed across its constituent parts. The 4SRS technique generates a raw object 
diagram that identifies the system-level entities, their responsibilities and the rela-
tionships among them. Its purpose is to direct attention at an appropriate decom-
position of the system without delving into details. 

Each one of the used packages defines one different decomposition region that 
contains several tightly semantically connected objects. Within the next design 
phases, these packages must be further specified, in what concerns its architectural 
structure, by using design patterns. 

The resulting raw object diagram can be used in the following development 
phases to support the definition of specific sub-projects, by using collapsing and 
filtering techniques. These techniques allow the redefinitions of the system 
boundary, giving origin, for instance, to the database project, services formaliza-
tion, or platform pattern analysis. Fig. 3.12 shows the collapsed object diagram 
that was obtained from the raw object diagram by hiding packages details. There-
fore, associations appear at a higher level of abstraction and the resulting object 
diagram is more nicely readable. 



 

 

 

Fig. 3.12. Collapsed UML object diagram representing system requirements 

3.6 Conclusion 

The correct derivation of system requirements from user requirements is an im-
portant topic in requirements engineering research. This activity assures that the 
design phase is based on the effective clients’ needs without any misjudgment ar-
bitrarily introduced by the developers during the process of system requirements 



 

 

specification. One approach to support this derivation is by transforming user re-
quirements models into system requirements models, by manipulating the corre-
sponding specifications. User requirements are, typically, described in natural lan-
guage and with informal diagrams, at a relatively low level of detail  and are 
focused in the problem domain. System requirements comprise abstract models of 
the system, at a relatively high level of detail, and constitute the first system repre-
sentation to be used at the beginning of the design phase. 

This chapter deals with the characteristics of different modeling techniques for 
the specification of systems requirements. It presents various classes of modeling 
and specification techniques that can be used in different circumstances during 
development projects. Here, meta-models play an important role, since they define 
the semantic capability of the modeling views to adopt for a given system. The 
chapter ends with a brief description of a heuristic-based approach to support the 
transformation of user into system requirements. This transformational approach 
shows that model continuity is a key issue and highlights the importance of having 
a well defined process to relate, map and transform requirements models. 

The topics presented in this chapter emphasize the fact that system design is a 
highly abstract task that focuses on the functional and non-functional requirements 
of computer-based systems. Both system designers and requirements engineers 
benefit from a model-based approach to requirements specification to allow the 
correct evolution of system representations during development projects. 
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