

3 Specification of Requirements Models

Ricardo J. Machado, Dept. Information Systems, U.Minho, Guimarães, Portugal
Isabel Ramos, Dept. Information Systems, U.Minho, Guimarães, Portugal
João M. Fernandes, Dept. Informatics, U.Minho, Braga, Portugal

Abstrac t: The main aim of this chapter is to present and discuss a set of modeling
and specification techniques, in what concerns their ontology and support in the
requirements representation of computer-based systems. A systematic classifica-
tion of meta-models , also called models of computation, is presented. This topic is
highly relevant since it supports the definition of sound specification methodolo-
gies in relation to the semantic definition of the modeling views to adopt for a
given system. The usage and applicability of UML diagrams is also related to their
corresponding meta-models. A set of desirable characteristics for the specification
methodologies is presented and justified to allow system designers and requirements
engineers to, more consciously, define or choose a particular specification meth-
odology,. A heuristic-based approach to support the transformation of user into
system requirements is suggested, with some graphical examples in UML nota-
tion.

Keywords : Modeling, Specification, Meta-Models, Requirements, Model Trans-
formation.

3.1 Introduction

Computer-based systems integrate, as information processing sub-systems, one
or more computing systems able to capture, store, process, transfer, present and
manage information. Within the design of computer-based sys tems, this justifies
the need for the incorporation of several technological entities: (1) software, firm-
ware, and (analog and digital) hardware , to process and store information;
(2) communication network services to transport information; (3) sensors and ac-
tuators to interact with the physical environment; and (4) human-machine inter-
faces to exchange information with human operators. Although computer-based
systems can be strictly based on computer technologies, they normally include
other entities such as human operators, organizational sub-systems , documenta-
tion, and manuals.

Since computer-based systems are, by nature, heterogeneous, modeling and
specifying their requirements demands a holistic approach.

A requirement can be defined as “something that a client needs”. From the point
of view of the system designer or the requirements engineer, a requirement could
also be defined as “something that must be designed”. The IEEE 610 standard [21]
defines a requirement as: (1) a condition or capability needed by a user to solve a
problem or achieve an objective; (2) a condition or capability that must be met or

possessed by a system or system component to satisfy a contract, standard, speci-
fication or other formally imposed documents; (3) a documented representation of
a condition or capability as in (1) or (2).

Clients and developers (system designers and requirements engineers) have, natu-
rally, different points of view towards require ments, which imply that require-
ments can be divided into two different categories: user and system requirements.

User requirements result directly from the requirements elicitation task (see
chapter 2 for further details on requirements elicitation techniques), as an effort to
understand the clients’ needs. They are, typically, described in natural language
and with informal diagrams, at a relatively low level of detail. User requirements
are focused in the problem domain and are the main communication medium be-
tween the clients and the developers, at the analysis phase.

System requirements result from the developers’ effort to organize the user re-
quirements at the solution domain. They, typically, comprise abstract models of
the system, at a relatively high level of detail, and constitute the first system repre-
sentation to be used at the beginning of the design phase.

The correct derivation of system requirements from user requirements is an im-
portant objective, because it assures that the design phase is based on the effective
clients’ needs. This also guarantees that no misjudgment is arbitrarily introduced
by the developers during the process of system requirements specification.

The aim of this chapter is to present and discuss a set of modeling and specifica-
tion techniques, in what concerns their ontology and support in the requirements
representation of computer-based systems . This chapter is not intended to be used as
an exhaustive survey and summary of existing modeling approaches. It provides some
guidelines to system designers and requirements engineers so that they select the mo d-
eling approach that better fits their problems . The intended audience of this chapter is
system designers and requirements engineers who wish to expand their background
knowledge on meta-modeling and improve their development strategy options.

Section 3.2 discusses the differences between the modeling and the specification ac-
tivities. In this chapter, specification is only related to models, and not to other possi-
ble forms. Section 3.3 presents a systematic classification of meta-models as a key
issue for the semantic definition of the modeling views to adopt for a given sys-
tem. Some authors use the term ‘modeling techniques ’, instead of ‘meta-models ’. Sec-
tion 3.4 describes a set of desirable characteristics for specification methodologies,
so that system designers and requirements engineers can, more consciously, define
or choose a particular specification methodology. Section 3.5 briefly describes a
heuristic-based approach to support the transformation of user into system re-
quirements. This section shows that model continuity is a key issue and highlights
the importance of having a well defined process to relate, map and transform re-
quirements models.

3.2 Modeling vs. specification

The first decision of developers , when they want to specify a system, is to select
which part of the system they wish to take into account. The selection of that part

defines the system view, i.e., the system perspective that needs to be represented
[5]. This view has a merely conceptual existence in the human mind and according
to an unstructured and informal representation, at least at the conscious level of the
developers .

The formalization of the system view occurs when it originates a model. This
model consists in a representation, still conceptual, of the view of the system, ac-
cording to a particular meta-model. This meta-model corresponds to a set of (func-
tional or structural) composition elements and of composition rules that permits to
build a model representing the system view. This model serves the purpose of ex-
plaining and sharing the conceptual view held in the human mind. In this way, de-
velopers make their view available to the judgment of others and to further refor-
mulation.

The accuracy of a particular modeling approach depends on its capability to se-
lect the meta-model that semantically supports the characteristics of the system to
be modeled. The selected meta-model defines the semantic limits of the system
representation, at the model level. Meta-models characterization is of central im-
portance due to its impact on the systems modeling accuracy.

Although the system model is already the result of a formalization effort of the
system view, its existence is still at the conceptual level. To become ‘tangible ’ it
must be transformed into a concrete representation called ‘specification’, i.e., a
real representation of the system model in a given language [41]. The conceptual
model adopted in the definition of the language corresponds to the language
meta-model, which allows the description of the system model by means of a
graphical, textual or other kind of representation; see fig. 3.1.

System Specification

View

MM MM

Meta-Model

Grammar

Language Model

Fig. 3.1. Specification of systems

According to the terminology used here, the difference between modeling and
specification, activities that are often misunderstood, is now clearer. Modeling
corresponds to the activity of selecting a meta-model to formalize, at the concep-
tual level, a given system view, while specification is related to the adoption of a
language to make a system model tangible.

Obtaining a specification, that adequately represents the system, depends both
on the characteristics of the selected meta-model for the modeling activity, and on
the meta-model of the chosen representation language. Thus, to avoid semantic
mismatches, the two adopted meta-models must be compatible. Whenever possi-
ble, the language meta-model should be the same as the one used in the system
modeling activity. In this context, it becomes clear that the characterization of
meta-models is a fundamental issue for accomplishing both the modeling and the
specification activities.

3.3 Meta-models categories

Although the two meta-models involved in the construction of a system specifi-
cation may not be exactly the same, one can assume, for simplification purposes,
that the representation language has been consciously selected taking into account
the characteristics of its meta-model (which is not always true).

Ideally, representation languages should allow the specification of the desired
system characteristics, in a non ambiguous way. This is possible, if the
meta-model of the language is: (1) formal (accurate, rigorous), to avoid ambigui-
ties in the interpretation of the system representation; (2) complete, to allow the
construction of a representation that totally describes the system view. These are
not absolute properties, since they depend on the particular system to be specified.

In [17], Gajski et al. organize the most common meta-models into five distinct
groups. A brief description of each meta-model category is presented next .

3.3.1 State oriented meta-models

State oriented meta-models allow modeling a system as a set of states and a set
of transitions. The transitions between states evolve according to some external
stimulus. These meta-models are adequate to model systems in which temporal
behavior is the most important aspect to be captured. Finite state machines
(FSMs), finite state machines with data paths (FSMDs), StateCharts and Petri nets
are examples of state oriented meta-models.

FSMs [32], also known as ‘finite state automata’, correspond to the most used
meta-model in the description of control systems, since the temporal behavior of
these systems is naturally represented in the form of states and transitions between
states. The two basic alternatives to construct state machines (Mealy or Moore)
differ only in the output function. On Mealy machines the output function depends
both on the state and the inputs, while on Moore machines the output function de-
pends only on states. Graphical diagrams that represent state machines are usually
called ‘state transition diagrams ’ (STDs).

FSMDs [16] are an evolution of FSMs to solve, in a simple way, the problem of
state explosion. FSMDs extend FSMs by using integer or floating variables to re-
place thousands of states in the corresponding FSM. While FSMs can only repre-

sent control systems, FSMDs are also able to represent computing systems. These
meta-models are not able to capture complex behaviors, since they lack the ability
to deal with concurrency and hierarchy.

HCFSMs are another FSM extension, since they support the representation of
concurrency and allow the construction of hierarchical models. HCFSMs are rela-
tively limited in dealing with complex data structures. The meta-model behind
HCFSMs is the same as Harel’s StateCharts graphical representation language
[18]; see fig. 3.2. UML’s state diagrams have their origins in Harel’s StateCharts.

E

G

F r s

a

u

D A

B

C

b a(P) / c

Fig. 3.2. Example of a StateChart

Petri nets [34, 35] constitute another state oriented meta-model. Petri nets are
appropriate to model concurrent actions, since they can deal with parallelism, syn-
chronization, resource sharing and memorization; see fig. 3.3. Petri nets enclose a
solid mathematical base, enabling models to be formally analyzed. Additionally,
Petri nets are one of the meta-models that offer more extensions, allowing an
enormous variety of utilizations, from system specification and performance
analysis to system synthesis and implementation. Several Petri net extensions in-
clude powerful semantic mechanisms, such as hierarchical approaches and ob-
ject-orientation, allowing to cope with complex system modeling [24, 31]. There
are some languages that directly support some of the existing Petri net extensions
[25, 28].

p1 p2

p3

p4

p5

p6

p7t1 t2

t3

t4

t5

t6

Fig. 3.3. Example of a Petri net

3.3.2 Activity oriented meta-models

Activity oriented meta-models allow modeling a system as a set of activities re-
lated by data or by execution dependencies. These meta-models are well suited to
model systems where data are affected by a sequence of transformations at a con-
stant rate. Data flow diagrams (DFDs) and flowcharts are two examples of activity
oriented meta-models.

A DFD [10], also known as a ‘data flow graph’ (DFG), consists in a set of inter-
connected activities or processes with arcs representing the data flow among them.
DFDs support hierarchy, since each activity can be further detailed by another
DFD. DFDs can not express temporal behavior, or action control. UML does not
have any kind of diagram based on this meta-model [12]. Neither UML’s use case
diagrams, nor UML’s activity diagrams are DFDs, although some developers argue
that there are some graphical resemblances.

Flowcharts [9], also known as ‘control flow graphs’ (CFGs), model control flow
among activities. While in FSMs transitions are activated by external events, in
flowcharts transitions are activated as soon as an activity is complete. This
meta-model is suitable for modeling systems with well defined activities and that
do not depend on external stimulus, allowing the representation of sequences of
activities related by control flow. UML’s activity diagrams are essentially based
on this meta-model. However, fork and join primitives of activity diagrams are in-
spired by Petri net transitions.

3.3.3 Structure oriented meta-models

Structure oriented meta-models allow the description of system physical mo d-
ules and their interconnections. These meta-models are dedicated to the charac-
terization of the physical composition of a system, instead of its functionality.

Block diagrams, also called ‘component-connectivity diagrams ’ (CCDs), are the
most frequently used structure oriented meta-model. UML’s deployment and
component diagrams are based on this meta-model.

3.3.4 Data oriented meta-models

Data oriented meta-models allow modeling a system as a collection of data re-
lated by some kind of attribute. These meta-models dedicate more importance to
the organization of data than to the system functionality. UML does not have any
kind of diagram exclusively based on these meta-models, since it favors object
oriented systems and does not promote the usage of diagrams mainly dedicated to
data modeling. Nevertheless, it is possible to argue that UML’s class diagrams are
partially data oriented meta-models.

Data oriented meta-models are, typically, used within methodologies based on
the traditional structure analysis and design techniques [46]. Entity-relationship

diagrams (ERDs) and Jackson’s structured diagrams (JSDs) are two examples of
data oriented meta-models.

ERDs [6] describe a system as a collection of entities and the existing relation-
ships among them. Each entity corresponds to a unique type of data with one or
more specific attributes. This meta-model is useful when developers want to organ-
ize complex relationships between different data types. ERDs cannot model func-
tional or temporal characteristics.

JSDs [42] model the structure of each data type, through subtype decomposi-
tion. Decomposition is performed in a tree structure in which the leaves corre-
spond to the basic data types and the other nodes to the composite data, obtained
through various operations such as composition (AND), selection (OR), and itera-
tion (*). While ERDs are suitable to model different data entities with complex in-
ter-relations, JSDs are adequate to mo del complex data structures. The limitations
of JSDs are similar to the ones referred for ERDs.

3.3.5 Heterogeneous meta-models

Heterogeneous meta-models allow the usage, in the same system representation,
of several characteristics from different meta-models, namely the four categories
described before. These meta-models are a good solution when relatively complex
systems must be modeled. Control/data flow graphs (CDFGs), object-process dia-
grams (OPDs) and program-state machines (PSMs) are examples of heterogene-
ous meta-models.

CDFGs [16] embody DFDs (to model data flow between system activities) and
flowcharts (to impose the sequence of DFDs execution). CDFGs succeed in mo d-
eling, in a single representation, data dependencies and system control sequence,
simultaneously benefiting from DFDs and flowcharts advantages; see fig. 3.4.

Within the Object-Process Methodology (OPM), the combined usage of objects
and processes is recommended [11]. An OPD can include both processes and ob-
jects, which are viewed as comp lementary entities that together describe the struc-
ture and behavior of the system. Objects are persistent entities and processes trans-
form the objects by generating, consuming or affecting them. In addition, states
are also integrated in OPDs to describe the objects.

PSMs [33] allow the integration of HCFSMs with a textual programming lan-
guage. This meta-model basically consists in a hierarchy of program states, in
which each state represents a distinct computation mode. At any instant, only a
subset of the program states is simultaneously executing their computations. PSMs
are more powerful than HCFSMs to model systems that possess complex data
structures, since they are able to incorporate, in a unique model, data, activities
and states. HCFSMs and programming languages delimit the two opposite ex-
tremes of using PSMs. A program may be considered a PSM with only one speci-
fied state, and a HCFSM may be viewed as a PSM in which none of their states
possess descriptions in the programming language. SpecCharts is a representation
language for the PSM meta-model; see fig. 3.5.

+

W

X

A

+

X

3

A

C

1 2 E

X := X+2
A := X+5

A := X+3 A := X+W

+

2

X

X

5

A

+

Fig. 3.4. Example of a control/data flow graph

If PSMs are considered a heterogeneous meta-model, it is also acceptable to
consider programming languages as a meta-model themselves. There exits a con-
siderable number of developers that make use of programming languages to spec-
ify systems, usually, their behavior and data structures. This approach to specifica-
tion imposes a considerable amount of design and implementation decisions at the
analysis phase, which can have an undesired effect on the specifications.

Programming languages allow the modeling of data structures, activities and
control. The modeling ‘style’ imposed by a particular programming language is
called paradigm in computer science terminology. The meta-model behind a pro-
gramming language is its paradigm and not the language itself. Programming lan-
guages should be considered representation languages at the implementation level.

Historically, there are two different meta-models (paradigms) for programming
languages: imperative and declarative. The imperative paradigm (where C and
Pascal are included) follows von Neumann’s computational model, since it adopts
the sequential execution of the computing primitives. The declarative paradigm
(where Lisp and Prolog are included) does not define an explicit order of execu-
tion of the primitives , focusing in defining the target of computation, through
functions and logic rules declaration. More recently, the object oriented paradigm
has emerged, which is based on the heterogeneous object oriented meta-model.

Object oriented meta-models evolved from data oriented meta-models, being
characterized by its tendency in describing the system as a collection of cooperat-
ing objects. Each object consists in a data collection and in operations to transform
its data. This meta-model supports data abstraction (information hiding), through
encapsulation of data in each object, making data invisible to other objects. They
can easily represent concurrency, since each object co-exists with the others and
can potentially execute its tasks in parallel with tasks in other objects.

wait_for_start

parity_error <= ‘0’;
read_enable <= ‘0’;

allow_read

read_enable <= ‘1’;

parity_error

parity_error <= ‘1’;

read_bits

for i in 0 to 7 loop

wait until rising (clk);
rx_reg[i] := line;
parity_bit := parity_bit xor line;

end loop;

parity_bit = line

parity_bit /= line

receive

line = ‘1’

Fig. 3.5. Example of a PSM model specified in the SpecCharts language

3.3.6 Multiple-view approach

With the increasing complexity of systems, the use of different meta-models to
represent different kinds of system characteristics is becoming a common practice.
A system is modeled by a set of different models, each one corresponding to a dif-
ferent view of the system, devoted to represent a well-delimited set of the system
characteristics; see fig. 3.6, where the criteria shown are related to the characteris-
tics each view is intended to capture. This multiple-view approach does not corre-
spond to the usage of a heterogeneous meta-model, since the information in dif-
ferent views may not be explicitly related through common information structures.
On the contrary, in a heterogeneous meta-model the different views must hold
common information structures within a unique integrated representation. UML
notation permits the adoption of mult iple-view approaches.

Multiple-view modeling can adopt orthogonal views: (1) the function view is re-
sponsible for representing the processes of the system and UML’s activity dia-
grams can be used to support this view; (2) the data view defines system informa-
tion, that can be supported by UML’s class diagrams ; (3) the control view
characterizes the system dynamic behavior that can be described by UML’s state
diagrams. Several authors have defined different multiple-view approaches, where
views are vehicles for separation of concerns [1, 14, 27, 29].

system

model 1

model 2

model 3

criterion 1

criterion 3

criterion 2

Fig. 3.6. The multiple view approach

3.4 Specification methodology

Formal description, comparison, and construction of methods and techniques for
systems development are the main goals of the method engineering community
[19]. Meta-models of the development process are also called ‘meta-process mo d-
els ’, and meta-models of the development products, or deliverables, are called
‘meta-data models ’ (in this chapter we call these just ‘meta-models’). Some well
known approaches to the method engineering are: ISO/IEC 12207 [22], OPEN
[15] and PIE [8].

The act of defining our own specification methodology is called ‘situational
method engineering’ [44] and it is in this context that it is important to take into
consideration the following three key issues [39]: specification language, com-
plexity control, and model continuity.

3.4.1 Specification language

Specification languages must allow the representation of a particular system
view, without ambiguities. This is the main purpose of specification languages and
their relation with the meta-models has already been discussed. Additionally,
specification languages must offer support for analyzing and reasoning about the
specification. The available analysis mechanisms depend on the specification lan-
guage itself. However, there are essentially two different kinds of mechanisms:
formal analysis and specification execution. Formal analysis is important to verify
if a specification is incoherent, but its existence is only possible if the specification
language owns a solid mathematical base. Executable specifications allow an early
testing of system prototypes for requirements validation, rendering a more robust
and understandable specification process.

3.4.2 Complexity control

The control of the complexity of the specification process can be carried out
within two different dimensions: representational complexity and development
comple xity. The complexity of a system does not only depend on the cardinality
of its parts, but mainly on the way its parts interact among them; see fig. 3.7,
where systems are represented by circles and interactions by arrows.

The first dimension of complexity control refers to the representational com-
plexity. It essentially depends on the specification language and, if correctly man-
aged, permits concise and comprehensible specifications to be obtained. Comple x-
ity control at the representation level can be achieved by making use of three
different techniques: hierarchy, orthogonality, and representation scheme. Devel-
opers must be able to decide the appropriate abstraction level to be used. Typi-
cally, the adoption of higher levels of abstraction improves the understanding of
the system as a whole, while details are being hidden.

1 3 6 n.(n -1)/2

Fig. 3.7. Complexity

Model hierarchization corresponds to grouping similar (structural or behavioral)
system parts together into a new element that represents the group; see fig. 3.8.
Model orthogonalization consists in describing a set of system behaviors inde-
pendently fro m each other (whenever possible). In what concerns the representa-
tion scheme, complexity control effort can decide either for textual representations
or for graphical representations. Graphical representation schemes imply visual
formalisms where both syntactic and semantic interpretations are assigned to
graphical entities. Graphical approaches are usually easier to understand than tex-
tual ones and thus improve the readability and the understandability of system
view. UML adopts a graphical approach.

The second dimension of complexity control (development complexity) refers to
the control of the evolution of the system specification from initial conceptualiza-
tion of requirements. This control can be accomplished by deferring certain details
to the next phases of system development and by adopting different specification
evolutions throughout the specification process (top-down, bottom-up or mid-
dle-out).

Fig. 3.8. Abstraction levels

3.4.3 Model continuity

Models obtained in the initial phases of the development must be persistent,
avoiding their rewriting at each step. To support design and implementation meth-
odologies, this model continuity concern must assure conformity in models evolu-
tion throughout the whole development process. This is possible by allowing
models to be refined through the inclusion of new behavioral and structural attrib-
utes acquired along the design and implementation phases; see fig. 3.9.

 design requirements implementation analysis

system

Fig. 3.9. Model continuity

The first model must be independent of implementation, allowing developers to
focus in the system behavioral modeling. When constructing the first specifica-
tion, design or implementation decisions and unnecessary restrictions should be
avoid. Within a full model continuity approach, it is desirable that the automatic
synthesis of the solution is completely based on the system specification. This
synthesis technique, carried out at the system-level, is not yet sufficiently efficient.
It is usually based on the structural characteristics of the specifications and it has
the disadvantage of limiting the design space exploration, generating non-optimal
solutions for system implementation.

3.4.4 Non-functional requirements

Non-functional requirements limit the design space exploration, since they typi-
cally impose, at early stages of development, particular design and implementation
solutions. This kind of requirements can be classified into three different groups:
design objectives, design decisions, and design constraints.

Design objectives are related to general requirements of qualitative system per-
formance. Typical design objectives appear in the form of “it must be as fast as

possible”, “it must be cheap” or “it must be easy to adapt”. Although, these design
objectives are not really requirements, they can be transformed into design con-
straints, if some metrics can be devised. Otherwise, design objectives should only
be used to select amongst functional equivalent alternatives, when there is no
firmer criterion for the decision; see chapter 12 for further details on decision sup-
port in requirements engineering.

Design decisions can be related, for example, to the inclusion of the system in a
given family of commercial products or with the incorporation into a bigger prod-
uct. These non-functional requirements can affect the technological decisions or
interfere with the functionality of the system, so they should always be questioned
and justified. UML’s OCL (Object Constraint Language) can be used to describe
architectural or functional design decisions.

Design constraints include, for example, performance, reliability, cost and size.
Timing requirements can be classified as reply time, repetition rate and correlation
time. This kind of non-functional decisions is , typically, quantifiable and syntacti-
cally incorporated in the system models as tagged values or object stamps. UML’s
sequence diagrams can support the inscription of timing and performance re-
quirements.

In [7, 36] non-functional requirements are thoroughly treated both on how to
discover and on how to specify them.

3.5 Requirements transformation

The problem of obtaining system requirements models from user requirements
that can be directly used within the design phase is not simple and easy and faces
several difficulties [26]. Generically, it involves several decisions that can not be
made by a method or a tool, due to the natural discontinuity between functional
and structural models. Holland and Lieberherr consider that the identification of
objects and the description of the relationships between them are two of the three
challenges of object oriented design in the construction of object oriented models
[20].

There are many authors that propose solutions to tackle this problem, namely by
guiding the transformation of use case models into object/class models [2, 3, 23,
37]. Some approaches [30, 38] propose a use case rationale based on goal identifi-
cation and can be used to better support the transition for the architectural design
issues. However, they lack an explicit scenario framework for capturing the se-
mantic intentionality of each use case. This could be incorporated by adopting
some scenario-based requirements engineering techniques, such as those sug-
gested in [43, 45]. See chapter 5 for further details on requirements interdepend-
encies.

In this section, we describe an approach for defining the system objects based
on use cases and their respective textual descriptions. The strategy uses the object
categories (interface, data and control) defined in [23] and incorporates some
mechanisms that allow each object to be related to the use cases that gave origin to

it. Due to the relatively weak support of UML 1.5 to component-based design,
UML object concept was chosen to represent system-level entities or components.
UML 2.0 was not used here since its final approval as an ISO standard was not
taken at the time we finished the writing of this chapter.

3.5.1 User requirements modeling

The identification of the system components requires the definition of a model
to capture the system functionalities offered to its users. Use cases are one of the
most suitable techniques for that purpose, since they are simple and easy-to-read.
In fact, they only include three main concepts (use cases, actors and relations).
This low number of concepts is a fundamental characteristic for involving
non-technical stakeholders in the requirements capture process.

Although use cases are used in several object oriented projects, they do not hold
any intrinsic characteristic that can be classified as ‘pure’ object oriented. How-
ever, there is a large consensus on the recognition that use cases are a proper tech-
nique for object oriented projects [4], namely for discovering (and later specify-
ing) the behavior of the system, during the analysis phase. This is also highlighted
by the fact that use cases are part of UML. Thus, adopting use cases for user
requirements is undoubtedly a valid technique, but poses the problem related to
the transformation of use cases into objects or components.

The requirements for the case study used in this chapter were acquired using re-
quirements engineering techniques, and the end-result was a collection of artifacts,
including UML diagrams. Some of the artifacts are presented in figs. 3.10-11.

After identifying all the use cases of the system, the next step is to describe their
behavior. There are some alternatives for describing use cases, namely informal
text, numbered steps with pre- and post-conditions, pseudo-code and activity dia-
grams [40]. As an example, the description of the top-level use case {U0a.1} with
informal text is presented next. Similar descriptions were created for the other
top-level use cases .

{U0a.1} send alert: Send domain alert or disseminating domain information to the users in-
forming of domain related events and situations or unexpected domain situations that are
happening in the region. Only users that have previously subscribed this e-service will re-
ceive the alert messages (subscription made via {U0a.4} user profile subscription). This is
an asynchronous e-service. If technically possible, the system acquires user context raw in-
formation (location, time, etc) from external context sources. Also, a contextualization
process will assist the system in making the level of granularity of the information adequate
to the geographic location of the user context (geographic location context, time context
and activity context). Examples: an alert of a dangerous hole in a street should only be sent
to the users geographically located in that street; an alert of a street obstructed should be
sent to the users geographically located in that street or in any of the incident streets; an
alert of weather storm should be sent to all the users in the region. The information associ-
ated to the alert should always be up-to-date and match the user-specific request, excluding
any extra information or undesired advertisements. For those users that require personalized
information, a subscription must be made via {U0a.4} user profile and e-service subscrip-
tion.

Fig. 3.10. UML top level use case diagram according to two orthogonal criteria; top: func-
tionality criterion; bottom: domain criterion

3.5.2 4SRS techni que

Transforming use cases into architectural models representing system require-
ments is a difficult task. A technique called 4SRS (4-step rule set) was proposed to
help on that task in [13]. The 4SRS technique is organized as four steps to trans-
form use cases into objects: object creation (step 1), object elimination (step 2),
object packaging & aggregation (step 3) and object association (step 4).

In step 1 (object creation), each use case must be transformed into three objects
(one interface, one data, and one control). Each object receives the reference of its
respective use case appended with the suffix (i, d, c) that indicates the object’s
category (in this approach, object references start with an ‘O’). This is a fully
‘automatic’ step, since there is no need to any kind of particular decisions or ra-
tionale for the specific context of each use case. From this step on, there are only
objects as design entities. Use cases are still used in the following steps to allow
the introduction of requirements into the object model.

In step 2 (object elimination), it must be decided which of the three objects must
be maintained to fully represent, in computational terms, the use case, taking into
account the whole system and not each use case in isolation. These decisions must
be based on the textual description for each use case. This step aims at deciding
which of the objects created in step 1 must be kept in the object model. It also
eliminates redundancy in the user requirements elicitation and detects missing re-
quirements.

Object elimination is the most important step of the 4SRS technique, since the
definitive system-level entities are decided here. To cope with the complexity of
the step, it has been decomposed into seven micro-steps: use case identification
(micro-step 2i), local elimination (micro-step 2ii), object naming (micro-step 2iii),
object description (micro-step 2iv), object representation (micro-step 2v), global
elimination (micro -step 2vi) and object renaming (micro-step 2vii). The descrip-
tion of these micro-steps is out of the scope of this chapter.

In step 3 (object packaging & aggregation), the remaining objects (those that
were maintained after step 2), for which there is an advantage in being treated in a
unified way, should give origin to aggregations or packages of semantically con-
sistent objects. This step supports the construction of a truly coherent object
model, since it introduces an additional semantic layer at a higher abstraction
level, that works as a ‘functional glue’ for the objects.

Packaging is technique that can introduce a very light semantic cohesion among
the objects. This cohesion can be easily reversed within the design phase, when-
ever needed. This means packaging can be flexibly used to obtain more compre-
hensive and understandable object models.

In the opposite way, aggregation imposes a strong semantic cohesion among the
objects. The level of cohesion in aggregations is more difficult to reverse in sub-
sequent stages, which suggests a more scrupulous approach in using this kind of
functional glue. Thus, aggregation should only be used when it is explicitly as-
sumed that the set of considered objects is affected by a conscious design decision.
Typically, aggregation is used when there is a part of the system that constitutes a
legacy sub-system, or when the design has a pre-defined reference architecture
that constricts the object model.

Step 4 (object association) of the 4SRS technique supports the introduction of
associations in the object model, completely based on the information from the
use case model and generated in micro-step 2i.

Regarding the information in the use case model, if the textual descriptions of
use cases possess hints on the kind of sequences use cases are inserted in, this in-
formation must be used to include associations in the object model.

Alternatively, the use case model can include other kinds of information to sup-
port associations, when there are UML relations between use cases. As an exa m-
ple, use case {U0a.1.1} «uses» use case {U0a.1.2}, which justifies the association be-
tween objects {O0a.1.1.d} and {O0a.1.2.c}, and between objects {O0a.1.1.i} and
{O0a.1.2.d}; see fig. 3.12.

Fig. 3.11. Refinement of UML use case {U0a.1}

3.5.3 System requirements modeling

The system architectural model expresses the system requirements, but also an
informal description of the objects. 4SRS helps to define a logical architecture for
the system, by capturing all its functional requirements and its non-functional
intentions. The former gives origin to textual descriptions for each object in the
model and the later has been classified as design decisions and design constraints.
Design objectives are not allowed at system requirements models generated by the
4SRS technique.

The generated object model shows how significant properties of a system are
distributed across its constituent parts. The 4SRS technique generates a raw object
diagram that identifies the system-level entities, their responsibilities and the rela-
tionships among them. Its purpose is to direct attention at an appropriate decom-
position of the system without delving into details.

Each one of the used packages defines one different decomposition region that
contains several tightly semantically connected objects. Within the next design
phases, these packages must be further specified, in what concerns its architectural
structure, by using design patterns.

The resulting raw object diagram can be used in the following development
phases to support the definition of specific sub-projects, by using collapsing and
filtering techniques. These techniques allow the redefinitions of the system
boundary, giving origin, for instance, to the database project, services formaliza-
tion, or platform pattern analysis. Fig. 3.12 shows the collapsed object diagram
that was obtained from the raw object diagram by hiding packages details. There-
fore, associations appear at a higher level of abstraction and the resulting object
diagram is more nicely readable.

Fig. 3.12. Collapsed UML object diagram representing system requirements

3.6 Conclusion

The correct derivation of system requirements from user requirements is an im-
portant topic in requirements engineering research. This activity assures that the
design phase is based on the effective clients’ needs without any misjudgment ar-
bitrarily introduced by the developers during the process of system requirements

specification. One approach to support this derivation is by transforming user re-
quirements models into system requirements models, by manipulating the corre-
sponding specifications. User requirements are, typically, described in natural lan-
guage and with informal diagrams, at a relatively low level of detail and are
focused in the problem domain. System requirements comprise abstract models of
the system, at a relatively high level of detail, and constitute the first system repre-
sentation to be used at the beginning of the design phase.

This chapter deals with the characteristics of different modeling techniques for
the specification of systems requirements. It presents various classes of modeling
and specification techniques that can be used in different circumstances during
development projects. Here, meta-models play an important role, since they define
the semantic capability of the modeling views to adopt for a given system. The
chapter ends with a brief description of a heuristic-based approach to support the
transformation of user into system requirements. This transformational approach
shows that model continuity is a key issue and highlights the importance of having
a well defined process to relate, map and transform requirements models.

The topics presented in this chapter emphasize the fact that system design is a
highly abstract task that focuses on the functional and non-functional requirements
of computer-based systems. Both system designers and requirements engineers
benefit from a model-based approach to requirements specification to allow the
correct evolution of system representations during development projects.

References

1. Ainsworth M., Cruickshank A.H., Groves L.G., Wallis P.J.L. (1994) Viewpoint Speci-
fication and Z, Information Software Technology, 36: 43-51, February

2. Back R.J., Petre L., Porres I. (1999) Analysing UML Use Cases as Contracts. Beyond
the Standard, 2nd Int. Conf. on the Unified Modeling Language (UML’99), Fort
Collins, CO, USA, pp. 518-33, Lecture Notes in Computer Science 1723, Springer,
Berlin, Germany, October

3. Becker L.B., Pereira C.E., Dias O.P., Teixeira I.M., Teixeira J.P. (2000) MOSYS: A
Methodology for Automatic Object Identification from System Specification. 3rd Int.
Symp. on Object-Oriented Real-Time Distributed Computing (ISORC 2000), Newport
Beach, CA, USA, pp. 198-201, IEEE CS Press, March

4. Booch G. (1996) Best of Booch: Designing Strategies for Object Technology. SIGS,
New York, NY, USA

5. Calvez J.P. (1996) A System Specification Model and Method. In Waxman R., Bergé
J.M., Levia O., Rouillard J. (eds.), High Level System Modeling: Specification and
Design Methodologies. Kluwer Academic, Dordrecht, The Netherlands

6. Chen P.S. (1977) The Entity Relationship Approach to Logical Data Base Design.
Q.E.D. Information Sciences, Wellesley, MA, USA

7. Chung L., Nixon B., Yu E., Mylopoulos J. (2000) Non-Functional Requirements in
Software Engineering. Kluwer Academic, Boston, M A, USA

8. Cunin P.-Y., Greenwood R., Francou L., Robertson I., Warboys B. (2001) The PIE
Methodology: Concept and Application. 8th European Workshop on Software Process
Technology, Witten, Germany, pp. 3-26, Springer-Verlag, Berlin, Germany, June

9. Davis W.S. (1983) Tools and Techniques for Structured Systems Analysis and Design.
Addison-Wesley, Reading, MA, USA

10. De Marco T. (1979) Structured Analysis and System Specification. Yourdon Press,
New York, NY, USA

11. Dori D. (2002) Object-Process Methodology - A Holistic Systems Paradigm, Springer,
Berlin, Germany

12. Fernandes J.M., Lilius J. (2004) Functional and Object-Oriented Views in Embedded
Software Modeling, 11th Int. Conf. on the Engineering of Computer Based Systems
(ECBS 2004), Brno, Czech Rep., pp. 378-87, IEEE CS Press, May

13. Fernandes J.M., Machado R.J. (2001) From Use Cases to Objects: An Industrial In-
formation Systems Case Study Analysis. 7th Int. Conf. on Object-Oriented Informa-
tion Systems (OOIS'01), Calgary, Canada, pp. 319-28, Springer, August

14. Finkelstein A., Kramer J., Nuseibeh B., Finkelstein L., Goedicke M. (1992) View-
points: A Framework for Integrating Multiple Perspectives in System Development.
Int. Journal of Software Engineering and Knowledge Engineering, 2: 31-57, March

15. Firesmith D., Henderson-Sellers B. (2002) The OPEN Process Framework: An Intro-
duction. Addison-Wesley, Harlow, UK

16. Gajski D., Dutt N., Wu A., Lin S. (1992) High Level Synthesis: Introduction to Chip
and System Design, Kluwer Academic, Boston, MA, USA

17. Gajski D., Vahid F., Narayan S., Gong J. (1994) Specification and Design of Embed-
ded Systems. Prentice Hall, Englewood Cliffs, NJ, USA

18. Harel D. (1988) On Visual Formalisms. Communications of the ACM, 31(5): 514-30
19. Henderson–Sellers B. (2003) Method Engineering for OO Systems Development.

Communications of the ACM, 46(10): 73-8
20. Holland I.M., Lieberherr K.J. (1996) Object-Oriented Design. ACM Computing Sur-

veys, 28(1): 273-5
21. IEEE (1990) IEEE Standard Glossary of Software Engineering Terminology, 610.12-

1990
22. International Standards Organization (1995) Information Technology: Software Life-

cycle Processes (ISO/IEC12207). Geneva, Switzerland
23. Jacobson I., Christerson M., Jonsson P., Overgaard G.Ä. (1992) Object-Oriented

Software Engineering: A Use Case Driven Approach. Addison-Wesley, Reading, MA,
USA

24. Jensen K. (1997) Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-
cal Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science,
Springer, New York, NY, USA

25. Jensen K., Christensen S., Huber P., Holla M. (1992) Design/CPN: A Reference Man-
ual. MetaSoftware Corporation

26. Kaindl H. (1999) Difficulties in the Transition from OO Analysis to Design. IEEE
Software, 16(5): 94-102

27. Kotonya G., Sommerville I. (1992) Viewpoints for Requirements Definition. Software
Engineering Journal, 7(6): 375-87, November

28. Lakos C., Keen C. (1994) LOOPN++: A New Language for Object Oriented Petri
Nets. European Simulation Multiconference, Barcelona, Spain, pp. 369-74, Society for
Computer Simulation

29. Leite J.C.S.P., Freeman P.A. (1991) Requirements Validation Through Viewpoint
Resolution, IEEE Trans. on Software Engineering, 12(12): 1253-69, December

30. Liang Y. (2003) From Use Cases to Classes: a Way of Building Object Model with
UML. Information and Software Technology, 45: 83-93

31. Machado R.J., Fernandes J.M. (2001) A Petri Net Meta-Model to Develop Software
Components for Embedded Systems. 2nd IEEE Int. Conf. on Application of Concur-
rency to System Design (ACSD’01), Newcastle, UK, pp. 113-22, IEEE CS Press, June

32. Moore E.F. (1964) Sequential Machines: Selected Papers. Addison-Wesley, Reading,
MA, USA

33. Narayan S., Vahid F., Gajski D. (1991) System Specification and Synthesis with the
SpecCharts Language. Int. Conf. on Computer-Aided Design (ICCAD ’91), Santa
Clara, CA, USA, pp. 266-9, IEEE CS Press, November

34. Peterson J. (1981) Petri Net Theory and the Modeling of Systems. Prentice Hall, Up-
per Saddle River, NJ, USA

35. Reisig W. (1985) Petri Nets: An Introduction, EATCS Monographs on Theoretical
Computer Science, vol. 4, Springer, Berlin, Germany

36. Robertson S., Robertson J. (1999) Mastering the Requirements Process, Addison
Wesley, Reading, MA, USA

37. Rosenberg D., Scott K. (1999) Use Case Driven Object Modeling with UML: A Prac-
tical Approach. Addison-Wesley, Reading, MA, USA

38. Saeki M., Kaiya H. (2003) Transformation Based Approach for Weaving Use Case
Models in Aspect-Oriented Requirements Analysis. 4th Workshop on AOSD Model-
ing with UML, within the UML 2003 Conference, San Francisco, CA, USA, October

39. Sarkar A., Waxman R., Cohoon J. (1995) Specification Modeling Methodologi es for
Reactive Systems Design. In Bergé J.M., Levia O., Rouillard J. (eds.), High Level
System Modeling: Specification Languages. Kluwer Academic, Dordrecht, The Net h-
erlands

40. Schneider G., Winters J.P. (1998) Applying Use Cases: A Practical Guide. Addi-
son-Wesley, Reading, MA, USA

41. Stevens R., Brook P., Jackson K., Arnold S. (1998) Systems Engineering: Coping with
Complexity. Prentice Hall Europe, Hertfordshire, UK

42. Sutcliffe A. (1988) Jackson System Development. Prentice Hall, Hertfordshire, UK
43. Sutcliffe A., Maiden M., Minocha S., Manuel D. (1998) Supporting Scenario-Based

Requirements Engineering. IEEE Trans. on Software Engineering, 24(12): 1072-88
44. ter Hofstede A.H.M., Verhoef T.F. (1997) On the Feasibility of Situational Method

Engineering. Information Systems, 22(6/7): 401-22
45. van Lamsweerde A., Willemet L. (1998) Inferring Declarative Requirements Specifi-

cations from Operational Scenarios. IEEE Trans. on Software Engineering, 24(12):
1089-114

46. Yourdon E., Constantine L. (1978) Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Yourdon Press, New York, NY, USA

Author Biography

Ricardo J. Machado is an assistant professor of Software Engineering and coordi-
nator of the Software Engineering and Management Research Group (SEMAG) at
the Department of Information Systems, Universidade do Minho (Guimarães, Por-
tugal). He holds a PhD and an MSc degrees in Informatics and Computer Engi-
neering (both from U.Minho), and a DEng degree in Electronics and Computer

Engineering (from FEUP). He is the president of the Portuguese technical commit-
tee responsible for analyzing the documents produced by JTC1/SC7 from ISO/IEC
and by TC311 from CEN/CENELEC in the software and system engineering do-
main, and he is one of the founding members of IFIP WG10.3 SIG-ES special in-
terest group. He is a regular scientific reviewer of IEEE Transactions on CAD and
IEEE Transactions on Software Engineering. He acted as general chair of
ACSD’03 conference, as co-organizer of MOMPES series workshops, and has
been appointed as general chair of DIPES’06 conference. He has also served as a
PC member of ETFA’03, ACSD’03/’04/’05, MOMPES’04, and INDIN’05. His
current research interests include software engineering, embedded software, and
pervasive information systems. For more information, consult his website at
http://www.dsi.uminho.pt/~rmac.

Isabel Ramos holds a doctorate degree in Information Technologies and Systems,
specialization in Information Systems Engineering and Management, since 2001.
She also holds a master degree in Informatics for management. Isabel Ramos is an
assistant professor at the Department of Information Systems, Universidade do
Minho (Guimarães, Portugal). She is a researcher in the Algoritmi Research Cen-
ter. She coordinates the interest group in Knowledge Management of the depart-
ment. She is responsible for the Requirements Engineering modules in the Master
course on Information Systems. She integrates the steering committee of a Master
on Business Information. Isabel is author of several scientific publications pre-
sented at international conferences and published in scientific and technical jour-
nals. Her main areas of interest are requirements engineering, knowledge man-
agement, organizational theory, sociology of knowledge, history of science,
research methodology. For more information, consult her website at
http://www.dsi.uminho.pt/~iramos.

João M. Fernandes is an assistant professor at the Department of Informatics, Uni-
versidade do Minho (Braga, Portugal). He received a DEng degree in Informatics
and Systems Engineering in 1991, a MSc degree in Computer Science in 1994,
and a PhD degree in Computer Engineering in 2000, all from U.Minho. From
Sep/2002 until Feb/2003, he was a post-doctoral researcher at the TUCS Embed-
ded Systems Laboratory (Turku, Finland). He is a (co-)author of several scientific
publications with peer revision on international conferences, journals and chapters
of books. He has already served as a scientific reviewer for an Addison-Wesley
book, for several international conferences, and for IEEE, Elsevier, and Springer
international journals. He has also served as a member of the Programme and Or-
ganizing Committees of international workshops and conferences, namely DSOA
2004, CPN 2004, MOMPES 2004, ETFA 2003, and ACSD 2003. His research in-
terests focus on embedded software, hardware/software co-design, methodologies
for system development, software modeling, software process and management,
and history of computing. For more information, consult his website at
http://www.di.uminho.pt/~jmf.

