

Integration of Embedded Software with Corporate
Information Systems ∗

Ricardo J. Machado, João M. Fernandes
Dept. Sistemas de Informação & Dept. Informática
Universidade do Minho, PORTUGAL

Abstract: This paper describes a methodology and corresponding tools to support the
development of information systems, by integrating and interconnecting a
network of embedded devices, that supervise processes in industrial
environments, with the corporate information system of an organization. We
discuss in detail how the LabVIEW environment was customized, so that it
effectively supports a component-based and data-flow approach in the
development of the gateway responsible for the integration.

Key words: integration of embedded software, design methodology, network and
communication systems, system architectures

1. INTRODUCTION

Nowadays, internet makes electronic commerce and electronic business a
reality. Therefore, organizations are starting to base their logistic processes
in the internet, in an attempt to guarantee a continuous satisfaction to their
clients. However, the industrial organizations still feel that the organizational
supporting processes do not include their true business, which are the
production of goods and services [1].

This new reality forces an important re-structuring on the organizations
and gives rise to the need of supporting and controlling the information of
their production processes, especially in real-time, anywhere, and at any
level of management [2].

∗ This work has been supported by projects STACOS (POSI/CHS/48875/2002) and

METHODES (POSI/CHS/37334/2001)

2 Ricardo J. Machado, João M. Fernandes

The integration of real-time shop-floor applications , which we designate
industrial control-based information systems (ICIS), with the corporate, or
management, information system (MIS) is currently a question of survival
for any industrial organization that is dependent on the information and
communicant technologies. The typical network topology of the final
MIS+ICIS solution is presented in fig. 1, where two distinct “zones” can be
identified: (1) the first one corresponds to the shop-floor network supporting
the ICIS implementation (in our approach, a CAN network of several
embedded devices and one gateway executing LabVIEW software); (2) the
second one corresponds to the Ethernet network supporting the MIS
implementation by using typical ERP (enterprise resource planning) and
POS (plant operations system) software.

Figure 1 - Network topology for typical MIS+ICIS solutions.

Integration of Embedded Software with Corporate Information Systems 3

Monitoring and supervision of industrial processes require huge
investments in technical solutions based on real-time embedded
technologies, especially developed to interconnect the production
equipments with the MIS applications . To make CIM (computer integrated
manufacturing) [3] an effective reality for an organization, without
dependencies from proprietary solutions , we need to fill the gap that exists
between the MIS and the ICIS technologies [4].

CIM levels integration have already been handled by the definition of
specific industrial communications protocols, namely MAP (manufacturing
automation protocol), TOP (technical and office protocol) and MMS
(manufacturing message specification). However, the same degree of
sophistication was not yet achieved for the applications, which are crucial to
feed MIS with truly relevant information flows.

In this context, we have witnessed the relatively low success of the
SCADA (supervision, control, automation and data acquisition) applications,
due mainly to their low degree of flexibility, whose main examples are
WINCC, INTOUCH, and BridgeVIEW. It is important to notice that the
CIM levels 0 and 1 are well supported in what concerns the physical control
of industrial processes, since industrial equipments usually embed a control
system to make their operation more automatic. Thus, the “big” problems are
on the systems that monitor and supervise processes and equipments.

Even recent efforts on the definition of standards [5], technologies [6]
and methodological frameworks [7] to support the enterprise application
integration [8] have failed to support the specific characteristics of industrial
information systems. These approaches have not been able to support the
design of middleware capable of filling the semantic gap amongst MIS and
ICIS.

Under these circumstances, it seems clear that we need technical
solutions to easily interconnect the lower CIM levels (0 to 2) with the higher
ones (3 and 4). These solutions must necessarily use real-time embedded
(and eventually distributed) systems to manage the information flow among
the lower CIM levels, and also between these ones and the higher levels [9].

The strategies for the technological integration of MIS and ICIS must
also take into consideration that the differences between those two types of
information systems can be classified in four groups [10]:
(1) temporal, since a MIS handles time scales that typically are within the

days or weeks (in some cases, months or even years are also common),
while a ICIS must work with time frames that are measured in seconds
or even in milliseconds;

(2) informational, since for a MIS the information is handled under the
transactional semantics, while a ICIS is typically described under a
event-driven model of computation;

4 Ricardo J. Machado, João M. Fernandes

(3) operational, because a MIS directly supports operations of planning and

scheduling of the production process and a ICIS supports the control and
the supervision of the industrial equipments;

(4) cultural, since a MIS is oriented towards the organizational business,
whilst a ICIS focuses on the industrial processes.

2. SOFTWARE ENGINEERING WITH LABVIEW

Allowing non-technical persons to be able to program is becoming not
only advantageous but also needed, taking into account the constant changes
in requirements and the scarceness of programmers to handle all applications
[11]. Therefore, anyone could program a small application according to his
own needs and requirements, without the need to follow a software
engineering process. This is already a reality for spreadsheets, for example,
since anyone (namely those without a computer engineering background)
can create his tables and introduce his formulas without knowing the details
of the computational engine that is hidden by the graphical interface. This
does not happen, in any sense, in the case of embedded systems, with respect
to the development activities. However, the use of the LabVIEW tool allows
the integrations of physical modules (hardware) and algorithmic modules
(VIs - LabVIEW virtual instruments) and increases the abstraction level
[12]. This permit the development of components (VIs and virtual models of
hardware) with a clear separation between their interface and
implementation [13], to directly support the construction of solutions at the
system-level and following a component-based design approach.

An important aspect that must be taken into account is to study how
adequate is the LabVIEW specification language to the specific working
area where the environment is being used. Thus, we need to reinterpret the
way applications are to be developed through the definition of the language
subset to be used and to produce of a set of guidelines that constitute an
architectural reference for developing applications .

One of the main differences that LabVIEW presents with respect to the
conventional textual languages is that it follows a data-oriented paradigm
(data-flow and data-driven), in the sense that the execution of the programs
is controlled by the availability of data and their flow. Thus, the results of
the computations (data tokens) are directly transported between instructions,
and the data items produced by an instruction are replicated to feed all the
instructions that further need them to continue the computational flow. This
approach is completely the opposite of the traditional model of computation,
known as von Neumann, where the execution of a program is controlled by
the sequence of instructions written by the programmer (control-driven).

Integration of Embedded Software with Corporate Information Systems 5

In LabVIEW, the data-flow approach is mainly reflected on the
specification of:
(1) parallelism (concurrency), since it is inherent to the data-flow and is

frequently independent of the structural replication of the control units;
(2) reactions of the asynchronous events, since it is often needed to take into

consideration the computational context where the event occurs;
(3) hierarchy, since the violation of the hierarchical levels and the

termination of activities on computational sub-levels put some
difficulties in the gateway design.

We must reinforce the idea that in data-driven programming the data
semantics is stronger than in control-driven programming, since there is a
direct rela tion between its availability and an implicit control over the flow
of computational execution. In data-driven approach, this execution is
typically concurrent and asynchronous in contrast with sequential and
synchronous execution of the traditional control-driven programming.

3. GATEWAY DESIGN

To adapt the LabVIEW platform as the development environment for the
gateway, responsible for the integration of the MIS and the embedded
devices, the tasks next described have been undertaken by the authors.

3.1 Virtual Modeling

The virtual models of the embedded devices must be created in
LabVIEW through the implementation of VIs that possess: (1) an interface
that contains all the attributes previously formalized through an interface
schematics; (2) an implementation that ensures the electronic and run-time
access to the corresponding device.

Fig. 2 illustrates an example of the LabVIEW virtual model of an
embedded device, as well as the internal attributes that belong to the device
access interface. The access to the attributes of an embedded device is
accomplished through unbundle constructors.

3.2 Access to the Embedded Devices

To assure the electronic and run-time access to the embedded devices in
LabVIEW, it is necessary to build a thread in Windows OS, independent of
the thread executing the algorithms of the final solut ion. This new thread
aims to multiplex the single physical access to the industrial network (CAN
server). The implementation of this CAN server is based on the construction

6 Ricardo J. Machado, João M. Fernandes

of a bi-directional queuing system that guarantees the storage and
forwarding of the data packets sent from a virtual model to its corresponding
embedded device and vice-versa.

This thread is needed, since several embedded devices may be connected
to the network, and consequently the corresponding virtual models will be
used, potentially in parallel, by the application in LabVIEW.

Figure 2 - Virtual model of an embedded device and the “unbundle” of some
attributes.

The communication between the LabVIEW application and the
embedded devices requires the definition of a communication protocol that
implements a layer of services on top of the CAN protocol (VAP) to ease the
end-to-end transport of information. This protocol also provides a set of
communication services, such as send attributes (putData()), send
immediately attributes (putDataNow()), ask attributtes (getData()), ask recent
attributes (getFreshData()), parameterize embedded devices, and announce
the arrival of new embedded devices (see [14] for more details).

The definition of the VAP protocol followed some of the techniques
typically adopted in group communications [15], by using a network of
embedded devices that support:
(1) redundancy of embedded devices to permit fault-tolerance;
(2) usage of time stamps in all attributes of the embedded devices;
(3) uniform treatment of a set of embedded devices that handle similar

messages (broadcast and multicast communication), both as consumers
and producers;

some attributes

virtual model

Integration of Embedded Software with Corporate Information Systems 7

(4) dynamic management of computational resources connected at any time

to the network.
In this last topic, it is important to highlight the fact that the connection

(or disconnection) of a “new” embedded device is automatically detected by
the gateway, behaving as the group server. This implements a truly
plug & play technology for embedded devices, seen as dynamic components
of the distributed system.

3.3 Library of components

To ease on the development of the gateway, a library of components
(VIs) was implemented. This library includes several VIs, which are grouped
in the following categories:
(1) communication with the CAN network to send and receive data packets;
(2) interaction with structured documents, typically stored in databases,

using SQL (structured query language) commands;
(3) sending and reception of SMTP mail messages;
(4) sending and reception of SMS messages to and from entities connected

to GSM (global system for mobile communications) networks;
(5) virtual modeling of embedded devices to use in the construction of the

gateway software.

3.4 Architecture of the gateway software

The software of the gateway must be developed according to
well-defined architectural patterns; such as the multi-level ICIS pattern [14].
Apart from that, the gateway software must be structured into the following
units:
(1) declaration, where all the embedded and I/O devices that integrate the

final solution must be declared (fig. 3);
(2) initialization, where some communication services to be used in the final

solution are initialized (fig. 4);
(3) parameterization, where the VIs corresponding to the embedded devices

of the final solution are parameterized (fig. 5);
(4) interconnection, where the final solution is developed at the algorithmic

point of view (fig. 6).
Some of the interconnection mechanisms between the four

aforementioned structural units of the gateway software may be
automatically inserted at the very beginning of the development, if the
designers use explicitly a LabVIEW wizard developed by the authors to
supports this task.

8 Ricardo J. Machado, João M. Fernandes

Figure 3 - Declaration of the embedded and I/O devices.

Figure 4 - Initialization of the communication services.

1.1.1.1 ender

access to CAN server

physical addresses of the embedded devices

I/O registrations

Integration of Embedded Software with Corporate Information Systems 9

Figure 5 - Parameterization of the virtual models of the embedded devices.

Figure 6 - Interconnection of the MIS with the embedded devices.

4. CONCLUSIONS

The implementation of industrial information systems demands the
integration of the industrial networks of embedded devices that supervise the
industrial equipments and processes, with the corporate information systems.
This integration can be executed at the application level, by developing a

attributes

industrial

process

reference

attributes inicialization

embedded devices

virtual models

infinite loop control

10 Ricardo J. Machado, João M. Fernandes

semantic gateway capable of dealing with the temporal, informational,
operational and cultural gaps between the ICIS and the MIS “zones” of the
industrial information systems.

It is possible to implement the semantic gateway in the LabVIEW
environment by extending its platform to support the virtual modeling of the
embedded devices, as well as their run-time access. Additionally, the
gateway design flow must support the declaration of the embedded and I/O
devices, the initialization of the communication services, the
parameterization of the virtual models of the embedded devices and the
logically interconnection of the MIS with the embedded devices.

5. REFERENCES

[1] A. W. Sheer, Business Process Engineering: Reference Models for Industrial Enterprises,
Springer-Verlag, 2nd edition, 1994.

[2] The New Productivity Factor, LIPRO Holding AG, 1999.
[3] J. B. Waldner, CIM: Principles of Computer-Integrated Manufacturing, John Wiley &

Sons, 1992.
[4] B. Scholz-Reiter, CIM Interfaces: Concepts, Standards and Problems of Interfaces in

Computer Integrated Manufacturing, Chapman & Hall, 1992.
[5] EIA-836 standard for CM Data Exchange and Interoperability, EIA, June, 2002.
[6] R. Zahavi, Enterprise Application Integration with CORBA, John Wiley & Sons, 1999.
[7] UML Profile and Interchange Models for Enterprise Application Integration, OMG, 2001.
[8] D. Linthicum, Next Generation Application Integration – From Simple Information to

Web Services, Addison-Wesley, 2002.
[9] R. J. Machado, J. M . Fernandes, Heterogeneous Information Systems Integration:

Organizations and Methodologies, PROFES’02, pp. 629-643, M. Oivo, S. K. Sirviö
(editors), LNCS 2559, Springer-Verlag, 2002.

[10] R. R. Derynck, T. Hutchinson, Integrating Real-Time Systems with Corporate
Information Systems, The Hewlett Packard Journal, vol. 50, no. 1, pp. 26-28, November,
1998.

[11] T. Williams, Object-Oriented Methods Transform Real-Time Programming, Computer
Design, pp. 101-118, September, 1992.

[12] J. Jehander, Graphical Object -Oriented Programming in LabVIEW, Application Number
no. 143, National Instruments, October, 1999.

[13] R. J. Machado, J. M. Fernandes, A Petri Net Meta-Model to Develop Software
Components for Embedded Systems, ACSD'01, pp. 113-122, IEEE CS Press, 2001.

[14] R. J. Machado, J. M . Fernandes, A Multi-level Design Pattern for Embedded Software,
DIPES 2004, pp. 247-256, B. Kleinjohann, G. R. Gao, H. Kopetz, L. Kleinjohann,
A. Rettberg (editors), Kluwer AP, 2004.

[15] K. P. Birman, The Process Group Approach to Reliable Distributed Computing,
Communications of the ACM, vol. 36, pp. 36-53, December, 1993.

