
Extending UML 2.0 Metamodel for Complementary Usages of the «extend»
Relationship within Use Case Variability Specification

Alexandre Bragança1 and Ricardo J. Machado2

1 Dep. Eng. Informática, ISEP, IPP, Porto, Portugal,
alex@dei.isep.ipp.pt

2 Dep. Sistemas de Informação, Universidade do Minho, Guimarães, Portugal,
rmac@dsi.uminho.pt

Abstract

Software product lines and related approaches, like
software factories, are starting to capture the attention
of the industry practitioners. Nevertheless, their
adoption outside the research community and big
companies is still very restricted. We believe that
model-driven approaches, like OMG’s MDA, with
proper tool support, can bring the advantages of
product lines to a broader audience. For this to
become a reality, model-driven methods should
integrate requirements models into the software
development process. In this paper, we discuss the
semantics of use case relationships and their
formalization using activity diagrams to support
variability specification. Particularly, we propose an
extension to the «extend» relationship that supports the
adoption of UML 2.0 use case diagrams into model-
driven methods. Our proposal results from our work
with 4SRS (4 Step Rule Set), a model-driven method in
which use cases are the central model for requirements
specification and model transformation.

1. Introduction

Software product lines enable high productivity
levels in software development through proactive intra-
organizational reuse. Nonetheless, such approaches
imply relative demanding methods and, as such, are
difficult to implement in small and medium sized
companies. Model-driven approaches promise to
facilitate the adoption of these demanding methods
because they provide high levels of automation. One
well known example of such fusion of approaches is
the Microsoft software factories initiative [1].

Requirements and analysis are crucial activities of
all software development processes. In the case of

product lines, their importance is higher because they
guide the design of the reference architecture of the
product line and all the other common artifacts. As
such, model-driven engineering approaches for product
lines should integrate models of these phases.

To fully integrate requirements into model-driven
approaches the requirement model has to be
formalized. In the case of UML 2.0 this means the
formalization of use cases. In product lines, a vital
concern is the specification of variability. Figure 1
presents types of alternatives (variability in action
flows) that are common in the textual description of
use cases. The UML 2.0 use cases metamodel does not
support all these types of alternatives. This paper
addresses this limitation and proposes an extension to
the UML 2.0 metamodel to support model-driven
methods with such requirements for variability
modeling. For the formalization of the behavior of use
cases we propose the adoption of activity diagrams.
We used the UML 2.0 specification as described in [2].

The findings presented in this paper result from our
work on the integration of requirement models into a
model-driven method called 4SRS (4 Step Rule Set)[3].
The initial goal of 4SRS was to provide a method to
help analysts and designers develop large object-
oriented systems through the use of models and rules
for model transformation.

In previous works we have presented the first
experimental results of adapting the method for
explicitly handle variability [4]. In this paper we
complement our previous work by addressing the
formalization of UML 2.0 use cases by extending its
metamodel. Our work on 4SRS also addresses the
transformation of these new use case models into
components and classes, i.e., moving from the problem
domain to the solution domain. Nonetheless, this issue
is out of the scope of this paper.

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

Figure 1. Types of alternative sequences of actions in use cases

The paper is structured as follows. The next section
is dedicated to analyze the semantics of the major use
case model elements regarding variability support and
briefly describes our approach to specify behavior
variability in use cases. In section 3 we present our
proposal to the extension of the use case metamodel
and how to formalize use case behavior through
activity diagrams. In Section 4 we conclude.

2. Use Case Relationships

Regarding use cases, and according to the UML 2.0
metamodel, it is clear that in UML 2.0 only the extend
relationship can be used to model variability.
Nevertheless, other approaches have been proposed.
For instance, Gomaa proposes that the include
relationship can be used to model optional use cases in
product lines [5]. In this paper we will only address
variability in use cases through the extend relationship.

When developing software product lines, features
and feature diagrams are also commonly used to model
variability. Features represent user-visible aspects or
characteristics of a domain [6]. When they represent
functional characteristics of a product line they can be
related to use cases. Usually a feature can be modeled
by one or more use cases [5, 7]. Although the 4SRS
method also integrates features diagrams, this paper
does not address the relation between use cases and
features.

Usually use cases are described in natural language.
In fact, there is a pattern for the textual description of
use cases that is generally accepted by practitioners [8].
In this pattern, use cases are composed by sequences of
steps, or actions. There is usually one main sequence
and many alternative sequences. There are five types of
alternative sequences: conditional insertion; use case
exception; alternative history, alternative part and
alternative cycle [9]. Figure 1 presents a graphical
representation of the possible sequence alternatives.

Use case Renew Loan:
- Main flow:
1. The Librarian enters the renew loan data (user ID and
 Item ID)
2. The system retrieves loan info
3. The loan info is displayed to the librarian
4. The system retrieves item info «extension point»
5. The system renews the loan «extension point»
Use case ends

- Alternative flows:
2a. Loan does no exist (after step 2)
 2a1. The system displays a message to librarian
 Use case ends
3a. A fine is due (after step 3)
 3a1. The librarian collects the fine «extension point»
 Use case rejoins (before step 4)
 Alternative flows:
 3a1a The fine is not totally paid (after step 3a1)
 3a1a1. The system displays a message to the librarian
 Use case ends
4a. The item is reserved (after step 4)
 4a1. The system displays a message to the librarian
 Use case ends

Figure 2. Excerpt of use case Renew Loan

An alternative insertion (Figure 1a) is used to
represent conditional behavior that is inserted into a
precise point (extension point) of a flow. In this case
the insertion point is coincident with the rejoin point,
i.e., at the end of the alternative behavior the flow
rejoins the main flow at the initial extension point. This
is very similar to an include relationship with a
condition of insertion. Alternative insertions can be
easily modeled by extend relationships because the
extension point and the rejoin point are coincident. In
contrast, the other types of alternatives (alternative
history, use case exception, alternative fragment and
alternative cycle) are not directly supported by the
UML 2.0 use case metamodel (see Figure 1). This is an
important limitation since in practice it is not so

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

unusual for extensions to have flows that are diverse
from that of an alternative insertion.

Use case Handle Gold Member:
- Main flow: <empty>

- Alternative flows (Extension flows):
1. Handle Renew Loan
 Condition: MemberType=GoldMember
 1a. Handle Collect Fine
 (before Librarian collects the fine):
 1a1. If fine<member fee Rejoin base use case
 (before Retrieve item info).
 Rejoin base use case (before Librarian collects the fine).
 1b. Handle Borrow Rule
 (after Retrieve item info):
 1b1. If Item Reserved by non-gold member Rejoin
 base use case (before Renew loan)
 1b2. Display a message to the librarian
 Base use case ends
Referenced Extension Points:
-Librarian collects the fine:
 Renew Loan.The librarian collects the fine
-Retrieve item info:
 Renew Loan.The system retrives item info
-Renew loan: Renew Loan.The system renews the loan

Figure 3. Excerpt of use case Handle Gold Member

Lets consider the example of a library system and
two use cases of that system, as presented in Figure 2
and Figure 3. In Figure 2 there are 2 types of
alternatives: exceptions (2a, 4a and 3a1a) and
alternative flow (3a). Figure 3 presents an excerpt of
the description of the extending use case Handle Gold
Member. This excerpt contains only the extending
behavior that regards use case Renew Loan. Handle
Gold Member extends Renew Loan and uses the three
extension points defined in Renew Loan. Figure 3
presents common situations that reflect two types of
alternatives that are not adequately handled by the
extend relationship of UML 2.0:

- The extending use case adds conditional behavior
that can result in an alternative flow (1a. Handle
Collect Fine and 1b. Handle Borrow Rule), i.e., there
are rejoin points that do not match the original
extension point;

- The extending use case adds conditional behavior
that can result in an alternative history (1b. Handle
Borrow Rule), i.e., the new behavior can lead to an
alternative ending in the base use case.

As presented, the UML 2.0 metamodel only
supports alternative insertion extensions (Figure 1a).
This represents a major limitation to the modeling of
the diverse variability types that are commonly
specified by textual use cases. In the next section we
present and discuss a proposal of an extension to the
use case metamodel that addresses the modeling
requirements identified in this section.

3. Extending the UML 2.0 Metamodel

In the past, several proposals have been made to
formalize use cases [10-13]. Some recent works also
proposed approaches to manage variability in use cases
in the context of product lines [14, 15]. The main
concern of their authors has been the lack of formalism
of the usual use case text descriptions. Most well
known proposals also regard non-visual languages. In
our specific case we aim at integrating requirements
into a model-driven method. In the context of UML
2.0, the modeling of behavior can be addressed by
activity diagrams, so we have adopted activity
diagrams for modeling use case behavior. Figure 4
presents an excerpt of the UML 2.0 metamodel adapted
(extended) to support our proposal for formalization of
use cases.

Figure 4 presents in gray metamodel elements that
are extensions to UML 2.0. Since, according to UML
2.0 specification, a use case is a specialization of a
BehavioredClassifier, we use the classifierBehavior
and ownedBehavior associations to model,
respectively, the use case main flow and the alternative
flows. We propose a new ExtensionFragment
metaclass to support the issues identified in the
previous section. In our proposed metamodel an extend
relationship can have a condition and make several
extensions to a base use case. Each extension has one
extension location but can have several rejoin
locations. An extension also specifies which behavior
of the extending use case will extend the base use case
in the extension location. Since use case behaviors are
formalized through activity diagrams, extension
locations and rejoin locations refer to elements of type
Action of the corresponding behavior. To clarify if the
extension or the rejoin points are made before or after
the corresponding Action, we propose the attribute
moment in the Location metaclass. We also propose the
new InclusionPoint element only to have a similar
approach in extend and include relationships.

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

Figure 4. Excerpt of proposed metamodel

An InclusionPoint refers to the location where the
behavior is to be included. This location has to refer to
an element of type CallBehaviorAction of the same use
case as the include relationship. It is not necessary to
specify what behavior is to be included because the
semantic of the include is to include the main behavior
(classifierBehavior) of the included use case.

The stereotypes extension_point, inclusion_point,
rejoin_point, before and after are used as a visual aid
to identify more easily the semantics of the actions
nodes of the activity diagrams.

Figure 5 presents the extend relationship between
Renew Loan and Handle Gold Member use cases and

follows our proposal for a default and simplified visual
representation of the extend relationship.

Renew Loan

Handle Gold Member

«extend»

Condition: {Member Type=Gold Member}
Extension: Handle Collect Fine
before Collect Fine

Extension: Handle Borrow Rule
after Get Item Status

extension points
Collect Fine

Get Item Status
Renew Loan

Figure 5. Proposed notation for the extend relationship

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

This visual representation only differs from the actual
notation of UML 2.0 in the contents of the note
attached to the extend relationship, since it reflects the
new ExtensionFragment element of the metamodel
(see Figure 4).

In this section, we have briefly described the major
characteristics of a proposed metamodel to support the
formalization of use case models with the aim of
supporting their integration into model-driven
methods. A complete discussion of the metamodel and
related specifications, such as constraints, is out of the
scope of this paper. These topics will be addressed in a
future publication.

4. Conclusions

A generalized adoption of product line approaches
can only become a reality if supported by model-driven
methods. In order to accomplish this goal, model-
driven methods should incorporate support for all
phases of the software development process, including
requirements. In this paper we have proposed an
extension to the UML 2.0 metamodel in order to
support this goal. Our proposal is based on UML 2.0
use case models and on the previous work of the
authors on a model-driven method called 4SRS. The
actual UML 2.0 metamodel has restrictions regarding
the extend relationship: it only supports alternative
insertions. We have proposed a complementary
extension to the UML2 metamodel since it adds
support for new types of alternative flows.

The formal specification of use cases provides an
effective way to maintain the trace to requirements and
enables model-driven development methods in which
requirements models are first-class citizens. One could
argue that a similar result could be achieved only
through the UML profile extension mechanism. Even
if this could be true, in our opinion, such approach
would not promote the full inclusion of use case
models into model-driven methods. To achieve this
goal we advocate the adoption of metamodeling tools.

As described in the paper, the 4SRS method has
attained a significant maturity level. Nevertheless, the
management of variability truly raises the level of
complexity of model-driven methods. For these
methods to be adopted they must be supported by
public available tools. Our ongoing work is to provide
such support with the GME metamodeling toolkit [16].
We plan on presenting the results of our ongoing work
in the near future.

5. References

[1] Greenfield, J., K. Short, S. Cook, and S. Kent, Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, Wiley, 2004.
[2] OMG/UML, Unified Modeling Language: Superstructure,
OMG, Version 2.0, formal/05-07-04, 2006.
[3] Machado, R.J., J.M. Fernandes, P. Monteiro, and H. Rodrigues,
"On the Transformation of UML Models for Service-Oriented
Software", In ECBS International Conference and Workshop on the
Engineering of Computer Based Systems, Greenbelt, Maryland,
2005.
[4] Bragança, A. and R.J. Machado, "Deriving Software Product
Line's Architectural Requirements from Use Cases: an Experimental
Approach", In 2nd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, Rennes,
France, 2005.
[5] Gomaa, H., Designing Software Product Lines with UML,
Addison Wesley, 2005.
[6] Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak, and A.S.
Peterson, Feature-Oriented Domain Analysis (FODA) Feasibility
Study Technical Report, Software Engineering Institute, Carnegie
Mellon University, CMU/SEI-90-TR-21, 1990.
[7] Griss, M.L., J. Favaro, and M. d'Alessandro, "Integrating Feature
Modeling with the RSEB", In Fifth International Conference on
Software Reuse, Victoria, Canada, IEEE Computer Society Press,
1998.
[8] Cockburn, A., Writing Effective Use Cases, Addison-Wesley,
2001.
[9] Metz, P., J. O'Brian, and W. Weber, Specifying Use Case
Interaction: Clarifying Extension Points and Points of Rejoin.
Journal of Object Technology, (March/April 2004), 2004.
[10] Overgaard, G. and K. Palmkvist, "A Formal Approach to Use
Cases and Their Relationships", In «UML»98: Beyond the Notation,
Ecole Superieure des Sciences Appliques pour l'Ingenieur -
Mulhouse, Universite de Haut-Alsace, France, 1998.
[11] Stevens, P., "On Use Cases and Their Relationships in the
Unified Modelling Language", In FASE'01, Springer, 2001.
[12] Porres, I., Modeling and Analysing Software Behavior in UML,
PhD, Abo Akademi University, 2001.
[13] Hurlbut, R., Managing Domain Architecture Evolution
Through Adaptive Use Case and Business Rule Models, PhD, Illinois
Institute of Technology, 1998.
[14] Fantechi, A., S. Gnesi, G. Lami, and E. Nesti, "A Methodology
for the Derivation and Verification of Use Cases for Product Lines",
In SPLC 2004, Springer, 2004.
[15] Eriksson, M., J. Borstler, and K. Borg, "The PLUSS Approach
- Domain Modeling with Features, Use Cases and Use Case
Realizations", In SPLC 2005, Springer-Verlag, 2005.
[16] Ledeczi, A., M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.
Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi, "The Generic
Modeling Environment", In WISP'2001, Budapest, Hungary, IEEE,
2001.

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

