
Int J Softw Tools Technol Transfer (2007) 9:353–369
DOI 10.1007/s10009-007-0035-0

SPECIAL SECTION CPN 04/05

Requirements Validation: Execution of UML Models with CPN Tools

Ricardo J. Machado · Kristian Bisgaard Lassen ·
Sérgio Oliveira · Marco Couto · Patrícia Pinto

Published online: 13 March 2007
© Springer-Verlag 2007

Abstract Requirements validation is a critical task
in any engineering project. The confrontation of stake-
holders with static requirements models is not enough,
since stakeholders with non-computer science educa-
tion are not able to discover all the inter-dependencies
between the elicited requirements. Even with simple
unified modelling language (UML) requirements mod-
els, it is not easy for the development team to get con-
fidence on the stakeholders’ requirements validation.
This paper describes an approach, based on the con-
struction of executable interactive prototypes, to sup-
port the validation of workflow requirements, where the
system to be built must explicitly support the interaction
between people within a pervasive cooperative work-
flow execution. A case study from a real project is used
to illustrate the proposed approach.

1 Introduction

Clients (normally, stakeholders) and developers (sys-
tem designers and requirements engineers) have, nat-
urally, different points of view towards requirements.
A requirement can be defined as “something that a

This work has been supported by projects uPAIN
(AdI/IDEIA/70/2004/3.1B/00364/007) and STACOS
(FCT/POSI/CHS/48875/2002).

R. J. Machado (B) · S. Oliveira · M. Couto · P. Pinto
Department of Information Systems, University of Minho,
Minho, Portugal
e-mail: rmac@dsi.uminho.pt

K. B. Lassen
Department of Computer Science, University of Aarhus,
Aarhus, Denmark

client needs” and also, from the point of view of the
system designer or the requirements engineer, as “some-
thing that must be designed”. The IEEE 610 standard
[1] defines a requirement as: (1) a condition or capabil-
ity needed by a user to solve a problem or achieve an
objective; (2) a condition or capability that must be met
or possessed by a system or system component to sat-
isfy a contract, standard, specification or other formally
imposed documents; (3) a documented representation
of a condition or capability as in (1) or (2).

Taking into account these two distinct perspectives,
two different categories for requirements can be con-
ceived:

• User requirements result directly from the require-
ments elicitation task [2], as an effort to understand
the stakeholders’ needs. They are, typically,
described in natural language and with informal
diagrams, at a relatively low level of detail. User
requirements are focused in the problem domain
and are the main communication medium between
the stakeholders and the developers, at the analysis
phase.

• System requirements result from the developers’
effort to organize the user requirements at the solu-
tion domain. They, typically, comprise abstract mod-
els of the system [3], at a relatively high level of
detail, and constitute the first system representation
to be used at the beginning of the design phase.

The correct derivation of system requirements from
user requirements is an important objective, because
it assures that the design phase is based on the
effective stakeholders’ needs. Some existent techniques

354 R. J. Machado et al.

[4–7] can be used to support the transformation of user
requirements models into system requirements mod-
els, by manipulating the corresponding specifications.
This also guarantees that no misjudgement is arbitrarily
introduced by the developers during the process of sys-
tem requirements specification.

However, this effort of maintaining the model conti-
nuity by applying transformational techniques can prove
to be worthless, if the user requirements models are
not effectively validated. Typically, the confrontation
of stakeholders with static requirements models is not
enough, since stakeholders with non-computer science
education are not able to discover all the inter-
dependencies between the elicited requirements. Even
with simple UML (http://www.uml.org) requirements
models (use case diagrams and some kind of sequence
diagrams) it is not easy for the development team to
get confidence on the stakeholders’ requirements vali-
dation.

According to [8] there are three kinds of analysis
that should be accomplished before a workflow is put
into production: (1) validation, to check if the workflow
behaves as expected; (2) verification, to study the cor-
rectness of a workflow; (3) performance analysis, to esti-
mate the solution conformance with throughput times,
service levels, and resource utilization. This paper is
solely devoted to the first kind of analysis at the pro-
cess level, i.e., we are neither considering the resource
dimension where resources estimation is supposed to
be reached, nor the case dimension where a concrete
instance of a workflow process is analysed both in its
commonalities and exceptions.

This paper describes the usage of CPN Tools [9] in
the generation of interactive animation prototypes to
allow stakeholders to be confronted with executable
versions of UML use case and sequence diagrams of
previously elicited requirements. This approach towards
user requirements validation is illustrated with a real
case study where a healthcare information system (the
uPAIN system) must be built to explicitly support the
interaction between people within a pervasive workflow
execution.

The remainder of this paper is organized as follows.
Section 2 presents the case study by informally describ-
ing the purposes of the uPAIN system. In Sect. 3, the
difficulties of achieving effective requirements valida-
tion based on static user requirements models are dis-
cussed. To support that discussion, some UML models of
the uPAIN system are presented. In Sect. 4, we describe
the construction of Coloured Petri Nets (CP-nets) for
the animation of dynamic properties of UML models.
Here, the relation between the adopted stereotyped
UML sequence diagrams and the CP-nets is explained.

Section 5 contains the global architecture of the tool
environment used to generate the interactive anima-
tion prototype. Since some interoperability issues are
not technologically transparent when CPN Tools are
used together with the BRITNeY Animation tool, some
examples of the required XML files to perform the inte-
gration are discussed. In Sect. 6, the strategies used to
design the graphical user interface of the interactive ani-
mation prototype are discussed and some usability issues
are referred. This section deals with the discussion of
the efforts that must be made to obtain an animation
artefact that effectively involves the stakeholders in the
workflow requirements validation. Section 7 concludes
the paper with some final remarks, mainly devoted to
the synthesis of the proposed approach’s limitations and
of the accomplishments achieved. Future work is also
briefly referred.

2 The uPAIN System

The case study considered in this paper consists of an
information system (uPAIN system) whose main con-
cern is the process of pain control of patients in a hos-
pital, who are subjected to relatively long periods of
pain during post-surgery recovery. When a surgery is
concluded, the patient enters a recovery period, during
which analgesics must be administered to him in order
to minimize the pain that increases as the effects of the
anaesthesia gradually disappear. This administration of
analgesics must be controlled according to a program
which depends on factors like some personal charac-
teristics of the patient (weight, age, …) and the kind
of surgery to which the patient has been submitted. The
quantity of administered analgesics must be high enough
to eliminate the pain, but low enough to avoid exag-
gerated or dangerous sedation states. This controlled
analgesia is supplied to the patient by means of special-
ized devices called patient controlled analgesia (PCAs).
PCA is a medication-dispensing unit equipped with a
pump attached to an intravenous line, which is inserted
into a blood vessel in the patient’s hand or arm. By
means of a simple push-button mechanism, the patient
is allowed to self-administer doses of pain relieving med-
ication (narcotic) on an “as need” basis. This is called a
bolus request.

The motivation for the development of the uPAIN
system arises from the fact that different individuals feel
pain and react to it very differently. Also, although nar-
cotic doses are predetermined as mentioned previously,
there is a considerable variability of their efficiency from
patient to patient. This is why anaesthesiologists are
interested in monitoring several variables, in a continu-

Requirements validation 355

{U0.2} Register
Symptoms

{U0.1} Bolus
Request

{U0.3} CommLink

{U0.4} Consult
Historical Data

{U0.5} Consult
Patient State

{U0.6} Consult
Monitor Data

{U0.7} Administer
Drug Remotely

{U0.8} Consult
Service Status

Patient

Medical Staff
«uses»

«uses»

{U0} Upain

«uses»

«uses»

Med.Doctor

Nurse

Chief Med.Doctor

PCA

Monitor

Fig. 1 Unified modelling language (UML) use case diagram for the uPAIN system

ous manner during patients’ recovery, in order to
increase their knowledge on what other factors, besides
those already known, are relevant to pain control, and
in what measure they influence the whole process. To
achieve this, the main idea behind the uPAIN system
is to replace the PCA push-button by an interface on a
personal digital assistant (PDA), which still allows the
patient to request doses from the PCA, but with the
addition of the functionality of creating records in a
database of all those requests, along with other data
considered relevant by the medical doctors, like the
values of some pre-determined physiological indicators
measured by a monitor, and/or other data related to
a particular patient’s state, symptoms, etc. These ques-
tions may be automatically asked by the system, via the
PDA, when the patient requests a dose or at regular time
intervals, or even when a medical doctor decides to ask
for it.

So, the uPAIN system is intended to provide a plat-
form that enables the registration of patients’ pain lev-
els and the occurrence of several symptoms related with
analgesia processes, as frequently as desired, while
allowing the medical staff to be permanently aware of
the occurrence of all the relevant facts of the patients’
recovery and pain control processes and, simultaneously,
allowing permanent remote wireless communication
among system, patients and medical staff.

3 Requirements Modelling

Requirements elicitation is all about learning and
understanding the needs of users and project sponsors
with the ultimate aim of communicating these needs
to the system developers [2]. Getting the right require-
ments is considered as a vital and difficult part of soft-
ware development projects. Modelling and model-driven
approaches provide ways of representing the existing or
future processes and systems using analytical techniques
with the intention of investigating their characteristics
and limits [3].

UML use case diagrams are a quite adequate tool
to describe user requirements at a first high-level of
abstraction. These diagrams constitute a suitable means
for delimiting the system boundaries, for identifying the
functionalities that should be provided by the system,
and for affecting external actors with specific use case
functionalities. Additionally, brief textual descriptions
may be provided in natural language for each use case.
These diagrams are normally constructed by the devel-
opers in a tentative to document the elicited require-
ments. Stakeholders can read and use these diagrams to
recognize the main functional areas of the system to be
designed.

General functionalities of the uPAIN system are
inscribed in the UML use case diagram depicted in Fig. 1.

356 R. J. Machado et al.

{U0.1.1} Inject
Drug

{U0.1} Bolus Request

Patient

{U0.1.5} Configure
Drug Parameters

Medical Staff

{U0.1.4} Validate
User

{U0.1.3} Manage
Drug Administration

«uses»

«uses»
{U0.1.2} Request

Bolus «uses»

PCA

Fig. 2 UML use case diagram detailing the use case {U0.1} Bolus
Request

A set of additional use case diagrams, as the one of Fig. 2,
have been constructed to refine some of the use cases
existent in Fig. 1. The corresponding textual descriptions
have also been obtained.

With the exception of just a few !uses" and
!extends" relationships that may already be shown
between use cases, it turns out to be obvious that use
case diagrams do not practically say anything about how
the system should be designed, in order to supply the
identified functionalities. A further step on that direc-
tion may be provided by sequence diagrams in order to
illustrate the desired dynamic behaviour in what con-
cerns its functional interaction with the environment.
These diagrams are also to be constructed by the devel-
opers. Stakeholders can also read them. However, they
are not comfortable with all the details these diagrams
can entail.

Figure 3 depicts one UML sequence diagram for the
uPAIN system that describes one macro-scenario where
a patient requests a bolus. That request may be accepted
by the system or originate a request for an explicit med-
ical decision. In the later case, the doctor may decide to
authorize the bolus or to reconfigure the PCA parame-
ters.

The integration of several scenarios into only one
sequence diagram (for a macro-scenario) is possible due
to the new mechanisms of UML 2.0 in supporting differ-
ent kinds of frames. Some more UML sequence dia-
grams have been constructed to capture the main system
scenarios.

At the analysis phase of system development, we
adopt a stereotyped version of UML sequence diagrams,
where only actors and use cases are involved in the
sequences, since no particular structural elements of
the systems are known yet. This is illustrated by the
sequence diagram of Fig. 3, whose purpose is to model
the exchange of messages among the external actors and

use cases depicted in Fig. 2, thus representing just a small
increase in semantics detail to the use case diagram.
Sequence diagrams of this kind allow a pure functional
representation of behavioural interaction with the envi-
ronment and are particularly appropriate to illustrate
workflow user requirements.

Our stereotyped UML sequence diagrams contrast
with the traditional ones that already involve system
objects in the interaction with external actors, imply-
ing that those objects must be previously identified.
One important issue concerning objects identification
and building object diagrams is that they already model
structural elements of the system, which is clearly
beyond the scope of the user requirements. Additionally,
the use of this kind of traditional sequence diagrams at
the first stage of analysis phase (user requirements mod-
elling and validation) require a deeper intervention of
modelling skills that are hardly understandable to most
stakeholders, making more difficult for them to estab-
lish a direct correspondence between what they initially
stated as functional requirements and what the model
already describes. So, a validation of the user require-
ments resulting from such an advanced model is not only
more difficult to achieve, but also less trustworthy and
less ensuring that the resulting system will correspond
effectively to the stakeholders expectations.

4 CP-nets for Animation Prototypes

The effort to use only elements from the problem
domain (external actors and use cases) in the user
requirements models (use case and stereotyped
sequence diagrams) and to avoid any reference to ele-
ments belonging to the solution domain (objects and
methods) is not enough to obtain requirements models
that are capable of being fully understandable by com-
mon stakeholders. This difficulty is mainly observable in
what concerns the comprehension of the dynamic prop-
erties of the system within its interaction with the envi-
ronment. This means that, even with the referred efforts,
those static requirements models should not be used to
directly base the validation of the elicited user require-
ments by the stakeholders. Instead, we use those static
requirements models to derivate animation prototypes.

User-friendly visualizations of the system behaviour,
automatically translated from formal systems’ models
specifications, accepting user interaction for validation
purposes, have been generically called animations.
Although it may seem a good idea, in a context where IT
is offering more and more powerful multimedia capabil-
ities, the use of animation in user requirements valida-
tion, as a means of improving the understandability of

Requirements validation 357

Fig. 3 UML sequence diagram of a macro-scenario for the uPAIN system

systems’ models by stakeholders, has been considered
by only a small number of researchers.

In [10] an empirical study has been carried out to
comparatively evaluate the effectiveness of animation
and narration (voice recordings of diagram explanations
complemented with PowerPoint slides) in the process of
communication of domain information to stakeholders
for validation purposes, which may be seen as a sign
that animation is increasingly drawing the software engi-
neers’ attention as a potentially valuable instrument for
user requirements validation. The results of that empir-
ical study were inconclusive about the effectiveness of
animation, as opposed to the success of narration, but
in our opinion that was due to the fact that, instead of
using a meaningful user interface, the animations were
of a very rudimentary type by highlighting the graph-
ical elements of the diagrams while narration is being
executed.

Some other papers have been published, reporting
the use of animations to ease validation by stakehold-
ers, as is the case in [11], where a CORBA API has
been used to directly interpret VDM-SL specifications
of requirements to generate a graphical user interface.
Scenario-based approaches have also been used in [12]

as a means of ensuring user-orientation, and also in
[13], where fluents (boolean system states that model
pairs of system actions) have been used to relate goals
with scenarios and, simultaneously, support animation.
In [14], virtual reality is used to support animation tech-
niques when modelling high consequence systems (sys-
tems where errors in development have consequences
of high cost).

The behaviour of the animation prototypes (proposed
in this paper) results from rigorous translations of the
sequence diagrams into CP-nets [15,16]. The transitions
of these CP-nets present a strict one-to-one relation-
ship with the messages in the sequence diagrams. So,
for each message in a sequence diagram, one transi-
tion, in the corresponding CP-net, is created. In order
to make that correspondence more evident, the name of
each transition matches exactly the name of the corre-
sponding message in the sequence diagram. Two simple
rules were used for that translation: (1) Fig. 4 illustrates
the rule for translating two successive messages in a
sequence diagram (Fig. 4a) into a CP-net (Fig. 4b); (2)
Fig. 5 illustrates the rule for translating an alternative
block in a sequence diagram (Fig. 5a) into a CP-net
(Fig. 5b).

358 R. J. Machado et al.

Fig. 4 Transformation of successive messages

With these transformation rules, the colour set of all
of the places is the colour set E (or unit), i.e., all the
tokens are the uncoloured e token, as can be seen in
Fig. 7. This is why the arc expressions were omitted in
Figs. 4 and 5.

Because all the tokens are e tokens, the evaluation
of the expressions used in the conditions of the out-
put arcs of a transition that has two alternative output
places (e.g., transition Message1 of Fig. 5b) cannot, obvi-
ously, depend on the colour of the tokens. Instead, the
expressions in those conditions use variables that are
bound by the Output pattern of the code segment of that
transition. That situation is illustrated by the transitions
Process Request and Request Medical Decision of the
example CP-net of Fig. 7.

One advantage of the transformation rules suggested
is that the resulting CP-nets are structurally simple and
require only uncoloured tokens on the workflow paths.
This would not be the case, if for the transformation
rule of an alternative block of a sequence diagram (see
Fig. 5), a conflict place (a place with two output arcs)
was used, as depicted in Fig. 6, instead of a transition
with two output arcs, as shown in Fig. 5b).

As shown in Fig. 6, if a conflict place was used to
the transformation of an alternative block of a sequence

diagram, the decision whether Message2 or Message3
should follow Message1, would have to be taken from
the evaluation of guards associated to the transitions
Message2 and Message3, depending on the value (col-
our) of the token in the place PreCond2. Therefore, the
colour set of the place PreCond2 would have to be other
than E. For that reason, a colour set X was used for the
place PreCond2, and a variable x, of that colour set, was
used for the surrounding arcs’ expressions. The variable
x would have to be bound by the Output pattern of the
code segment of the transition Message1.

At an initial phase of simulations where these CP-nets
are to be used, only the control of animation prototypes,
for validation of the workflows by the stakeholders, is
intended. For that reason, the uncoloured tokens in the
workflow paths of the CP-nets is a plus, because in case
of need of simulations of the CP-net model, of other
types than the mere control of those animations (e.g.,
for performance analysis purposes), the change of the
tokens’ semantics, by means of the addition of colours,
would be independent of the workflows’ control logic,
and, therefore, would not interfere with it.

4.1 Refinement Subnets

By just observing Figs. 4 and 5, it results clear that,
with these transformation rules, a place of the CP-net
corresponds to the interface between two consecutive
messages of the sequence diagram. Therefore, a place
represents a part of a use case of the stereotyped
sequence diagrams, which responds to a precedent mes-
sage with a subsequent message. If the refinement of a
given use case is modelled with a new sequence diagram,
this new sequence diagram can, in turn, be transformed
into a refinement subnet. Although it is not possible to
create sub-pages for places (there are no such things
as “substitution places”), those output places may be

Fig. 5 Transformation of an alternative block

Requirements validation 359

Fig. 6 Using a conflict place for the transformation of an alter-
native block

replaced, at the same hierarchy level where they origi-
nally appear, by refinement sub-nets (composed of one
input place, one output place, and one substitution tran-
sition between them) to support the refinement of use
cases. This way, the refinement subpage of each substi-
tution transition of such refinement subnets represents
the refinement of part, or the totality, of a use case.

Typically, those refinement subnets will be built after
the application of the four step rule-set (4SRS) tech-
nique [7] that transforms users requirements into archi-
tectural models representing system requirements, by
mapping use cases into system-level objects within a
four-step approach: (1) object creation, (2) object elim-
ination, (3) object packaging and aggregation, and (4)
object association. Therefore, each transition in those
subnets will correspond to the invocation of a method
of a system object.

The CP-net of Fig. 7 is responsible for the anima-
tion of the use case {U0.1} Bolus Request (see Fig. 2)
by executing the scenarios described in Fig. 3, each one
corresponding to one of the three branches of the CP-
net. Those nodes and arcs drawn with thinner lines were
added in a later phase, and have no semantic correspon-
dence to the sequence diagram. They were included for
the purpose of tools interoperability, as explained in
Sect. 5.

The CP-net represented in Fig. 8 corresponds to the
top-level net of the animation prototype for the uPAIN
system. Thick lines were used to represent the elements
that correspond to the main animation paths. Most of the
transitions of this CP-net correspond to the use cases in
Fig. 1. For example, the refined CP-net of the substi-
tution transition bolus request of Fig. 8 corresponds to
Fig. 7.

Because the transformation rules depicted in Figs. 4
and 5 are to be applied only to sequence diagrams, direct
links between the use case diagram of Fig. 1 and the
CP-net of Fig. 8 were not intended to follow explicit
rules. Instead, the link between the UML diagrams and
the CP-nets is obtained in two steps: (1) sequence
diagrams are constructed after identifying scenarios that

involve use cases and actors; (2) CP-nets are derived
from the sequence diagrams by applying the transfor-
mation rules.

Sequence diagrams transmit partial views for the
interaction between the system and its environment,
allowing the adoption of an evolutionary approach, by
considering a set of sequence diagrams to have a partial
evaluation of the requirements and then progress with
more detailed requirements. In the uPAIN system, the
animation prototype reflects only a top-level descrip-
tion of the system. After the validation of this top-level
model, a set of additional animations, based on refined
sequence diagrams at the solution level (where objects
would already appear), can be constructed.

5 Tools Integration

The implementation of the interactive animation proto-
type demanded the usage of several technologies. The
integration of tools was mainly based on XML files.
Figure 9 shows the global architecture of the tool envi-
ronment used to generate the animation prototype. It is
composed of a model executor and an animation tool.
The model executor includes a CPN editor and a CPN
simulator, both from CPN Tools. The animation tool
used corresponds to the BRITNeY Animation tool [17].

With BRITNeY Animation tool it is possible to use
pre-defined plug-ins (or write our own plug-ins) for exe-
cuting some animation behaviour in the model. The pre-
defined plug-ins include SceneBeans [18] (an animation
framework), message sequence charts (for displaying
the passing of messages) and plot graphs. The writing
of our own plug-ins involves the coding of Java classes
and the creation of an XML description of the plug-in.
BRITNeY Animation tool will automatically generate
the code needed for the simulator to know of and use
those plug-ins.

It is possible to execute behaviours in the BRITNeY
Animation tool while simulating models in CPN Tools.
Behaviours are executed through certain Standard Meta
Language (SML) functions which in turn call the cor-
responding Java methods. The names of the functions
correspond to those of the Java methods. When an SML
function calls a Java method it simply corresponds to
the logic of an RMI call. The method name and argu-
ments are passed over to the interface of the BRITNeY
Animation tool and the return value of the executed
method is passed back from the interface. If the method
M in class C has the signature int M (int x, string y),
then it could be invoked as C.M (42, “Hello World”).
However, this is just an example to explain the way to

360 R. J. Machado et al.

Fig. 7 CP-net responsible for the animation of the use case {U0.1} Bolus Request

use the Java methods in the CP-net model (see [17] for
complementary explanations). These behaviours, or
methods, can be executed anywhere in the CP-net model
where an expression is allowed. So, it can be on an arc
expression, code segments on transitions (these are spe-
cific for CPN Tools), and so on. This is a nice feature
for debugging and for understanding the way the model
affects the animation.

The BRITNeY Animation tool can also be executed
as a standalone program, using e.g., Java WebStart to
enable web browser integration. This feature is very
useful to generate an autonomous animation prototype
which allows stakeholders to “play with” without the
interference and the presence of elements from the
development team. This approach to validation was

experimented with and proved to be very effective. This
empowerment of the stakeholders promoted a deeper
involvement of them in the analysis phase that not only
assured better validation results, but also allowed the
complementary elicitation of workflow requirements.

The interactive animation prototype for the uPAIN
system is depicted in Fig. 10. The usage of SceneBeans
allowed the animation of actors and message passing.
SceneBeans provides a parser that translates XML doc-
uments into animation objects. A SceneBeans document
is contained within a top-level <animation> element
that contains five types of sub-elements: (1) a single
<draw> element defines the scene graph to be ren-
dered (e.g., the icons representing the doctor, the nurse,
the patient); (2) <define> elements define named scene

Requirements validation 361

Fig. 8 Top-level CP-net of the animation prototype for the uPAIN system

Fig. 9 Global architecture for prototype animation

graph fragments that can be linked into the visible scene
graph; (3) <behaviour> elements define behaviours that
animate the scene graph (e.g., the animation of the
drug injection from PCA icon to the patient icon); (4)
<event> elements define the actions that the animation

performs in response to internal events (e.g., the clean-
ing of the info text at the end of the drug injection ani-
mation); (5) <command> elements name a command
that can be invoked upon the animation and define the
actions taken in response to that command (e.g., the

362 R. J. Machado et al.

Fig. 10 Interactive animation prototype for the uPAIN system

invocation of the behaviours responsible for the drug
injection animation).

Figure 11 shows an example of a code segment that
was used in our <draw> element. This code segment is
responsible for the creation of the icons for the uPAIN
system cloud (the first <primitive> element, inside the
first translate type <transform> element), the patient
(the second <primitive> element, inside the second
translate type <transform> element, which, in turn, is
inside an <input> element, because the patient icon
works as a button) and the black ball (the third <prim-
itive> element, inside the third translate type <trans-
form> element) that represents the messages between
actors. To animate the ball, we used the <animate> ele-
ment, which means that parameters x and y will be
animated by the behaviours xf_patient_to_system and
yf_patient_to_system, respectively.

Figure 12 shows the behaviours, the commands and
the events that are responsible for moving the ball from
the patient icon to the uPAIN system icon. When the
simulator invokes the command f_patient_t_system_cmd,
the <reset> and <start> elements execute the behav-
iours corresponding to the movement of the ball and the
displaying of its textual info. When the execution of a
behaviour ends, the animation will trigger the associated
event, and this will start other behaviours, like xball_out

(to hide the ball), fadeout_info (to hide the textual info),
or hide_patientpda_icon (to hide the patient PDA icon).
At the end, the <annouce> element announces the
event. This last action is crucial, because it allows the
CPN simulator to capture the event.

Communication between SceneBeans objects in the
animation and the CP-net model can be done in two
ways: (1) asynchronously, here the CP-net model simply
invokes a command on a SceneBeans object and pro-
ceeds simulating, not caring for the moment when the
animation behaviour that was executed terminates; (2)
synchronously, here the CP-net model, again, invokes
a command on a SceneBeans object, but, instead of
just proceeding, the CP-net model waits for a partic-
ular event to arrive (e.g., the event “ball moved from
patient to system”). This event would be broadcasted
by the animation command that was executed when it
terminates, to let the CP-net model know that this ani-
mation has completed. Synchronous interactions with
SceneBeans objects must be carefully analysed; other-
wise, animations that should be executed in sequence
will be executed concurrently. It is necessary to deter-
mine which animation behaviours are to be completed
before any other can proceed (synchronous) and those
which can occur in any order (asynchronous). Invoca-
tions on SceneBeans objects are asynchronous in the

Requirements validation 363

Fig. 11 Drawing in
SceneBeans

sense that, per default, they do not broadcast any event;
this has to be specified in the SceneBeans XML specifi-
cation.

After creating all the behaviours, commands and
events, which allow the animation to announce events
and receive commands from the CPN simulator, the next
step is to create Java classes. SceneBeans have the lim-
itation of not allowing the user to input dynamic con-
tents. In fact, SceneBeans only allows the creation of
animations, based on static behaviours, defined in an
XML file. The Java classes we created are responsible
for showing the graphical interfaces of the PDAs and for
sending the corresponding user (of the animation pro-
totype) inputs to the CPN simulator. For instance, the
Log Window that shows all the messages sent between
actors demanded the creation of a Java class (Messen-
ger) that receives the messages from the CPN simula-
tor. To add a new message to the list of messages of the
Log Window, we simply invoke Messenger.createAnd-
ShowGUI(“message”). After creating the Java classes,
an XML description must be constructed so that the

BRITNeY Animation tool recognizes them as plug-ins
(see Fig. 13).

Java classes in defined animation plug-ins can be
instantiated through SML functors that BRITNeY Ani-
mation tool generates. SML functors are “abstract” SML
structures which can be instantiated. A Java object is
instantiated by, e.g., structure anim = SceneBeans(val
name = “Name”), which instantiates an object from
the SceneBeans class. Methods on the instantiated anim
are accessed as public methods defined in the Scene-
Beans class. Another example is the function SPO () in
the transition Select Patient Options of Fig. 8 that con-
tains the following code to invoke methods to our Java
objects:

Messenger.cleanText ();
Ppda.createAndShowGUI (“mainmenu”);
Ppda.getValueString ();

SceneBeans objects provide also some methods to
control the animation. For instance, the calling of func-
tion move () in the CP-net of Fig. 7 consists in an

364 R. J. Machado et al.

Fig. 12 Defining behaviours, commands, and events in SceneBeans

Fig. 13 Defining Java classes as plug-ins of BRITNeY Animation tool

invocation of the method invokeCommand to the Scene-
Beans object anim (Fig. 14), which is responsible for
invoking the previously defined commands in the XML
file (Fig. 12). In this case, the invoked command corre-

sponds to the movement of the black ball between the
actors of the animation.

Additionally, it is possible to capture events
announced by the animation. In our animation prototype

Requirements validation 365

Fig. 14 Declaring and
instantiating objects in CPN
Tools

Fig. 15 Events CP-net subpage

we included one CP-net subpage called Events (Fig. 15)
that is composed by two distinct parts: one is responsible
for the initial loading of the XML animation description
(places Start and Running, and transition Init); the other
part includes the transition Capture Event (captures all
the events announced by the SceneBeans animations
and places them, in the form of a string list, in the place
Events) and the place Events. This place Events belongs
to a global fusion set of places that are connected to
every transition where the capture of specific events is
required (see, for instance, the nodes and arcs drawn
with thinner lines in Figs. 7 and 8). All these fusion places
are named EventN (where N is a digit that serves only
as a distinguishing character, because CPN Tools do not
accept places with the same name, in the same page) and
have no semantic meaning from the workflows’ point of
view. They are only needed for tool interoperability.

6 Usability Issues

According to [19], usability is considered “the extent to
which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satis-
faction in a specified context of use”. This means that,
besides all the technical efforts described in the previous
two sections of this paper, the effectiveness of the imple-
mented animation prototype to involve stakeholders in
the interactive execution of the elicited sequence dia-
grams, complementary elicitation of workflow require-
ments and validation of the requirements model was
also a result of a strong investment in using usability
techniques in the construction of this software artefact,
namely in what concerns its graphical user interface
(GUI) and the comfort of exploitation of the animation
prototype.

366 R. J. Machado et al.

Fig. 16 Message passing in the animation prototype for the uPAIN system

The adopted GUI makes use of eight icons on the
display: three proactive actors (one patient, one med-
ical doctor and one nurse); four reactive actors (one
monitor, one PCA device and two databases in use at the
hospital); and the uPAIN system represented by a cloud.
The adopted GUI should be obvious and intuitive to the
stakeholders and thus, with the exception of the cloud
and the databases, we opted for “concrete” icons. When
real-world objects are represented in an icon (“con-
crete” icon), individuals are likely to find it more mean-
ingful, are often familiar with the items depicted, and
find it easy to make links between what is shown in the
icon and the function it is supposed to represent [20]. To
symbolize the uPain system (a concept which is difficult
to materialize and to represent), we chose a cloud which
constitutes an “abstract” icon. Forming strong system-
atic relations between icons and functions is very impor-
tant, particularly when there are no pictorial alternatives
for a given icon function [21]. To represent the uPain sys-
tem we wanted an icon that emphasized its pervasive and
wireless nature. Databases are also represented through
an “abstract” icon which is a standard way to represent
software-technology databases. We also opted for uni-
form icons in terms of size because we wanted to avoid
stakeholders focusing on some of the icons and not oth-
ers due to size differences; we wanted them to have, at

the first glance, the notion of the whole GUI. On the
other hand, the real-sized PDA is the biggest element
and the only one that detaches from the GUI in terms
of size, in order to improve the legibility of its contents.

Whenever one proactive actor is clicked with the
mouse, a PDA icon appears above it and then, a real-
sized version of the PDA is also displayed, showing the
predefined options, corresponding to possible requests
(see Fig. 10). Through each proactive actor’s PDA, the
stakeholder just has to select the desired option and
then the corresponding sequences are executed (each
one of these is formally related with one of the UML
stereotyped sequence diagrams).

Each time one of the proactive actors is clicked, a
black ball (representing the actor’s request) is sent from
the actor towards the cloud. In Fig. 16, the stakeholder
interacting with the animation prototype chose the “con-
sult patient state” option by using the PDA of the med-
ical doctor. The snapshot in Fig. 16 corresponds to the
exact moment in which the monitor is sending to the
uPAIN system some physiological indicators about the
patient; this data exchange is graphically represented by
the black ball trajectory in the display. This snapshot
also shows a log window, where all the requests and
interactions are registered. At the same time, under-
neath the cloud, a textual expression “receiving patient

Requirements validation 367

Fig. 17 Dashed line contours in the animation prototype for the uPAIN system

data” identifies the ongoing request/interaction. A cap-
tion, identifying the selected option, is displayed during
the whole action in the upper left corner of the display
to prevent stakeholders from forgetting the task at hand
and to provide them feedback, a golden rule of GUI
design suggested in [22]. It is crucial for stakeholders
that the animation prototype lets them know at what
point they are, at any given time in a clearly understand-
able way. Additionally, in Fig. 10 it is possible to observe
a green coloured “Ready…” message informing that the
animation prototype is ready to accept one mouse click
in one of the buttons of the displayed PDA. If, in any
point of the simulation, the actor “uPAIN system” is in
processing state, then a spinning globe appears inside
the cloud and a red-coloured “Running…” message is
presented (see Fig. 15).

To assure that the purpose of any graphical entity is
clearly apparent and inferred (an important cognitive
dimension in GUI design to deal with expressiveness
[23]), a green dashed line contour was added around
each proactive actor to make clear that only these are
the proactive actors on which it is possible to click
to produce some kind of interaction (Fig. 17). The
green-coloured “Ready…” message also appears when
these green dashed line contours are displayed. We also
used a dashed line and different background colours
to help delimit the three main areas of the GUI and

grouping actors in a logical way, according to the areas
in the hospital where they may be: the patient, the mon-
itor and the PCA are always in the infirmary; the two
databases are installed in the server’s room; the medical
doctor and the nurse can be elsewhere due to the nature
of uPain system (ubiquitous); and the uPain system is
“everywhere” in the hospital and so the cloud is placed in
the middle of the three dashed areas. Below each actor,
and to ensure that the actor is clearly identified imme-
diately, the respective caption was added, since good
labelling can guide stakeholders through the GUI with
minimal search time. We also labelled the three dashed
areas. This approach in GUI design contributes for a
reduced cognitive load and immediate recognition in
detriment of recalling in order to let stakeholders make
optimal use of their high-level cognitive abilities and
save them to perform the essence of work, i.e., using the
high-level cognitive capacity for the more demanding
work tasks such as workflow requirements validation,
which is the real aim of the animation prototype.

The reduction of short-term memory load [23] was
another intended goal, once in that part of memory only
few information elements (typically, five to eight) can
be stored simultaneously and the decay time is short
(approximately 15 s). Thus, we avoided a dense area with
many elements and presented only the necessary infor-
mation.

368 R. J. Machado et al.

The animation prototype was first demonstrated to
the stakeholders with a strong involvement of the devel-
opers to explain the main approach to its usage as a
software artefact to support the early execution of func-
tional requirements. After that, the stakeholders have
been given a standalone version of the animation proto-
type. This usage of the animation prototype has enabled
the effective validation of requirements, since stake-
holders generate frequently change requests to incorpo-
rate new scenarios and to adjust others already elicited,
which has definitively contributed to the rapid evolu-
tion of the requirements model maturity, prior to design
phase. We believe the usability concerns we adopted in
designing the whole animation prototype was determi-
nant to the success of the uPAIN project.

7 Conclusions

Static requirements models should not be used to
directly base the validation of the elicited user require-
ments by the stakeholders, since the effort to use only
elements from the problem domain in the user require-
ments models and to avoid any reference to elements
belonging to the solution domain is not enough to obtain
requirements models that are capable of being fully
understandable by common stakeholders. The stake-
holders’ comprehension of the dynamic properties of the
system within its interaction with the environment is bet-
ter assured if animation prototypes, formally deduced
from the elicited static requirements models, are used.

The behaviour of the animation prototypes can be
specified by using CP-nets rigorously translated from
use case and stereotyped sequence diagrams. An effec-
tive execution of UML models can be achieved by using
CPN Tools to operationally implement the interaction
with the stakeholders within their efforts to validate the
models of previously elicited workflow requirements.
Presently, the referred transformations are executed
manually, which can be considered a major drawback
of the proposed approach when the system to animate
is of large dimension, presenting a great number of use
cases and a large amount of behavioural scenarios to
transform into CP-nets.

The generation of standalone versions of the inter-
active animation prototypes motivates stakeholders to
get a deeper involvement in the analysis phase (with-
out the interference of the development team). Usabil-
ity features of the animation prototypes must also be
carefully studied and experimented, before reaching the
final version of the prototype in supporting the interac-
tive execution of the elicited sequence diagrams, com-
plementary elicitation of workflow requirements and

validation of the requirements models. CPN Tools and
BRITNeY Animation tool should evolve to support bet-
ter the transparent generation of this kind of standalone
versions and to allow a simpler start-up of an animation.

As future work, we intend to automatically generate
CP-net skeletons from workflows requirements models
(use case and stereotyped sequence diagrams). Addi-
tionally, we will study the possibility of using CP-nets,
constructed for specifying the behaviour of the anima-
tion prototype, to base the behavioural specification of
the elements that will compose the architecture of the
system within the design phase. If data-flow languages
(such as LabVIEW, as described in [24,25]) are used
to develop the semantic layer responsible for integrat-
ing the whole ubiquitous system (embedded and mobile
devices, database accesses and a service-oriented archi-
tectural platform), the asynchronous nature of CP-nets
will smooth the transition from analysis to design phases
in what regards behavioural models.

References

1. IEEE 610.12-1990: IEEE Standard Glossary of Software
Engineering Terminology, 1990

2. Zowghi, D., Coulin, C.: Requirements elicitation: A survey of
techniques, approaches, and tools. In: Aurum, A., Wohlim, C.
(eds.) Engineering and Managing Software Requirements,
pp. 19–46. Springer, Heidelberg (2005)

3. Machado, R.J., Ramos, I., Fernandes, J.M.: Specification of
requirements models. In: Aurum, A., Wohlim, C. (eds.) Engi-
neering and Managing Software Requirements, pp. 47–68.
Springer, Heidelberg (2005)

4. Liang, Y.: From use cases to classes: A way of building object
model with UML. Inf. Softw. Technol. 45, 83–93 (2003)

5. Whittle, J., Kwan, R., Saboo, J.: From scenarios to code: an air
traffic Control case study. Softw. Systems Model. 4(1) 71–93

6. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to
statecharts. In: Rammig, F.J. (ed.) Distributed and Parallel
Embedded Systems, pp. 61–72. Kluwer Academic, Dordrecht
(1999)

7. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.:
Transformation of UML models for service-oriented software
architectures. In: The 12th IEEE International Conference on
the Engineering of Computer-Based Systems (ECBS 2005),
Greenbelt, Maryland, USA, pp. 173–182. IEEE CS Press,
New York (2005)

8. van der Aalst, W.M.P.: Business process management demys-
tified: A tutorial on models, systems and standards for work-
flow management. In: Desel J., Reisig W., Rosenberg G. (eds.)
Lecture Notes in Computer Science, vol. 3098, pp. 1–65,
Springer, Heidelberg (2004)

9. Beaudouin-Lafon, M., Mackay, W.E., Andersen, P.,
Janecek, P., Jensen, M., Lassen, M., Lund, K., Mortensen, K.,
Munck, S., Ratzer, A., Ravn, K., Christensen, S., Jensen, K.:
CPN/Tools: A post-Wimp interface for editing and simulating
coloured petri nets. In: The 22nd International Conference on
Applications and Theory of Petri Nets (ICATPN 2001), pp.
71–80, Newcastle upon Tyne, UK (2001)

Requirements validation 369

10. Gemino, A.: Empirical Comparisons of Animation and
Narration in Requirements Validation. Requir. Eng. 9,
153–168 (2003)

11. Fenkam, P., Gall, H., Jazyeri, M.: Visual requirements vali-
dation: Case study in a CORBA-supported environment. In:
IEEE Joint International Conference on Requirements Engi-
neering (RE’2002) (2002)

12. Ozcan, M.B., Parry, P.W., Morrey, I.C.: Siddiqi, J.: Require-
ments validation based on the visualisation of executable for-
mal specifications. In: International Conference on Computer
Software and Applications, pp. 381–386, Austria. IEEE CS
Press, New York (1998)

13. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: Fluent-based
animation: exploiting the relation between goals and scenar-
ios for requirements validation. In: The 12th IEEE Require-
ments Engineering International Conference (RE’04) (2004)

14. Winter, V., Desovski, D., Cukic, B.: Virtual environment mod-
eling for requirements validation of high consequence sys-
tems. In: Proceedings of the IEEE International Conference
on Requirements Engineering, pp. 23–30 (2001)

15. Jensen, K.: Coloured petri nets: basic concepts, analysis meth-
ods and practical use. In: Monographs in Theoretical Com-
puter Science, vols. 1–3. Springler, Heidelberg (1992–1997)

16. Kristensen, L.M., Christensen, S., Jensen, K.: The practi-
tioner’s guide to coloured petri nets. Int. J. Softw. Tools for
Technol. Transf. 2, 98–132 (1998)

17. BRITNeY Animation tool. wiki.daimi.au.dk/tincpn
18. Pryce, N., Magee, J.: SceneBeans: a component-based ani-

mation framework for java. http://www-dse.doc.ic.ac.uk/
Software/SceneBeans/

19. ISO 9241-11: Guidance on Usability, 1998
20. McDougall, S.J.P., Curry, M.B., de Bruijn, O.: Exploring the

effects of icon characteristics on user performance: The role
of icon Concreteness, complexity, and distinctiveness. J. Exp.
Psychol. Appl. 6(4), 291–306 (2000)

21. McDougall, S.J.P., Curry, M.B., de Bruijn, O.: The effects of
visual information on users’ mental models: An evaluation of
pathfinder analysis as a measure of icon usability. Int. J. Cogn.
Ergonom. 5(1), 59–84 (2001)

22. Welie, M., van der Veer, G., Eliëns, A.: Breaking Down
Usability. Interact 99, Edinburgh, Scotland (1999)

23. Pane, J.F.: A Programming System for Children that is
Designed for Usability. PhD Thesis, Computer Science
Department, Carnegie Mellon University, Pittsburgh, USA,
May, 2002

24. Machado, R.J., Fernandes, J.M.: Heterogeneous information
systems integration: organizations and methodologies. In:
Oivo M., Komi-Sirviö S. (eds.) The 4th International Con-
ference on Product Focused Software Process Improve-
ment (PROFES’02), Rovaniemi, Finland. Lecture Notes in
Computer Science Series, vol. 2559, pp. 629–643. Springer,
Heidelberg (2002)

25. Machado, R.J., Fernandes, J.M.: Integration of embed-
ded software with corporate information systems. In:
Rettberg A., Zanella M.C., Rammig F.J. (eds.) From Spec-
ification to Embedded Systems Application. IFIP Series, vol.
184, pp. 169–178. Springer, Heidelberg (2005)

