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Abstract 
 

Features have been widely used by the product line 
community to model variability. They represent the 
common and variable characteristics of the members 
of a product line. They are very well suited for the 
configuration of product line members. Outside the 
product line community, use cases are also widely 
used to model the functionality of systems at a similar 
level of abstraction but from a user perspective. 
Significant work has been done by several authors 
regarding the possible relationship between these two 
perspectives of a system. Nonetheless, this has been 
done in an informal way. In this paper we explore the 
relationships between these two perspectives and 
describe a possible approach to automate the 
transformation from UML use case to feature models. 
 
1. Introduction 
 
Features have been widely used by the product line 
community to model variability. They represent the 
common and variable characteristics of the members of 
a product line. They are very well suited for the 
configuration of product line members. Outside the 
product line community, use cases are also widely used 
to model the functionality of systems at a similar level 
of abstraction but from a user perspective. In some 
approaches, use case diagrams are also used to model 
variability. The similarities between these two 
concepts have also been discussed by the product line 
community. However, to our knowledge, a formal 
approach that relates use cases and features in a way 
that supports automation is still an unexplored topic. 
In this paper, we present an approach to formalize the 
mappings between use cases and features. We do so in 
the context of a model-driven approach and present a 
possible implementation roadmap based on open 
source modeling and transformation tools.   

The activity diagram presented in Figure 1 depicts our 
approach. 
The remainder of this paper is structured as follows. In 
Section 2, we briefly discuss feature diagrams and 
present the feature metamodel. In Section 3, we 
discuss UML use cases and present our proposed 
extensions to the use case metamodel. Section 4 is 
dedicated to present the mappings between use case 
and feature model concepts. In Section 5, we present a 
possible implementation for the approach. Section 6 is 
dedicated to the discussion of related work and to 
concluding remarks. 

 

T1) UseCase2Feature

aProduct : UseCase

family : UseCase

featureModel : Feature

T2) Feature2Ecore

configuration : Ecore

T3) Configuration2UseCase

aConfiguration : configuration

«instantiation»

 
 

Fig. 1. Process for obtaining a product use case model from a 
family use case model. 
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Fig. 2. Feature metamodel. 

 
2. Feature Models 
 
Feature modeling is widely used to model 
commonality and variability in software systems, 
particularly software product lines. Although this is 
true, implementations vary significantly and there is no 
common globally accepted metamodel for features. In 
this section we present our approach to feature 
modeling that is partially compliant on [1] and [2].  
Figure 2 presents our metamodel for feature diagrams. 
We adopt the notion that a feature represents a 
characteristic or property of a system that is relevant to 
some user or stakeholder. From this perspective, a 
feature diagram represents the properties or 
characteristics that a system may have. Since features 
can be further characterized by subfeatures, a feature 
diagram is usually represented as a tree of features 
with adornments that visually represent relationships 
between the features. The feature at the root of the tree 
is called root feature and it is usually a conceptual 
feature that represents the whole system. Because 
features represent characteristics that may (or not) be 
present in a system, feature diagrams are well suited to 
represent common (for features that are always 
present) and variable (for features that may not be 
present) characteristics of a system. The process of 
removing the variability out of the feature diagram (by 
selecting –or not- optional features) results in the 
configuration of a system (feature configuration).  
Basically, a feature is said to be mandatory if it is 
included in all configurations. A feature that may not 
be present in all configurations is called optional. 
Alternative features are features that form a group from 
which they are selected according to some rule 
(usually the rule states that only one feature of the 
group can be selected).  

Our metamodel for feature diagrams supports all the 
presented concepts. We use Subfeature to represent 
containment relationships between features. A 
mandatory feature is a child (Subfeature) of some other 
feature for which the minCardinality and 
maxCardinality are 1. An optional feature is a child of 
some other feature for which the minCardinality is 0 
and the maxCardinality is 1. A feature group can be 
modeled by a SubFeature with the alternative features 
as childs and the specific cardinality of the group 
stated by minCardinality and maxCardinality. The 
similarity enumeration is used to state if the selected 
alternatives must by of the same kind1. Since a feature 
can only be contained be another feature, we use the 
concept of Reference to enable a feature to be referred 
by several Subfeature relations.    
 

LibrarianApplication

borrows {0..1}

ManageBorrows

BorrowLoanCopy

RenewLoan

renewLoan {0..1}

CollectPartialFine CollectTotalFine

collectFine {1..1}
«reference»

CollectPartialFine

renewLoanCollectPartialFine
{0..1}days: Int[1..1]

HandleGoldMemberships

handleGoldMemberships 
{0..1}

«reference»
CollectPartialFine

 
 

Fig. 3. Excerpt of a Library feature model. 

                                                           
1 The similarity concept was proposed by [1]. 
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Figure 3 presents an excerpt of a feature model for a 
family of Library applications. Features are 
represented within rectangles, in a way that is similar 
to UML classifiers [3]. Subfeatures are represented as 
links between two or more Features. These links can 
be adorned with the values for the attributes of 
Subfeatures. For instance, collectFine is a Subfeature 
that relates the parent Feature BorrowLoanCopy with 
the childs CollectPartialFine and CollectTotalFine. In 
this case, minCardinality and maxCardinality are both 
1, which means that when configuring a member of the 
family we must select only one of the Subfeatures of 
BorrowLoanCopy. Figure 3 also presents examples of 
the use of References. For instance, a Reference is used 
to state that the feature RenewLoan can also have 
CollectPartialFine as a Subfeature. Attributes can be 
used to further characterize features. In this example, 
the feature BorrowLoanCopy can be further 
characterized by the attribute days that represent the 
maximum number of days that a library member can 
borrow a book. 
Finally, it is possible to model dependencies between 
features using constraints. A constraint language, such 
as OCL, can be used to express these dependencies [4]. 
For instance, the following is an example of an OCL 
constraint that disables the subfeature 
renewLoanCollectPartialFine if the feature 
CollectTotalFine is selected: 
 
context ManageBorrows inv: 
self.borrowLoanCopy.collectFine 
  ->oclIsTypeOf(CollectTotalFine) implies 
  self.renewLoan.renewLoanCollectPartialFine 
    ->isEmpty(); 

 
A feature model, such as the one presented in Figure 3, 
represents all the possible features for applications of a 
family of applications. We configure a specific 
application of the family, by removing all the 
variability from the feature model. If we follow the 
analogy that a feature is similar to a classifier, then a 
configuration is achieved by a valid instantiation of the 
features (classifiers). We will elaborate such approach 
in section 4, when we describe a possible 
implementation roadmap.  
In the next section, we present and discuss the use case 
metamodel and in section 4 we discuss how use cases 
can be used as a source for feature modeling. 
 
3. Use Cases 
 
Use cases have been widely adopted since its 
introduction [5]. They have become an integral part of 
the UML standard modeling language. Use cases are 
used essentially for functional requirements modeling, 

as a source for the initial design of a system and for 
documentation. However, with the recent model-
driven approaches, such as MDA [6], and the 
appearance of supporting tools, using computational 
independent models – such as use cases – as first class 
development artifacts can become a reality. However, 
to achieve this goal with use cases, it is necessary to 
remove all ambiguities existent in the UML use case 
metamodel, specially for modeling variability [7, 8]. In 
this section we present our approach to achieve that 
goal. Figure 4 presents an excerpt of the UML 2.0 
metamodel that is related to use cases. Our main 
extensions to the original metamodel are depicted in 
gray. Next, we explain these extensions. 
According to the UML 2.0 specification, a use case is 
the “specification of a set of actions performed by a 
system, which yields an observable result that is, 
typically, of value for one or more actors or other 
stakeholders of the system”. As such, these set of 
actions represent behavior of a system. As it is possible 
to observe from Figure 4, a UseCase has one 
mainBehavior and can have several 
alternativeBehavior’s.  The UML 2.0 specification 
does not state how the behavior of use cases should be 
specified but, since our approach needs a formal 
specification, we will use activities. So, each behavior 
of a use case is specified by an Activity.  
Use cases can have relationships between them. 
Basically, a use case can include (or be included by) 
other use cases and can extend (or be extended by) 
other use cases.  
The include relationship acts like a procedure call, i.e., 
at some specific point of a use case the behavior of 
another use case is executed. We have introduced the 
InclusionPoint element that represents the point in the 
use case where the inclusion occurs (see Figure 4). The 
location attribute is a reference to a node of an activity 
that models one of the behaviors of the use case.   
On the other end, the extend relationship acts like a 
deviation of the normal flow of a use case. This 
deviation is usually conditional, so the base behavior is 
unaware of the extension. We formalize the UML 
original notion of extension fragment 
(ExtensionFragment element) and add the notion of 
rejoin (Rejoin element). As such, if the extend 
condition is true, the use case behavior is extended at 
one or more extension points, by the corresponding 
fragments (which are alternative behaviors of the 
extending use case). The attribute location of the 
ExtensionPoint element is a reference to a node of an 
activity that models one of the behaviors of the 
extended use case.  
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Constraint
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fragments

useCase

extension

 
 

Fig. 4. Excerpt of Use Case metamodel. 

Borrow Loan Copy

Collect Partial Fine

Collect Total Fine

Manage Borrows
«include»

Librarian

«include»
«include»

«include»

«include»

{Collect Fine; cardinality: 
1..1}

{Borrows; cardinality: 
0..1}

Interact with Librarian 
Application

«include»

{Renew Loan 
Collect Partial Fine; 

cardinality: 0..1}

{RenewLoan; 
cardinality: 0..1}

Renew Loan

extension points
Collect Fine

Unable to Renew
After Collect Fine
Verify Reservation

Renew Loan

Handle Gold 
Memberships

«extend»

Extension: Handle Renew Loan
Cond.: {Member Type=Gold Member}
E. Fragment: Handle Collect Fine 
    before Collect Fine
E. Fragement: Handle Borrow Rule 
    before Verify Reservation

«include»

{Handle Gold 
Memberships; 

cardinality: 0..1}

 

Fig. 5. Example of a use case diagram for a Library product line. 

 
The rejoinSource of the Rejoin element is a reference 
to a node of an activity that models the alternative 
behavior of the fragment of the extending use case. A 
more deep discussion of the extend relationship can be 
found in [9]. 

With these extensions to the original UML use case 
metamodel we remove the existing limitations that 
restricted its application into model-driven approaches. 
Of course, further specifications can be added, notably 
constraints to validate the model, such as the ones 
presented next: 
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context Include 
inv: self.inclusionLocation.useCase = 
       self.includingCase; 
inv: self.addition <> self.includingCase; 
 
context Extend 
inv: self.extension <> self.extendedCase; 
inv: self.fragments->forAll( f | 
       f.extensionLocation.useCase = 
       self.extendedCase ); 
inv: self.fragments->forAll( f | 
       f.rejoins->forAll( r | 
       r.rejoinTarget.useCase = 
       self.extendedCase ) ); 
 
In this section we have presented an approach to 
remove ambiguities from the UML use case 
metamodel. It is now possible to analyze the semantic 
and syntactic relations between use cases and features. 
In the next section we present our view on this topic. 
 
4. Relating Use Cases and Features 
 
The issue of relating use cases and features is not new. 
Notably, there is the much referenced work of Griss, 
Favaro and d’Alessandro [10]. In their work they 
propose an approach by which functional features are 
extracted from the domain use case model. They also 
propose that the structure of the feature model can be 
created according to the structure of the use case 
model (by using the «include» and «extend» 
relationships). As the authors suggest, further types of 
features can be discovered and added along the 
development process, such as features resulting from 
architectural or design modeling tasks. More recent 
works in this field are also aligned with this approach 
[7, 11, 12]. We also follow this approach, since feature 
modeling requires an extensive knowledge of the 
domain, which is only possible after the effective 
modeling of such a domain. This is true, particularly 
for the functional features of the domain. So, the initial 
feature model is build from the domain use case 
model. In the remainder of this section we will discuss 
this mapping based on the use case model example of 
Figure 5. Figure 5 already contains visual annotations 
that are used to model variability. For the moment we 
will disregard these annotations. As the figure shows, a 
Library system has functionality that regards to the 
Librarian. The Librarian can use it to manage borrows. 
He can borrow loan copies to library users and also 
renew loans. Such borrows can be subject to fines if 
they surpass a certain duration. In the case the user is a 
gold member of the library, special treatment applies.  
 
Use Cases 
According to our approach, each use case is mapped to 
a feature. Top use cases become root features (see 

feature metamodel in Figure 2). The complete structure 
of the feature model can only be created by examining 
the relations between use cases. As such, we cannot 
say a use case is mandatory or optional without a 
context. This context results from the relationships the 
use case has with other use cases. For instance, if the 
functionality of a use case is always referenced by 
other use cases, then we can say that such a use case is 
mandatory.  This is the case for the top level use case 
Interact with Librarian Application. 
Next, we examine each of the use case types of 
relationships and elaborate on how they can be used to 
model variability and how they can be mapped to the 
feature model. 
 
Include Relationship 
In the UML standard documentation there is nothing to 
support that the include relationship can be used for 
modeling variability. The documentation states that 
“The including use case may only depend on the result 
(value) of the included use case. This value is obtained 
as a result of the execution of the included use case”. 
However, in the context of a variability intensive 
system, like a product line, it is common to have 
alternative or optional includes [11]. In the example of 
Figure 5, we have two alternative includes from the 
use case Borrow Loan Copy: one includes the use case 
Collect Total Fine and the other includes the use case 
Collect Partial Fine. In this case, if the two included 
use cases match the requirements for the inclusion 
point, no harm is done, since one of them will supply 
the expected behavior to the including use case.  
 

A

IP

B

A

B

a)                                b)  
Fig. 6. Removing a node from an activity diagram. 

In the case we need to model only one include as 
optional, some extra care is needed. If such include 
does not take place, the result is the suppression of the 
inclusion point on the including use case. Regarding 
the behavior of the use case, this results in the removal 
of the activity node corresponding to the inclusion 
point. If the node had only one incoming and one 
outgoing control flow, we simply connect the outgoing 
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flow of the previous node with the incoming flow of 
the next node. We must also make sure that the output 
object nodes of the previous node are connect to the 
input object nodes of the next node and that they are 
compatible. This situation is presented in Figure 6, 
where an inclusion point node (a) is removed (b). If 
such requirements are meet, then it is also safe to have 
optional includes. More complex scenarios may also 
be possible but require human intervention or more 
contextual knowledge from the modeling tool.  
Since there is no previous notation to model variability 
in use cases, we introduce the concept of variability 
annotation. In Figure 5, they are represented as notes 
linked to the include and extend relationships. They 
represent variability points with a name, a minimum 
and a maximum cardinality and the respective options. 
For instance, the variability annotation Collect Fine, 
has a cardinality 1..1 that says that one and only one 
of the options must be selected. The two options are 
the includes that related the use case Borrow Loan 
Copy to the included use cases Collect Total Fine and 
Collect Partial Fine. Since it is the modeler of the use 
case domain model that is editing these use cases and 
relationships, he/she is also capable of making these 
annotations.  
With this variability information annotated in the use 
case model it becomes possible to map the use case 
relationships to the feature model. In the case of the 
include relationship, each include annotation is 
mapped into a Subfeature. The including use case is 
mapped to the parent feature of the Subfeature and the 
included use cases are mapped to the childs of the 
Subfeature (see Figure 2). Since a use case can be 
referenced by more than one include/extend it can also 
become a child in several subfeatures. Because a 
feature definition exists only once, a use case is 
mapped only once to a Feature and the subsequent 
references are mapped to a Reference in the feature 
model.     
 
Extend Relationship 
Contrasting with the include relationship, the extend 
relationship is used to model variability. As we can 
observe from Figure 4, an extend has an associated 
condition. If this condition evaluates to true, the use 
case is extended by the extension fragment’s 
behaviors. On the other end, if the condition is not 
true, no extension is performed, and the behavior of 
the base use case remains unchanged and unaware of 
the extending use case.  
In the example of Figure 5, the use case Renew Loan 
can be extended by the use case Handle Gold 
Memberships. As the extend note states, the extension 
only takes place if the member that is renewing the 

loan is a gold member. As the example shows, these 
conditions typically relate to alternative or extending 
behavior at an application level, not at a product line 
level. As such, and also not to alter the semantics of 
the extend relationship, we also use variability 
annotations to mark the extend relationship. In Figure 
5, the annotation Handle Gold Memberships states that 
the corresponding extend relationship is optional. The 
possibility of also annotating the extend relationships 
with variability annotations permits, for instance, the 
modeling of groups of alternative extends.  
 
5. Implementation Roadmap 
 
In this section we present a possible implementation 
roadmap to the approach described in the paper. For 
that we use Eclipse Modeling Framework (EMF) 
version 2.2.0 [13] and SmartQVT version 0.1.3 [14]. 
The EMF provides a modeling and code generation 
framework for Eclipse applications based on Ecore 
models. These Ecore models support Essential MOF 
(EMOF) as part of the OMG MOF 2.0 specification 
[15]. We note that the code presented is in compliance 
with such versions and may not be valid in other 
versions of the tools. For the validation of the Ecore 
models a possible approach is to use an 
implementation similar to the one described in [16]. 
The process of mapping use cases to features is the one 
presented in Figure 1. The main goal of the process is 
to obtain a use case model for a specific application of 
a domain based on a feature configuration model. For 
that, we use the approach to map use cases to features 
as discussed in the previous sections. Basically, it 
consists of three transformations: transform a family 
use case model into a feature model (T1); transform a 
feature model into a configuration metamodel (Ecore 
model) (T2); and finally, transform a configuration 
model and a family use case model into an application 
use case model (T3). 
 
T1: Family Use Case Model to Feature Model 
The family use case metamodel is similar to the one 
presented in Figure 4 with the addition of two new 
elements used to annotate variability: 
ExtendVariability and IncludeVariability (see Figure 
7). These enable the annotation of variability into 
extend and include relationships, as described in the 
previous section. Figure 5 presents an example of these 
annotations in a family use case model. The resulting 
feature model must be in conformance with the feature 
metamodel presented in Figure 2. Figure 8 presents an 
extract of the QVT operational transformation that map 
a use case family model into a feature model. 
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Basically, the program starts by mapping each use case 
to a feature (line 6). Features resulting from use cases 
have the name of the corresponding use case. The 
program then maps each include and extend, that are 
not referenced by variability annotations, into 
Subfeatures (lines 7 and 8).  For that, it verifies if the 
Feature that maps to the included use case is already 
member of a Subfeature (lines 34 and 35). If so, it uses 
a Reference to reference that Feature. If not, the 
Feature becomes a direct child of the Subfeature. 
Obviously, these Subfeatures are mandatory (line 37).  
 

name: String;
min: Int;
max: Int;

IncludeVariability ExtendVariability

Variability

options: Include[1..*] options: Extend[1..*]
 

 

Fig. 7. Variability annotations for use case models. 

After mapping non-annotated include and extend 
relationships, the transformation program maps 
IncludeVariability and ExtendVariability elements to 
Subfeatures (lines 9 and 10).  The transformation 
involves mapping each of the options of the 
IncludeVariability (or the ExtendVariability) into a 
Subfeature child (lines 55 to 61). These options will 
become Subfeature child’s of type Reference or 
Feature, according to the previously described logic.  
The information regarding cardinality of the variability 
option groups is mapped directly to the cardinality of 
the respective Subfeature (line 64 and 65). 
With this transformation program, if we take as input 
the family use case model presented in Figure 5, we 
obtain a feature model similar to the one presented in 
Figure 3.   
 
T2: Feature Model to Configuration Metamodel 
With the previous transformation we obtain a feature 
model that is in conformance with the feature 
metamodel of Figure 2. What we would like to do now 
is to build configuration feature models that are in 
conformance with the feature model that resulted from 
the previous transformation, i.e., the feature model 
should become the metamodel for the configuration 
models. To achieve this, we use an approach in which 
a model is promoted to a metamodel. In this case, the 
feature model that resulted from the previous 
transformation is transformed into an Ecore 

metamodel. If we map Features to Classes, then 
Subfeatures become naturally associations between 
Classes. With this approach, feature configurations are 
simply instances of the corresponding Classes. This is 
similar to the approach proposed in [1]. Although it is 
a recent discussion topic, at least among practitioners, 
the generic process of promoting models to 
metamodels is out of scope of this paper [17]. Next, we 
briefly describe the transformation between feature 
models and Ecore feature configuration metamodels. 
An extract of the QVT operational transformation is 
presented in Figure 9. In the transformation, each 
Subfeature is mapped to an abstract EClass with the 
same name (line 15). Later, this abstract EClass will 
become the eSuperType of the types that will map to 
the childs of the Subfeature (lines 50 to 53). After 
transforming all Subfeatures to abstract EClasses, the 
program maps each rootFeature to a non-abstract 
EClass (line 16) and to an EReference from the EClass 
resulting from the FeatureModel element to each of 
the new EClasses (line 17). This will map all top level 
Features. Next, all not yet mapped Features are also 
mapped to non-abstract EClasses (lines 19 and 20).  In 
a second pass, all Features are again processed (line 
22). This time, for each Feature, its Subfeatures are 
mapped to EReferences. The eType for each of these 
EReferences is the abstract EClass that resulted from 
the initial transformation of the SubFeatures (line 47 
and 48). This abstract EClass becomes the eSuperType 
of the EClasses that were mapped from the childs 
(References or Features) of the Subfeature (lines 50 to 
53). With this transformation we obtain an Ecore 
metamodel that is equivalent to the feature model. This 
transformation regards the activitity T2 depicted in 
Figure 1. We can now use the EMF generation 
capabilities to generate an editor from which we can 
create feature configurations that are in conformance 
with the metamodel.   
 
T3: Family to Application Use Case Model 
The last step in the transformation process involves the 
generation of application use case models from feature 
configurations (activity T3 in Figure 1). This requires a 
transformation that must have at least the family use 
case model and the feature configuration model as 
input and a product (or application) use case model as 
output. Basically, the transformation involves 
including in the output model only the use cases, 
includes and extends relationships that are referenced 
by the feature configuration model. This 
transformation can be similar to the other two 
described in the paper. 
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transformation Usecases2Features(in ucModel:USECASE, out fModel:FEATURE); 
 
main() { 
  ucModel.objects()[Subject]->map subject_to_feature_model();  
   
  ucModel.objects()[UseCase]->map usecase_to_feature();  
  ucModel.objects()[Include]->map include_to_subfeature();  
  ucModel.objects()[Extend]->map extend_to_subfeature();  
  ucModel.objects()[IncludeVariability]->map includeVariability_to_subfeature();  
  ucModel.objects()[ExtendVariability]->map extendVariability_to_subfeature();  
} 
 
mapping Subject::subject_to_feature_model () : FeatureModel { 
  rootFeature := ucModel.objects()[UseCase]->map usecase_to_root_feature(); 
  name := self.name; 
} 
 
mapping UseCase::usecase_to_root_feature () ... 
 
mapping UseCase::usecase_to_feature () : Feature ... 
 
helper includeInVariability(i: Include) : Boolean { 
  var x :=ucModel.objects()[IncludeVariability]->select(iv | iv.options->exists(i1|i1=i) ); 
  var y := x->first(); 
  return if y = null then false else true endif; 
} 
 
mapping Include::include_to_subfeature () : Subfeature 
  when { not includeInVariability( self ); } { 
  var f: Feature; var r: Reference; 
   
  parent := self.includingCase.resolveone(Feature); 
  f := self.addition.resolveone(Feature); 
  r := if repeatedFeature(f) then object Reference{ name:=f.name; feature:=f; }  
       else null endif; 
   
  name := self.name; 
  minCardinality:=1; maxCardinality:=1; 
  childs := if repeatedFeature(f) then Sequence { r.asType(Node) }  
            else Sequence { f.asType(Node) } endif;   
} 
 
helper repeatedFeature(f: Feature) : Boolean { 
  var x := fModel.objects()[Subfeature]->select(sf | sf.childs->exists( f1| f1=f) ); 
  var y := x->first(); 
  return if y = null then false else true endif; 
} 
 
mapping IncludeVariability::includeVariability_to_subfeature () : Subfeature { 
  var f: Feature; var r: Reference; 
   
  parent := self.options->first().includingCase.resolveone(Feature); 
   
  childs := Sequence { }; 
  self.options->forEach(i) { 
    f := i.addition.resolveone(Feature); 
    r := if repeatedFeature(f) then object Reference{ name:=f.name; feature:=f; }  
         else null endif; 
    childs += if repeatedFeature(f) then Sequence { r.asType(Node) }  
              else Sequence { f.asType(Node) } endif; 
  }; 
   
  name := self.name; 
  minCardinality := self.min; 
  maxCardinality := self.max; 
} 
 

 

Fig. 8. Extract of QVT Operational transformation from use case to feature model. 
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transformation Features2Ecore(in fModel:FEATURE, out eModel:Ecore); 
 
main() { 
  fModel.objects()[FeatureModel]->map feature_model_to_epackage(); 
} 
 
mapping FeatureModel::feature_model_to_epackage () : EPackage { 
  var fm: EClass; 
  name := self.name; 
 
  -- first pass 
  fm := self->map feature_model_to_eclass(); 
  eClassifiers := Sequence { fm }; 
  -- Each Subfeature becomes an abstract class 
  eClassifiers += fModel.objects()[Subfeature]->map subfeature_to_eclass(); 
  eClassifiers += self.rootFeature[Feature]->map feature_to_eclass(); 
  fm.eStructuralFeatures := self.rootFeature[Feature]->map rootfeature_to_ereference(fm); 
  -- Transform all other features... 
  eClassifiers += fModel.objects()[Feature]->select(x | x.resolveone(EClass)=null) 
                    ->map feature_to_eclass(); 
  -- second pass 
  fModel.objects()[Feature]->map subfeatures();   
} 
 
mapping FeatureModel::feature_model_to_eclass () : EClass ... 
 
mapping Feature::rootfeature_to_ereference ( fm: EClass) : EReference ... 
 
mapping Feature::feature_to_eclass () : EClass ... 
 
mapping inout Feature::subfeatures () { 
  var c:EClass; 
  c := self.resolveone(EClass); 
  c.eStructuralFeatures := self.subFeatures[Subfeature]->map subfeature_to_ereference(); 
} 
 
mapping Subfeature::subfeature_to_eclass () : EClass ... 
 
mapping Subfeature::subfeature_to_ereference () : EReference { 
  var c: EClass; 
   
  name := self.name; 
  containment := true; 
  lowerBound := self.minCardinality; 
  upperBound := self.maxCardinality; 
   
  c := self.resolveone(EClass); 
  eType := c; 
   
  self.childs[Feature]->select(c|c.oclIsKindOf(Feature)).resolveone(EClass) 
                          ->map childs_to_subtype(c); 
  self.childs[Reference]->select(c|c.oclIsKindOf(Reference)).feature.resolveone(EClass) 
                            ->map childs_to_subtype(c); 
} 
 
mapping inout EClass::childs_to_subtype (superType: EClass) ... 

 

Fig. 9. Extract of QVT Operational transformation from feature to Ecore model. 

A more generic transformation program could be 
required if we wanted our transformation to support 
changes in the family use case model (which can by 
very probable). Such changes result also in changes to 
the feature model that acts as metamodel for the 
feature configurations. To have only one T3 
transformation process regardless of number of 

configuration metamodels, the T3 activity 
transformation could also have as input the feature 
model. Since this model is the source for obtaining the 
configuration metamodels, it could serve as guide to 
process the feature configuration models regardless of 
their metamodels (they would have to be processed as 
generic Ecore models), thus allowing a generic 
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transformation process that can be applied to all 
possible feature models.  
 
6. Conclusions 
 
In this paper, we have presented a model-driven 
approach to map use case to features. This approach is 
inspired by the original work of Griss et al. [10]. 
Gomaa also proposes a similar relationship between 
use cases and features [11]. We differ from their works 
because we base the variability annotations in the 
extend and include relationships and not in the use 
cases. We have explained in the paper why this is more 
appropriate to model variability. 
Czarnecki et al. presented an approach to map features 
to design models [18]. Basically, in their approach, a 
template design model is annotated with presence 
conditions that are logic expressions based on features.  
Non-annotated elements have an implicit true presence 
condition. If these expressions evaluate to true, the 
design element is included in the result model. In their 
approach, design elements must be annotated after the 
feature model. In our approach, the use case variability 
annotations have a similar effect, but we differ, since 
the design elements included in a configuration will 
result from the ones that are necessary to realize the 
product use case model that results from the 
transformation process.  Eriksson et al. also describe a 
model based approach that relates use cases and 
features [7]. However, their work is focused on used 
cases being described by scenarios and sequences of 
steps. As such, it does not explicitly deal with 
mappings at a UML use case diagram level (as we do) 
but at an inner use case level. They document the 
transformation process but do not precisely specify it, 
so it is difficult to tell if such approach is possible to 
implement with transformation languages such as 
QVT.  Their approach to modeling use case variability 
has similarities with the one of Fantechi et al. [19]. 
Although we have not explore this topic in the paper, 
our approach to model variability within use cases is 
by doing so with the activities that model the use 
case’s behavior. Similar variability annotations as the 
ones present for the extend and include relationships 
can be used to annotate activity model elements and a 
similar transformation approach can also be used to 
map such elements to feature model elements. 
We have discussed and proposed mappings between 
use case and feature models in a formal way that 
supports its implementation. Regarding applicability of 
our approach, we have showed that an implementation 
is feasible even with a not yet mature QVT 
implementation. Clearly, transformations could be 

improved by a complete QVT implementation 
enabling, for instance, the use of the QVT relational 
language. As discussed, the proposed method seams to 
open a feasible approach to implement mixed use case 
and feature model-driven based product line 
engineering methods. 
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