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Abstract 

 
Model driven approaches are shifting software 

development from a code based activity to a model 
based activity. Models can be refined and transformed 
from requirements into code specific to a platform. 
Although several model transformations can occur, 
they usually take place at a single development stage. 
In the case of software product lines, and particularly 
of software factories, the modeling of a system can 
occur at several stages, for instance, at the 
software-house, at the systems integrator and at the 
final customer site. Basically, this requires that the 
model used at a particular stage can be refined at the 
next stage. In this paper, we explore the issues related 
to such an approach and we propose model 
transformation patterns that can be generically applied 
to models so that they can be used in multi-staged 
modeling approaches. We show how to realize the 
approach with the Eclipse Modeling Framework and 
present an insurance case study. 
 
1. Introduction 
 
The model driven approach is rapidly evolving and 
with a potential of becoming the next mainstream 
paradigm for software development. In this new 
paradigm, models play the central role, as the code 
does for traditional approaches. Models are used to 
construct abstractions of the system at several levels 
and from different perspectives. Models at higher 
abstraction levels can be transformed into models at 
lower abstraction levels and, eventually, models are 
transformed into code that can be executed by a 
specific platform. Usually, this is done at a single 
stage. For instance, a software house can apply this 
approach to build its software packages. However, in 
the case of software product lines, and particularly of 
software factories, the modeling of a system can occur 
at several stages, for instance, at the software house, at 
the system integrator and at the final customer site. 

Generically, one can say that in this case, the software 
system can be specialized at all the stages (or tiers) of 
the supply-chain. Such scenario requires that the 
models used at a particular stage can be refined at the 
next stage. 
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Fig. 1. Example of MOF metadata architecture. 

The Model Driven Architecture (MDA) is the Object 
Management Group’s (OMG) approach to model 
driven development [1]. At the core of this architecture 
is the Meta Object Facility (MOF) standard [2]. MOF 
provides a metadata management framework and a set 
of metadata services to enable the development and 
interoperability of model and metadata driven systems. 
Figure 1 presents an example of the MOF metadata 
architecture for supporting database schema modeling. 
The figure represents the relationships between models 
at different levels of the MOF architecture. This figure 
also represents very well the metadata architecture for 
single-staged software development approaches. In this 
paper, we will address in a practical way multi-staged 
model driven software approaches and how they differ 
in their nature from single-staged approaches. As we 
will see, multi-staged approaches result in a series of 
method recipes for applying model driven technologies 
in a way similar to design patterns [3]. As such, we 
will present the multi-staged model driven software 
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approach as a series of model driven transformation 
patterns. We will do so using the Eclipse Modeling 
Framework (EMF) [4], an eclipse based metamodeling 
framework that conforms to the MOF standard, and an 
insurance software supply chain as a case study. 
 
The remainder of this paper is structured as follows. In 
Section 2, we present model driven engineering 
approaches with actual technologies (e.g., EMF) and 
motivate the reader to our approach for multi-staged 
modeling. In Section 3, we discuss model 
transformations and the particularity of multi-staged 
model transformations in the context of a software 
insurance supply chain case study. Section 4 is 
dedicated to present and illustrate the multi-staged 
model transformation patterns. Section 5 is dedicated 
to the discussion of the approach and of related work. 
In Section 6, we provide some concluding remarks. 
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Fig. 2. Using EMF toolset to generate a domain modeler. 

2. Motivation 
 
To motivate the reader, we will use in this section the 
very simple and common example of domain modeling 
database schemas. So, using metamodeling tools, the 
goal is to build a database schema modeler application. 
We will briefly illustrate how this can be achieved with 
EMF. 
Figure 1 presents the relationships between database 
concepts and the MOF architecture. In Figure 2, we see 
how the EMF toolset can be used to support the 
building of a domain specific modeler. As the figure 
suggests, in EMF, the domain metamodel is specified 
in the form of a core model, which is the format of 
EMF metamodels. The metamodel of these core 
models is called ECore. ECore was influenced by 
MOF [2] and, to a certain extent, we can consider it as 
a subset of MOF. In our simple example, the 
metamodel for database schemas would then be 
specified with a core model. Based on a core model 
(i.e., a metamodel), EMF is then able to generate 
source code to support the core functionality of a 
modeling environment (see Figure 2). In fact, since 
core models are platform independent, it is necessary 

to add platform specific information regarding code 
generation in what is called a genmodel. A genmodel is 
basically a decorator of the core model with details 
regarding code generation. EMF can then be used to 
generate code that supports the creation of models that 
conform to the core metamodel and a tree-based visual 
modeling editor. Therefore, EMF provides the core 
functionalities of a metamodeling tool capable of 
generating domain specific modelers.  
 
Figure 3 presents and example of a possible metamodel 
for database schemas. Used as input to a metamodeling 
toolset such as EMF this metamodel could be used to 
generate a database schema modeler. Using this 
generated modeler, database schemas that conform to 
database schema metamodel can be created. However, 
these database schemas represent also metadata since 
they specify the structure of the objects that compose 
databases that conform to that database schema (e.g., 
tables, columns and foreign keys). Therefore, a 
database schema can be seen as a metamodel of a 
database instance (in Figure 1, a database schema 
model is a metamodel of database objects) and it 
should be possible to generate code to support database 
instantiation based on a database schema model. 
Although this is true, EMF (and, to our knowledge, 
other metamodeling tools) does not directly support it 
since a domain model is not a core model and the 
generative capabilities of EMF can only be applied to 
core models.  
 
The approach we present and discuss in this paper 
regarding multi-staged domain specific model driven 
engineering is inspired on the identified restriction of 
metamodeling tools. To tackle this restriction, we 
propose the promotion of domain models to native 
metamodels of the metamodeling tool (core models in 
the case of EMF). The approach is depicted in gray in 
Figure 2.  
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Fig. 3. Possible metamodel for a database schema. 

330330

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore.  Restrictions apply.



 

Contacts : DBSchema

PersonTable : Table

tables_person1

M
2 

– 
M

et
am

od
el

in
g

M
1 

– 
D

om
ai

n 
M

od
el

in
g

Metamodel 1 Metamodel 2

aDBSchema : 
DBSchema

sname=“Contacts”

aTable : Table

tname=“PersonTable”

aColumn : Column

cname=“name”
ctype=“String”

bColumn : Column

cname=“address”
ctype=“String”

a) Transformation 
T1

Person : RowType

name: String
address: String

rows_personColl
0..*

aRowType : 
RowTypeaRowColl : RowColl

rname=“Person”Rcname=”personColl”

b) Transformation 
T2

Contacts : DBSchema

sname=“Contacts”

PersonTable : Table

tname=“PersonTable”
PersonColl : RowColl

Rcname=”personColl”

Name : Column

cname=“name”
ctype=“String”

Address : Column

cname=“address”
ctype=“String”

Person : 
RowType

rname=“Person”

  
Fig. 4 Possible approaches for promoting a domain model into a metamodel.

In Figure 4, we show a simplified example of how a 
promotion approach could be applied in the case of our 
database schema modeling example. In the lower half 
of the figure we can see a domain model representing 
the schema for a contacts database. The idea behind the 
promotion approach is to transform the domain 
modeling elements with meta semantics to the 
corresponding metamodeling elements. For instance, 
the domain element aTable which models a table of 
persons gives origin to the class PersonTable at the 
meta level. We can say that we are specializing the 
original metamodel by example, since the source for its 
specialization is a concrete model that conforms to the 
metamodel we are specializing. There are, however, 
two perspectives in this kind of transformation: a) an 
instantiation perspective, where the goal of the 
resulting metamodel is to support instantiations of the 
modeled concepts (transformation T1 and metamodel 1 
in Figure 4); b) a specialization perspective, where the 
goal of the resulting metamodel is to support further 
specializations of the modeled concepts 
(transformation T2 and metamodel 2 in Figure 4).  
 
3. Multi-Staged Domain Modeling 
Approach 
 
We will illustrate our approach to multi-stage modeling 
with an example based on a case study developed at 
I2S, a Portuguese software house specialized in the 

development of software for insurance companies. The 
software that the company develops is used in what is a 
typical scenario for multi-staged modeling. Insurance 
agreements, which represent agreements between 
insurers and their customers, are a core concept in 
insurance. These agreements are commonly known as 
insurance policies. The structure and rules that govern 
these agreements can be specialized at several stages, 
e.g., insurance company headquarters, division, branch, 
or agent. Figure 5 presents how our approach can be 
applied to support multi-stage modeling of insurance 
agreements. 
 
The stages presented in Figure 5 represent players of 
an insurance business. In the figure we can see the 
insurance company, an insurance company division 
and an insurance company branch. Each of the stages 
runs the same domain-specific platform [5], in this 
case, an insurance information system platform. The 
domain-specific platform can be configured for a 
particular purpose through domain-specific modeling. 
Domain-specific modeling is done by a domain-expert. 
In this case, insurance agreements are modeled and 
used to configure the domain-specific platform. As 
Figure 5 shows, agreement models can be specialized 
in succeeding modeling stages. The concepts that are 
global and common to all the stages are represented by 
the domain model Insurance.ecore.  
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Fig. 5. Multi-staged modeling of insurance supply chain with EMF. 

The first metamodel (Agreement.ecore in the M2 layer 
of stage N) is used to specify a specialized modeling 
environment, i.e., a domain-specific modeling 
environment. With this environment, the domain 
modeler at the M1 layer no longer needs to use Ecore 
abstractions, it can use specific abstractions of the 
domain. In this case, at the M1 layer, the domain 
modeler specifies insurance agreement models. We can 
see how this is achieved at stage N+1 and N+2 with 
CarInsurance.agreement and 
LuxuryCarInsurance.carinsurance. As we have 
discussed in the previous section, these domain models 
can be promoted to metamodels so that the generative 
capabilities of the metamodeling tool can be used to 
support two perspectives: the specialization of the 
domain models and the instantiations of the domain 
model.   
 
To explain the multi-staged model driven scenario it is 
important to understand the involved roles. There are 
basically two human roles: metamodeler and domain 
modeler. The metamodeler uses the metamodeling 
framework directly. In the case of EMF, the 
metamodeler edits directly core models. A domain 
modeler is someone that edits domain-specific models, 
usually according to a metamodel that is specified by a 
metamodeler. Obviously, it is also necessary to have a 
platform to execute the modeled concepts. In Figure 5 
this platform is the Insurance Information System, 
which is a domain-specific platform. In Figure 5, it is 
possible to observe the responsibility of these three 
roles for a multi-staged modeling approach: the 

metamodeler has the responsibilities at the M2 layer; 
the domain modeler has responsibilities at the M1 
layer; and the domain-specific platform at the M0 
layer. In fact, the M1 layer is divided into M1 and M1’. 
The M1’ layer is where the domain modeling takes 
place. The domain model of a specific stage (at the 
M1’ layer) is used to generate the metamodel of that 
stage by using the promotion transformation. For 
instance, the CarInsurance.agreement domain model is 
transformed into the CarInsurance.ecore metamodel. 
Following the discussion of the previous section, each 
metamodel has two perspectives: specialization and 
instantiation. The instantiation perspective is generated 
by the instantiation transformation, and the result is the 
iCarInsurance.ecore that is used as metamodel for 
instances at the corresponding stage. The original 
metamodel of the stage (in this case, 
CarInsurance.ecore) is used as metamodel to generate 
the modeling environment of the next stage. Details 
about these two perspectives and the transformations 
involved will be given in the next section.  
 
Since the approach is based on domain-specific models 
and those require a domain-specific modeling 
environment, the process bootstrapping is done by the 
metamodeler. The first metamodel (core model) is used 
to introduce the domain-specific modeling concepts 
that will be used by domain-experts in all the stages to 
create or specialize domain-specific models (in this 
case, insurance agreements). Such metamodel will 
provide domain modelers their modeling concepts in a 
way similar to the concepts that EMF provides to the 
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metamodeler. As a bootstrapping metamodel, it must 
also integrate with the concepts of the domain-specific 
platform (which are modeled in the domain model 
Insurance.ecore). Figure 6 depicts the models at the 
bootstrapping of the multi-staged model driven 
approach for the software insurance supply-chain case 
study: Agreement.ecore which is the specialization 
metamodel; Insurance.ecore which is the domain 
model; and iInsurance.ecore which is the instantiation 
metamodel. The bootstapping process corresponds to 
the first stage (Stage N) depicted in Figure 5. Figure 6 
serves also as a good example to illustrate the 
specialization and instantiation perspectives that we 
can obtain from a metamodel. Some elements of the 
specialization metamodel are annotated (the 
annotations are depicted in the diagram in a similar 
way to UML stereotypes). If we take a closer look at 
the specialization metamodel of Figure 6, we see that 
only AgreementRoot and Agreement are not annotated 
and that one instance of the former must contain 
exactly only one instance of the latter. In our approach, 
we use annotations to mark the semantic of the 
elements at the domain metamodeling level (M1’ in 
Figure 5). For instance, according to the annotations of 
the Action element in Figure 6, the inclusion of such 
element by a domain expert in a domain model 
corresponds to adding the semantics of an EOperation 
at the meta level. This means that in the resulting 
instantiation model an operation should be generated. 
The use of annotations to mark metamodel elements 
enables the association of meta semantics to 
metamodels without requiring an intrusive 
modification on them. Therefore, the approach can be 
non-intrusively applied to whatever metamodel. Only 
non-annotated elements and annotated elements 
contained by references with refines or subsets 
annotations are included in the instantiation model. We 
will further detail this transformation in the next 
section. 
 
In Figure 5 and Figure 6, it is possible to observe the 
possible relationships between the models that result 
from the modeling activities and the domain model. 
This domain model represents the concepts that 
support the domain specific platform (in our example, 
the Insurance Information System). These concepts are 
available at every stage of the supply chain and, to a 
certain extent, represent the commonality in the 
product line.  
 
At each stage, the instantiation activity generates the 
instantiation model from the metamodel. The 
metamodels are also used to generate the domain 
modeling environments of the next stages. These 
environments are used by the domain modelers and the 

resulting domain models are promoted to metamodels 
that are specializations of the previous ones. This 
process can be repeated to support subsequent 
modeling stages.   
 
4. Transformation Patterns 
 
In this section we present our approach to multi-stage 
model driven software development. Since a 
multi-stage model driven approach can be applied in 
several scenarios (being the insurance software supply 
chain only one of them) we explain our approach as a 
set of model driven development patterns. We follow 
the spirit of the original description of design patterns 
and we describe here the problem and the proposed 
solution of each model driven pattern. The 
consequences of the patterns are discussed on Section 
5. Each presented pattern is a part of a more large-scale 
pattern that we call Multi-Stage Domain Specific 
Modeling. If we continue to make the analogy with 
traditional development patterns we could say that this 
is an architectural style pattern [6]. 
 
The Problem 
How to support a multi-staged domain-specific 
modeling approach with model specialization using 
current metamodeling tools and in the context of a 
domain-specific platform.   
 
The Solution 
The idea behind the proposed approach is that the 
domain models will be used in two perspectives: to 
support instances of modeled concepts at any given 
stage (instantiation perspective) and to support the 
specialization of concepts at the next stage 
(specialization perspective). The proposed solution 
adopts off-the-shelf metamodeling tools. By this we 
mean that the solution is essentially based on existing 
generative and transformational support of publicly 
available metamodeling tools. Eclipse EMF is one 
example of such a metamodeling tool. To support the 
multi-stage model driven approach we propose that the 
models of the native metamodel format be annotated in 
a manner that marks their elements as being instance 
elements (instantiation perspective) or meta elements 
(specialization perspective). Such annotations can then 
be used to guide two transformation activities: the 
instantiation transformation and the promotion 
transformation.  
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Fig. 6. Metamodel, instantiation metamodel and domain model. 

Figure 5 presents an illustration of this pattern for an 
insurance supply chain. The instantiation 
transformation uses the elements of the metamodel that 
are part of the instantiation perspective to generate 
another metamodel adapted to support instances of the 
modeled concepts. Details of this transformation will 
be given next. The promotion transformation interprets 
the domain metamodel as a specialization by example 
of the metamodel of the previous stage. Using the 
annotations of the previous metamodel, it promotes the 
domain metamodel into a native metamodel that 

specializes the previous metamodel. Therefore, 
specialization is achieved by the domain metamodel. 
The process can be repeated to support further stages: 
the resulting metamodel can be used to generate the 
instantiation model of the current stage as well as 
supporting the generation of the domain specific 
modeling environment for the next stage. Therefore, 
the metamodeling tool is reused across all stages and 
each stage has a generated domain-specific modeling 
environment.
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Fig. 7. Domain metamodel for a car insurance agreement (CarInsurance.agreement). 

4.1 Promotion Transformation Pattern 
 
Problem 
How to support the specialization of domain models 
that are not native metamodels of the metamodeling 
tool and, therefore, do not have the native support for 
specialization.  
 
Solution 
We propose a solution that is based on the promotion 
of the domain model to a native metamodel of the 
metamoldeling tool in a way that preserves the 
semantics of the domain model. Therefore, the domain 
model can be seen as a domain metamodel. We call 
this transformation a promotion because we are 
transforming a model into a metamodel, i.e., we are 
promoting a model into a metamodel. Our solution is 
proposed in the context of the multi-stage model driven 
pattern and therefore, in conformance with the other 
patterns involved we use annotations to guide the 
transformation process.  
 
Figure 7 presents an example of a domain model (in 
fact it is acting as a metamodel) which metamodel is 
the one presented in Figure 6 (M2 metamodel). The 
result of applying the Promotion transformation to the 
model of Figure 7 results in the native metamodel of 
Figure 8. Basically, each object of the domain model 
becomes a Class (EClass) in the native metamodel. 
Each reference instance (or link) becomes a Reference 
(EReference) in the native metamodel. As such, we can 
say that the Promotion transformation is composed of 
mainly two sub-transformations: Object to Class and 
Reference Instance to Reference.  
 
The goal is to transform domain models into their 
equivalent native metamodels. A domain model is an 
instance of a metamodel, and as such is composed of 
objects and links or reference instances between 
objects. The objects are instances of Class elements 
(EClass) of the metamodel. The links are instances of 
Reference elements (EReference) of the metamodel. 
When the domain modeler creates an instance of a 

Class he/she is making a specialization of the Class. 
As such, in the Object to Class transformation, an 
object is transformed into a Class that must specialize 
(become a subtype of) the meta-class of the source 
object. For instance, the aRole object of Figure 7 
becomes the InsuredCar EClass in Figure 8. The 
InsuredCar EClass is a specialization of the Role 
EClass, which is the meta-class of the aRole object. 
This is the basic principle regarding the promotion of 
objects to classes. However, some details must be 
taken care. For instance, what is the name for the new 
generated classes or what to do with the values of the 
objects fields? Once again, we adopt annotations to 
solve these issues. If we take a look at the original 
metamodel from Figure 6, we see that the 
elementName field of the NamedElement class is 
annotated with «name». The Promotion transformation 
uses this annotation to select the value it will use for 
the name of the generated classes. Regarding the 
values of the objects fields, they are used as default 
values in the new generated classes (see Figure 8). 
 
Links also follow an approach similar to that of the 
objects. As we have mentioned, they become 
references in the resulting metamodel. But, because 
they are instances of references, they are annotated as 
subsets or refines of the original reference. For 
instance, the roles link of Figure 7 that links 
aAgreement and aRole becomes the insuredCar 
reference between CarInsurance and InsuredCar target 
elements (see Figure 8). This reference is annotated as 
being a subset of the roles reference of the metamodel 
of the previous stage. We use the terms subsets and 
refines with similar semantics as the ones used in the 
UML language. Since the metamodeling tool (in this 
case EMF) is not aware of these annotations, it is 
necessary to extend/adapt it so that it will generate 
code according to the annotations in the metamodel. In 
the case of EMF, because of its extensible architecture, 
it is simple a matter of developing JET [7] templates 
that add the necessary extensions to the generated 
code. Because this is relatively straightforward we do 
not detail any further this necessary activity. 
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4.2 Instantiation Transformation Pattern  
 
Problem 
How to support instantiation from domain metamodels 
that are not native metamodels of the metamodeling 
tool and, therefore, are not directly usable by 
metamodeling tools as sources for generating 
instantiation supporting code. 
 
Solution 
The solution presented here is part of the multi-stage 
model driven pattern. Therefore, it depends on the 
transformation presented in the previous section that 
enables the promotion of a model to the metamodel 
level. The sequence of transformations is depicted in 
Figure 5. In the figure it is possible to observe that the 
instantiation model is obtained from the metamodel 
that results from the Promotion transformation (except 
for the bootstrap stage). In the instantiation metamodel 
the goal is to have only the elements that resulted from 
the elements with meta semantics of the previous stage 
that were specialized. For instance, in Figure 6 we see 
that the instantiation model only contains elements that 
do not have annotations denoting their meta semantics. 
In Figure 8, we see that the metamodel that resulted 
from the Promotion has several refines and subsets 
annotations. These indicate elements that were 
specialized. Therefore, these elements are included in 
the instantiation metamodel of the same modeling 
stage (see Figure 9). 
 
Figure 8 presents the specialization metamodel at stage 
N+1 of the insurance case study. This specialization 
metamodel was obtained from the domain metamodel 
depicted in Figure 7. Figure 9 presents the output of 
the instantiation transformation, when the source 
metamodel is the one depicted in Figure 8. As it is 
possible to observe from both figures, the resulting 
instantiation metamodel not only contains elements 
that are not annotated as meta elements in the source 
metamodel but also contains the annotated elements 
that resulted from the specialization process. These 
elements are those that subset or refine meta annotated 
elements of the previous stage. For instance, in Figure 
8 we can see that the hasLiability relationship between 
CarInsurance and the HasLiability EClass subsets the 
relationships relationship of the previous stage. 
Therefore, HasLiability is included in the resulting 
instantiation metamodel. Since this element has an 
annotation stating that it has the meta semantics of an 
EReference, it becomes an EReference element in the 
resulting metamodel. 
 
The solution proposed for this pattern is 
straightforward if we consider it only in the context of 

single-stage development. When we consider it in a 
multi-stage approach we have to take into account the 
refinements (specializations) made in the previous 
stage. The annotations in the source elements regarding 
such refinements as well as their meta semantics can 
guide the creation of the instantiation model. As it is 
possible to observe in the previous examples, such 
annotations are done using the names of the elements 
of the meta-metamodel of the modeling tool (or the 
native metamodel). In the presented examples we use 
ecore, the meta-metamodel of EMF. From Figure 6, we 
see the original intention of the metamodeler regarding 
the elements and their meta semantics at the domain 
metamodeling level: the non-abstract elements Event 
and Role should have a meta semantic of an EClass; 
the non-abstract elements Action and Constraint should 
have a meta semantic of an EOperation; the non-
abstract elements Roleplayer and Relationship should 
have a meta semantic of an EReference; and the non-
abstract element Property should have a meta semantic 
of an EAttribute. These examples represent the four 
most typical instantiation transformations: Class to 
Attribute; Class to Operation; Class to Reference and 
Class to Class. 
 
In Figure 9 we can see the result of applying these 
transformations to the source metamodel of Figure 8. 
For instance, if we take the example of the source 
element Amount, we see that this element is annotated 
as having the meta semantics of an EAttribute. As 
such, if transformed, it must become an EAttribute 
element in the target metamodel. Other possible 
annotations in the source element may be used to 
further specify the value of target element attributes. 
For instance, regarding Amount, we see that in its 
ancestor element Property the field kind is annotated as 
eType (see Figure 6). Therefore, the value of this field 
is used in the instantiation transformation as the value 
of the field eType for the EAttribute that resulted from 
Amount. 
 
Similarly to what was said regarding the promotion 
transformation, the instantiation transformation also 
requires adaptations to the generative infrastructure of 
the metamodeling tool. This is required so that the 
generated code supports the semantics of the proposed 
annotations. This support can be added in the same 
way as presented in the previous section. 
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M2 - Specialization 
Metamodel

hasLiability

hasLiabilityTarget

amount
«EReference»

HasPhysicalDamage: EClass

elementName = 
“HasPhysicalDamage”
lowerBound = 0 
upperBound = 1
containment = true

hasPhysicalDamage

hasPhysicalDamageTarget

«subsets relationships»

eSuperTypes: Relationship
name = “HasLiability”

elementName = “hasLiability”
lowerBound = 1 
upperBound = 1
containment = true

CarInsurance: EClass

eSuperTypes: Agreement
name = “CarInsurance”
elementName = 
“CarInsurance”

«subsets relationships» Liability: EClass

eSuperTypes: Agreement
name = “Liability”
elementName : “Liability”
 

«EAttribute»
Amount: EClass

eSuperTypes: Property
name = “Amount”

elementName = “Amount”
kind = “Money”
value = <void>
changeable = true

PhysicalDamage: EClass

eSuperTypes: Agreement
name = “PhysicalDamage”
elementName = 
”PhysicalDamage”

eSuperTypes: Relationship
name = “HasPhysicalDamage”

«subsets target»

«subsets target»

«subsets properties»

«defaultValue»

CarInsuranceRoot: EClass

eSuperTypes: AgreementRoot
name = “CarInsuranceRoot”

1

elementName = 
“CarInsuranceRoot”

«refines agreement»

carInsurance

«defaultValue»

1

1

1

1

1

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»

«defaultValue»
«defaultValue»

«EClass»
InsuredCar: EClass

eSuperTypes: Role
name = “InsuredCar”
elementName = 
“InsuredCar” «defaultValue»

«subsets roles»
insuredCar

«EReference»
insuredCarPlayer: EClass

eSuperTypes: Roleplayer
name = “insuredCarPlayer”

elementName = 
“InsuredCarPlayer”
lowerBound = 1 
upperBound = 1

«defaultValue»
«defaultValue»
«defaultValue»

«refines roleplayer»
insuredCarPlayer

Car

BusinessEntity

Domain Model

insuredCarTarget

«refines playedBy»

«eReferenceType»

1

1

1

«EReference»
HasLiability: EClass

 
Fig. 8. Native metamodel for a car insurance agreement (CarInsurance.ecore). 

CarInsuranceRoot: EClass

eSuperTypes = AgreementRoot
name = “CarInsuranceRoot”

CarInsurance: EClass

eSuperTypes = 
CarInsuranceAgreement
name = “CarInsurance”

Liability : EClass

eSuperTypes = 
CarInsuranceAgreement
name = “Liability”

hasLiability

meta = Liability
amount : Money

PhysicalDamage : EClass

eSuperTypes = 
CarInsuranceAgreement 
name = “PhysicalDamage”

hasPhysicalDamage

meta = CarInsuranceRoot
meta = CarInsurance

meta = PhysicalDamage

carInsurance

hasLiability: 
EReference

name = “hasLiability”
lowerBound = 1 
upperBound = 1
containment = true

«derivedFrom hasLiability»

«derivedFrom Amount»

M1 – Instantiation 
Metamodel

hasPhysicalDamage: 
EReference

name = “hasPhysicaldamage”
lowerBound = 0
upperBound = 1
containment = true

«derivedFrom hasPhysicalDamage»

insuredCarPlayer : 
EReference

name = 
“insuredCarPlayer”
lowerBound = 1 
upperBound = 1

«derivedFrom insuredCarPlayer»

insuredCar
Car

BusinessEntity

Domain Model

InsuredCar : EClass

eSuperTypes = Role
name = “InsuredCar”

meta = InsuredCar

insuredCar

CarInsuranceAgreement: 
EClass

eSuperTypes = Agreement

Role: EClassroles

«refines agreement»

«subsets roles»

 
 

Fig. 9. Instantiation metamodel for a car insurance agreement (ICarInsurance.ecore).

5. Discussion 
 
The case study we have presented was based on 
experimental development made at the I2S company. 
The actual solution running in the company is not truly 
multi-staged in the sense we have presented here. It is 
based on a domain modeling tool that was generated 
using EMF (and GMF for the graphical part). 
However, these are the only similarities with the 
solution proposed in this paper: the code that supports 
instantiation from the domain metamodel does not 
reuse the EMF generative capabilities and domain 

metamodels are not truly specialized between stages. 
Since the domain modeling tool is the same for all 
stages, model templates are used in each stage as a 
starting point for modeling. In the approach presented 
in this paper each stage has its own domain specific 
modeling environment. The solution that is actually 
running in the company does not escalate well since 
the natural constraints that result from the 
specialization of the metamodels in the approach 
presented in this paper have to be hard coded into the 
domain modeling tool. Since the results from the 
experimental developments with our approach were 
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considered by the company as very promising a 
prototype is been developed. In this prototype we will 
also tackle details that were not discussed in this paper 
like the integration of GMF and the support for the 
specialization of model constructs such as OCL 
expressions. For the moment, model transformations 
have been implemented with SmartQVT [8].  
 
Multi-staged software development approaches are not 
a new concept, particularly in the context of product 
lines and software factories [9]. Czarnecki et al. have 
discussed the subject and presented approaches to 
support multi-staged modeling [10]. However, the 
focus was on feature modeling and, therefore, their 
approach is not as generic as the one presented in this 
paper. The core of the approach we have presented in 
this paper is based on promoting models to 
metamodels. We had already started to tackle this topic 
in a previous work [11]. In that work, we presented 
how a feature model could be promoted to an EMF 
metamodel in order to support feature configurations. 
The approach was, nevertheless, limited to feature 
models. However, that work and a discussion in the 
EMF newsgroup [12] have inspired us to further 
investigate the model promotion idea.  
 
Promoting models to metamodels is an approach 
already in use. For instance, in KerMeta, an action 
metamodel is composed with EMOF [2] to obtain an 
executable EMOF metamodel at the M2 level [13]. 
This metamodel is then promoted to the M3 meta-meta 
level. The UML2 project [14] also adopts a promotion 
like approach to transform UML class diagrams to 
ecore models. Our approach extends these ones since 
we propose a generic support for multi-staged 
modeling. The specialization promotion and 
instantiation transformations that support our approach 
can be generically applied to whatever metamodels 
since the approach is not intrusive, it does not require 
modification of the metamodels. Regarding this aspect, 
our approach is based on annotating the metamodels. 
These annotations guide how and where the 
transformation patterns are applied. We can say that 
the approach has some similarities with the way EMF 
uses genmodels to support code generation.  
 
6. Conclusions 
 
In this paper, we have presented and discussed a 
problem that is common in software product lines and 
software factories: multi-staged model driven 
development. We have described our approach to 
multi-staged model driven development following the 
spirit of architectural and design patterns. The patterns 

presented in this paper show how domain models can 
be specialized at several stages by reusing as much as 
possible the functionalities of actual publicly available 
metamodeling tools and their generative capabilities. 
We have illustrated the problem and the patterns using 
EMF concepts and a case study from the insurance 
domain. However, as discussed in the paper, our 
approach can be generically applied to any 
metamodeling tool that supports annotations..  
 
We believe that, as metamodeling tools mature and 
become more widely adopted also model driven 
patterns, like the one discussed in this paper, will 
become widely adopted and eventually incorporated 
into the metamodeling tools. 
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