
Transformation Patterns for Multi-staged Model Driven Software
Development

Alexandre Bragança1 and Ricardo J. Machado2

1 Dep. Eng. Informática, ISEP, IPP, Porto, Portugal,
alex@dei.isep.ipp.pt

2 Dep. Sistemas de Informação, Universidade do Minho, Guimarães, Portugal,
rmac@dsi.uminho.pt

Abstract

Model driven approaches are shifting software

development from a code based activity to a model
based activity. Models can be refined and transformed
from requirements into code specific to a platform.
Although several model transformations can occur,
they usually take place at a single development stage.
In the case of software product lines, and particularly
of software factories, the modeling of a system can
occur at several stages, for instance, at the
software-house, at the systems integrator and at the
final customer site. Basically, this requires that the
model used at a particular stage can be refined at the
next stage. In this paper, we explore the issues related
to such an approach and we propose model
transformation patterns that can be generically applied
to models so that they can be used in multi-staged
modeling approaches. We show how to realize the
approach with the Eclipse Modeling Framework and
present an insurance case study.

1. Introduction

The model driven approach is rapidly evolving and
with a potential of becoming the next mainstream
paradigm for software development. In this new
paradigm, models play the central role, as the code
does for traditional approaches. Models are used to
construct abstractions of the system at several levels
and from different perspectives. Models at higher
abstraction levels can be transformed into models at
lower abstraction levels and, eventually, models are
transformed into code that can be executed by a
specific platform. Usually, this is done at a single
stage. For instance, a software house can apply this
approach to build its software packages. However, in
the case of software product lines, and particularly of
software factories, the modeling of a system can occur
at several stages, for instance, at the software house, at
the system integrator and at the final customer site.

Generically, one can say that in this case, the software
system can be specialized at all the stages (or tiers) of
the supply-chain. Such scenario requires that the
models used at a particular stage can be refined at the
next stage.

MOF model

DB Schema
metamodel

DB Schema
model

metamodel

metamodel

metamodel

DB objects

metamodel

M3 Layer / meta-metamodel

M2 Layer / metamodels

M1 Layer / models

M0 Layer / instances

Fig. 1. Example of MOF metadata architecture.

The Model Driven Architecture (MDA) is the Object
Management Group’s (OMG) approach to model
driven development [1]. At the core of this architecture
is the Meta Object Facility (MOF) standard [2]. MOF
provides a metadata management framework and a set
of metadata services to enable the development and
interoperability of model and metadata driven systems.
Figure 1 presents an example of the MOF metadata
architecture for supporting database schema modeling.
The figure represents the relationships between models
at different levels of the MOF architecture. This figure
also represents very well the metadata architecture for
single-staged software development approaches. In this
paper, we will address in a practical way multi-staged
model driven software approaches and how they differ
in their nature from single-staged approaches. As we
will see, multi-staged approaches result in a series of
method recipes for applying model driven technologies
in a way similar to design patterns [3]. As such, we
will present the multi-staged model driven software

12th International Software Product Line Conference

978­0­7695­3303­2/08 $25.00 © 2008 IEEE

DOI 10.1109/SPLC.2008.41

329

12th International Software Product Line Conference

978­0­7695­3303­2/08 $25.00 © 2008 IEEE

DOI 10.1109/SPLC.2008.41

329

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

approach as a series of model driven transformation
patterns. We will do so using the Eclipse Modeling
Framework (EMF) [4], an eclipse based metamodeling
framework that conforms to the MOF standard, and an
insurance software supply chain as a case study.

The remainder of this paper is structured as follows. In
Section 2, we present model driven engineering
approaches with actual technologies (e.g., EMF) and
motivate the reader to our approach for multi-staged
modeling. In Section 3, we discuss model
transformations and the particularity of multi-staged
model transformations in the context of a software
insurance supply chain case study. Section 4 is
dedicated to present and illustrate the multi-staged
model transformation patterns. Section 5 is dedicated
to the discussion of the approach and of related work.
In Section 6, we provide some concluding remarks.

EMF
Toolset

core model
(domain

metamodel)
generate

ed
it gen model

Domain
modeler

domain
modeled

it

M2 – Metamodeling

M1 – Domain Modeling Model Promotion

(1)

(2)

(3)

(4) (5)

(6)

Fig. 2. Using EMF toolset to generate a domain modeler.

2. Motivation

To motivate the reader, we will use in this section the
very simple and common example of domain modeling
database schemas. So, using metamodeling tools, the
goal is to build a database schema modeler application.
We will briefly illustrate how this can be achieved with
EMF.
Figure 1 presents the relationships between database
concepts and the MOF architecture. In Figure 2, we see
how the EMF toolset can be used to support the
building of a domain specific modeler. As the figure
suggests, in EMF, the domain metamodel is specified
in the form of a core model, which is the format of
EMF metamodels. The metamodel of these core
models is called ECore. ECore was influenced by
MOF [2] and, to a certain extent, we can consider it as
a subset of MOF. In our simple example, the
metamodel for database schemas would then be
specified with a core model. Based on a core model
(i.e., a metamodel), EMF is then able to generate
source code to support the core functionality of a
modeling environment (see Figure 2). In fact, since
core models are platform independent, it is necessary

to add platform specific information regarding code
generation in what is called a genmodel. A genmodel is
basically a decorator of the core model with details
regarding code generation. EMF can then be used to
generate code that supports the creation of models that
conform to the core metamodel and a tree-based visual
modeling editor. Therefore, EMF provides the core
functionalities of a metamodeling tool capable of
generating domain specific modelers.

Figure 3 presents and example of a possible metamodel
for database schemas. Used as input to a metamodeling
toolset such as EMF this metamodel could be used to
generate a database schema modeler. Using this
generated modeler, database schemas that conform to
database schema metamodel can be created. However,
these database schemas represent also metadata since
they specify the structure of the objects that compose
databases that conform to that database schema (e.g.,
tables, columns and foreign keys). Therefore, a
database schema can be seen as a metamodel of a
database instance (in Figure 1, a database schema
model is a metamodel of database objects) and it
should be possible to generate code to support database
instantiation based on a database schema model.
Although this is true, EMF (and, to our knowledge,
other metamodeling tools) does not directly support it
since a domain model is not a core model and the
generative capabilities of EMF can only be applied to
core models.

The approach we present and discuss in this paper
regarding multi-staged domain specific model driven
engineering is inspired on the identified restriction of
metamodeling tools. To tackle this restriction, we
propose the promotion of domain models to native
metamodels of the metamodeling tool (core models in
the case of EMF). The approach is depicted in gray in
Figure 2.

tables

1

DBSchema

sname: String

Table

tname: String

Column

cname: String
ctype: String

columns1..*

RowType

rows

rowType1

RowColl

rname: String

rcname: String

Fig. 3. Possible metamodel for a database schema.

330330

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

Contacts : DBSchema

PersonTable : Table

tables_person1

M
2

–
M

et
am

od
el

in
g

M
1

–
D

om
ai

n
M

od
el

in
g

Metamodel 1 Metamodel 2

aDBSchema :
DBSchema

sname=“Contacts”

aTable : Table

tname=“PersonTable”

aColumn : Column

cname=“name”
ctype=“String”

bColumn : Column

cname=“address”
ctype=“String”

a) Transformation
T1

Person : RowType

name: String
address: String

rows_personColl
0..*

aRowType :
RowTypeaRowColl : RowColl

rname=“Person”Rcname=”personColl”

b) Transformation
T2

Contacts : DBSchema

sname=“Contacts”

PersonTable : Table

tname=“PersonTable”
PersonColl : RowColl

Rcname=”personColl”

Name : Column

cname=“name”
ctype=“String”

Address : Column

cname=“address”
ctype=“String”

Person :
RowType

rname=“Person”

Fig. 4 Possible approaches for promoting a domain model into a metamodel.

In Figure 4, we show a simplified example of how a
promotion approach could be applied in the case of our
database schema modeling example. In the lower half
of the figure we can see a domain model representing
the schema for a contacts database. The idea behind the
promotion approach is to transform the domain
modeling elements with meta semantics to the
corresponding metamodeling elements. For instance,
the domain element aTable which models a table of
persons gives origin to the class PersonTable at the
meta level. We can say that we are specializing the
original metamodel by example, since the source for its
specialization is a concrete model that conforms to the
metamodel we are specializing. There are, however,
two perspectives in this kind of transformation: a) an
instantiation perspective, where the goal of the
resulting metamodel is to support instantiations of the
modeled concepts (transformation T1 and metamodel 1
in Figure 4); b) a specialization perspective, where the
goal of the resulting metamodel is to support further
specializations of the modeled concepts
(transformation T2 and metamodel 2 in Figure 4).

3. Multi-Staged Domain Modeling
Approach

We will illustrate our approach to multi-stage modeling
with an example based on a case study developed at
I2S, a Portuguese software house specialized in the

development of software for insurance companies. The
software that the company develops is used in what is a
typical scenario for multi-staged modeling. Insurance
agreements, which represent agreements between
insurers and their customers, are a core concept in
insurance. These agreements are commonly known as
insurance policies. The structure and rules that govern
these agreements can be specialized at several stages,
e.g., insurance company headquarters, division, branch,
or agent. Figure 5 presents how our approach can be
applied to support multi-stage modeling of insurance
agreements.

The stages presented in Figure 5 represent players of
an insurance business. In the figure we can see the
insurance company, an insurance company division
and an insurance company branch. Each of the stages
runs the same domain-specific platform [5], in this
case, an insurance information system platform. The
domain-specific platform can be configured for a
particular purpose through domain-specific modeling.
Domain-specific modeling is done by a domain-expert.
In this case, insurance agreements are modeled and
used to configure the domain-specific platform. As
Figure 5 shows, agreement models can be specialized
in succeeding modeling stages. The concepts that are
global and common to all the stages are represented by
the domain model Insurance.ecore.

331331

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

STAGE N

Metamodel
(M2)

Domain Metamodel
(M1')

Instances
(M0)

Insurance
Information System

STAGE N+1 STAGE N+2

Agreement.ecore CarInsurance.ecore LuxuryCarInsurance.ecore

Instantiation
Metamodel

(M1)
iAgreement.ecore iCarInsurance.ecore iLuxuryCarInsurance.ecore

A.iagreement

B.iagreement

A.icarinsurance

B.icarinsurance

A.icarplusinsurance

B.icarplusinsurance

CarInsurance.agreement LuxuryCarInsurance.carinsurance

metamodel metamodel metamodel metamodel metamodel metamodel

specializes
specializes

metamodel metamodel

Promotion

specializes specializes

PromotionInstantiation Instantiation

Insurance Company Insurance Company Division Insurance Company Branch

Metamodeling
Expert

Domain
Modeler Expert

Domain Model
(M1)

Insurance.ecore

metamodel

references

references

Fig. 5. Multi-staged modeling of insurance supply chain with EMF.

The first metamodel (Agreement.ecore in the M2 layer
of stage N) is used to specify a specialized modeling
environment, i.e., a domain-specific modeling
environment. With this environment, the domain
modeler at the M1 layer no longer needs to use Ecore
abstractions, it can use specific abstractions of the
domain. In this case, at the M1 layer, the domain
modeler specifies insurance agreement models. We can
see how this is achieved at stage N+1 and N+2 with
CarInsurance.agreement and
LuxuryCarInsurance.carinsurance. As we have
discussed in the previous section, these domain models
can be promoted to metamodels so that the generative
capabilities of the metamodeling tool can be used to
support two perspectives: the specialization of the
domain models and the instantiations of the domain
model.

To explain the multi-staged model driven scenario it is
important to understand the involved roles. There are
basically two human roles: metamodeler and domain
modeler. The metamodeler uses the metamodeling
framework directly. In the case of EMF, the
metamodeler edits directly core models. A domain
modeler is someone that edits domain-specific models,
usually according to a metamodel that is specified by a
metamodeler. Obviously, it is also necessary to have a
platform to execute the modeled concepts. In Figure 5
this platform is the Insurance Information System,
which is a domain-specific platform. In Figure 5, it is
possible to observe the responsibility of these three
roles for a multi-staged modeling approach: the

metamodeler has the responsibilities at the M2 layer;
the domain modeler has responsibilities at the M1
layer; and the domain-specific platform at the M0
layer. In fact, the M1 layer is divided into M1 and M1’.
The M1’ layer is where the domain modeling takes
place. The domain model of a specific stage (at the
M1’ layer) is used to generate the metamodel of that
stage by using the promotion transformation. For
instance, the CarInsurance.agreement domain model is
transformed into the CarInsurance.ecore metamodel.
Following the discussion of the previous section, each
metamodel has two perspectives: specialization and
instantiation. The instantiation perspective is generated
by the instantiation transformation, and the result is the
iCarInsurance.ecore that is used as metamodel for
instances at the corresponding stage. The original
metamodel of the stage (in this case,
CarInsurance.ecore) is used as metamodel to generate
the modeling environment of the next stage. Details
about these two perspectives and the transformations
involved will be given in the next section.

Since the approach is based on domain-specific models
and those require a domain-specific modeling
environment, the process bootstrapping is done by the
metamodeler. The first metamodel (core model) is used
to introduce the domain-specific modeling concepts
that will be used by domain-experts in all the stages to
create or specialize domain-specific models (in this
case, insurance agreements). Such metamodel will
provide domain modelers their modeling concepts in a
way similar to the concepts that EMF provides to the

332332

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

metamodeler. As a bootstrapping metamodel, it must
also integrate with the concepts of the domain-specific
platform (which are modeled in the domain model
Insurance.ecore). Figure 6 depicts the models at the
bootstrapping of the multi-staged model driven
approach for the software insurance supply-chain case
study: Agreement.ecore which is the specialization
metamodel; Insurance.ecore which is the domain
model; and iInsurance.ecore which is the instantiation
metamodel. The bootstapping process corresponds to
the first stage (Stage N) depicted in Figure 5. Figure 6
serves also as a good example to illustrate the
specialization and instantiation perspectives that we
can obtain from a metamodel. Some elements of the
specialization metamodel are annotated (the
annotations are depicted in the diagram in a similar
way to UML stereotypes). If we take a closer look at
the specialization metamodel of Figure 6, we see that
only AgreementRoot and Agreement are not annotated
and that one instance of the former must contain
exactly only one instance of the latter. In our approach,
we use annotations to mark the semantic of the
elements at the domain metamodeling level (M1’ in
Figure 5). For instance, according to the annotations of
the Action element in Figure 6, the inclusion of such
element by a domain expert in a domain model
corresponds to adding the semantics of an EOperation
at the meta level. This means that in the resulting
instantiation model an operation should be generated.
The use of annotations to mark metamodel elements
enables the association of meta semantics to
metamodels without requiring an intrusive
modification on them. Therefore, the approach can be
non-intrusively applied to whatever metamodel. Only
non-annotated elements and annotated elements
contained by references with refines or subsets
annotations are included in the instantiation model. We
will further detail this transformation in the next
section.

In Figure 5 and Figure 6, it is possible to observe the
possible relationships between the models that result
from the modeling activities and the domain model.
This domain model represents the concepts that
support the domain specific platform (in our example,
the Insurance Information System). These concepts are
available at every stage of the supply chain and, to a
certain extent, represent the commonality in the
product line.

At each stage, the instantiation activity generates the
instantiation model from the metamodel. The
metamodels are also used to generate the domain
modeling environments of the next stages. These
environments are used by the domain modelers and the

resulting domain models are promoted to metamodels
that are specializations of the previous ones. This
process can be repeated to support subsequent
modeling stages.

4. Transformation Patterns

In this section we present our approach to multi-stage
model driven software development. Since a
multi-stage model driven approach can be applied in
several scenarios (being the insurance software supply
chain only one of them) we explain our approach as a
set of model driven development patterns. We follow
the spirit of the original description of design patterns
and we describe here the problem and the proposed
solution of each model driven pattern. The
consequences of the patterns are discussed on Section
5. Each presented pattern is a part of a more large-scale
pattern that we call Multi-Stage Domain Specific
Modeling. If we continue to make the analogy with
traditional development patterns we could say that this
is an architectural style pattern [6].

The Problem
How to support a multi-staged domain-specific
modeling approach with model specialization using
current metamodeling tools and in the context of a
domain-specific platform.

The Solution
The idea behind the proposed approach is that the
domain models will be used in two perspectives: to
support instances of modeled concepts at any given
stage (instantiation perspective) and to support the
specialization of concepts at the next stage
(specialization perspective). The proposed solution
adopts off-the-shelf metamodeling tools. By this we
mean that the solution is essentially based on existing
generative and transformational support of publicly
available metamodeling tools. Eclipse EMF is one
example of such a metamodeling tool. To support the
multi-stage model driven approach we propose that the
models of the native metamodel format be annotated in
a manner that marks their elements as being instance
elements (instantiation perspective) or meta elements
(specialization perspective). Such annotations can then
be used to guide two transformation activities: the
instantiation transformation and the promotion
transformation.

333333

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

«EClass»
TargetElement : EClass

«EReference»
Relationship : EClass

lowerBound: EInt
upperBound: Eint
containment:boolean

«EClass»
RelationalElement : EClass

«EOperation»
Action : EClass

«EOperation»
Constraint : EClass

«EAttribute»
Property : EClass

«EClass»
Role : EClass

«EClass»
Event : EClass

Agreement : EClass

target

relationships

behavior: EString behavior: EString value: EJavaObject
kind: EString
changeable: boolean

behavior: EString

actions constraints

properties

roles

constraints

properties

actions

events: EReference

«EClass»
NamedElement : EClass

elementName: EString

M2 – Metamodel
Agreement.ecore

AgreementRoot :
EClass

agreement1

agreementID: EString
start: EDate
end: EDate

«defaultValue»

«changeable»

«name»

«lowerBound»

«upperBound»

«containment»

Customer

customer

BusinessEntity

playedBy

«eReferenceType»

«EReference»
Roleplayer : EClass

lowerBound: EInt
upperBound: Eint

«lowerBound»
«upperBound»

«eReferenceType»

roleplayer

«meta»

«meta» «meta»

M1 – Instantiation metamodel
iAgreement.ecore

Agreement : EClass

AgreementRoot :
EClass

agreement1

agreementID: EString
start: EDate
end: EDate

customer

meta

meta

«eType»

M1 - Domain Model
Insurance.ecore

roles

Fig. 6. Metamodel, instantiation metamodel and domain model.

Figure 5 presents an illustration of this pattern for an
insurance supply chain. The instantiation
transformation uses the elements of the metamodel that
are part of the instantiation perspective to generate
another metamodel adapted to support instances of the
modeled concepts. Details of this transformation will
be given next. The promotion transformation interprets
the domain metamodel as a specialization by example
of the metamodel of the previous stage. Using the
annotations of the previous metamodel, it promotes the
domain metamodel into a native metamodel that

specializes the previous metamodel. Therefore,
specialization is achieved by the domain metamodel.
The process can be repeated to support further stages:
the resulting metamodel can be used to generate the
instantiation model of the current stage as well as
supporting the generation of the domain specific
modeling environment for the next stage. Therefore,
the metamodeling tool is reused across all stages and
each stage has a generated domain-specific modeling
environment.

334334

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

aAgreement : Agreement

elementName =
“CarInsurance”

bAgreement : Agreement

elementName = “Liability”

relationships

cAgreement : Agreement

elementName =
“PhysicalDamage”

aProperty : Property

elementName = “Amount”
kind = “Money”
value = <void>
changeable = true

properties

bRelationship:
Relationship

elementName =
“hasLiability”
lowerBound = 1
upperBound = 1
containment = true

target

aRelationship:
Relationship

elementName =
“hasPhysicalDamage”
lowerBound = 0
upperBound = 1
containment = true relationships

target

aAgreementRoot :
AgreementRoot

elementName =
“CarInsuranceRoot”

aRole : Role

elementName =
“InsuredCar”

roles

aRoleplayer :
Roleplayer

elementName =
“insuredCarPlayer”
lowerBound = 1
upperBound = 1
playedBy = “Car”

roleplayer

agreement

agreement

agreement

Fig. 7. Domain metamodel for a car insurance agreement (CarInsurance.agreement).

4.1 Promotion Transformation Pattern

Problem
How to support the specialization of domain models
that are not native metamodels of the metamodeling
tool and, therefore, do not have the native support for
specialization.

Solution
We propose a solution that is based on the promotion
of the domain model to a native metamodel of the
metamoldeling tool in a way that preserves the
semantics of the domain model. Therefore, the domain
model can be seen as a domain metamodel. We call
this transformation a promotion because we are
transforming a model into a metamodel, i.e., we are
promoting a model into a metamodel. Our solution is
proposed in the context of the multi-stage model driven
pattern and therefore, in conformance with the other
patterns involved we use annotations to guide the
transformation process.

Figure 7 presents an example of a domain model (in
fact it is acting as a metamodel) which metamodel is
the one presented in Figure 6 (M2 metamodel). The
result of applying the Promotion transformation to the
model of Figure 7 results in the native metamodel of
Figure 8. Basically, each object of the domain model
becomes a Class (EClass) in the native metamodel.
Each reference instance (or link) becomes a Reference
(EReference) in the native metamodel. As such, we can
say that the Promotion transformation is composed of
mainly two sub-transformations: Object to Class and
Reference Instance to Reference.

The goal is to transform domain models into their
equivalent native metamodels. A domain model is an
instance of a metamodel, and as such is composed of
objects and links or reference instances between
objects. The objects are instances of Class elements
(EClass) of the metamodel. The links are instances of
Reference elements (EReference) of the metamodel.
When the domain modeler creates an instance of a

Class he/she is making a specialization of the Class.
As such, in the Object to Class transformation, an
object is transformed into a Class that must specialize
(become a subtype of) the meta-class of the source
object. For instance, the aRole object of Figure 7
becomes the InsuredCar EClass in Figure 8. The
InsuredCar EClass is a specialization of the Role
EClass, which is the meta-class of the aRole object.
This is the basic principle regarding the promotion of
objects to classes. However, some details must be
taken care. For instance, what is the name for the new
generated classes or what to do with the values of the
objects fields? Once again, we adopt annotations to
solve these issues. If we take a look at the original
metamodel from Figure 6, we see that the
elementName field of the NamedElement class is
annotated with «name». The Promotion transformation
uses this annotation to select the value it will use for
the name of the generated classes. Regarding the
values of the objects fields, they are used as default
values in the new generated classes (see Figure 8).

Links also follow an approach similar to that of the
objects. As we have mentioned, they become
references in the resulting metamodel. But, because
they are instances of references, they are annotated as
subsets or refines of the original reference. For
instance, the roles link of Figure 7 that links
aAgreement and aRole becomes the insuredCar
reference between CarInsurance and InsuredCar target
elements (see Figure 8). This reference is annotated as
being a subset of the roles reference of the metamodel
of the previous stage. We use the terms subsets and
refines with similar semantics as the ones used in the
UML language. Since the metamodeling tool (in this
case EMF) is not aware of these annotations, it is
necessary to extend/adapt it so that it will generate
code according to the annotations in the metamodel. In
the case of EMF, because of its extensible architecture,
it is simple a matter of developing JET [7] templates
that add the necessary extensions to the generated
code. Because this is relatively straightforward we do
not detail any further this necessary activity.

335335

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

4.2 Instantiation Transformation Pattern

Problem
How to support instantiation from domain metamodels
that are not native metamodels of the metamodeling
tool and, therefore, are not directly usable by
metamodeling tools as sources for generating
instantiation supporting code.

Solution
The solution presented here is part of the multi-stage
model driven pattern. Therefore, it depends on the
transformation presented in the previous section that
enables the promotion of a model to the metamodel
level. The sequence of transformations is depicted in
Figure 5. In the figure it is possible to observe that the
instantiation model is obtained from the metamodel
that results from the Promotion transformation (except
for the bootstrap stage). In the instantiation metamodel
the goal is to have only the elements that resulted from
the elements with meta semantics of the previous stage
that were specialized. For instance, in Figure 6 we see
that the instantiation model only contains elements that
do not have annotations denoting their meta semantics.
In Figure 8, we see that the metamodel that resulted
from the Promotion has several refines and subsets
annotations. These indicate elements that were
specialized. Therefore, these elements are included in
the instantiation metamodel of the same modeling
stage (see Figure 9).

Figure 8 presents the specialization metamodel at stage
N+1 of the insurance case study. This specialization
metamodel was obtained from the domain metamodel
depicted in Figure 7. Figure 9 presents the output of
the instantiation transformation, when the source
metamodel is the one depicted in Figure 8. As it is
possible to observe from both figures, the resulting
instantiation metamodel not only contains elements
that are not annotated as meta elements in the source
metamodel but also contains the annotated elements
that resulted from the specialization process. These
elements are those that subset or refine meta annotated
elements of the previous stage. For instance, in Figure
8 we can see that the hasLiability relationship between
CarInsurance and the HasLiability EClass subsets the
relationships relationship of the previous stage.
Therefore, HasLiability is included in the resulting
instantiation metamodel. Since this element has an
annotation stating that it has the meta semantics of an
EReference, it becomes an EReference element in the
resulting metamodel.

The solution proposed for this pattern is
straightforward if we consider it only in the context of

single-stage development. When we consider it in a
multi-stage approach we have to take into account the
refinements (specializations) made in the previous
stage. The annotations in the source elements regarding
such refinements as well as their meta semantics can
guide the creation of the instantiation model. As it is
possible to observe in the previous examples, such
annotations are done using the names of the elements
of the meta-metamodel of the modeling tool (or the
native metamodel). In the presented examples we use
ecore, the meta-metamodel of EMF. From Figure 6, we
see the original intention of the metamodeler regarding
the elements and their meta semantics at the domain
metamodeling level: the non-abstract elements Event
and Role should have a meta semantic of an EClass;
the non-abstract elements Action and Constraint should
have a meta semantic of an EOperation; the non-
abstract elements Roleplayer and Relationship should
have a meta semantic of an EReference; and the non-
abstract element Property should have a meta semantic
of an EAttribute. These examples represent the four
most typical instantiation transformations: Class to
Attribute; Class to Operation; Class to Reference and
Class to Class.

In Figure 9 we can see the result of applying these
transformations to the source metamodel of Figure 8.
For instance, if we take the example of the source
element Amount, we see that this element is annotated
as having the meta semantics of an EAttribute. As
such, if transformed, it must become an EAttribute
element in the target metamodel. Other possible
annotations in the source element may be used to
further specify the value of target element attributes.
For instance, regarding Amount, we see that in its
ancestor element Property the field kind is annotated as
eType (see Figure 6). Therefore, the value of this field
is used in the instantiation transformation as the value
of the field eType for the EAttribute that resulted from
Amount.

Similarly to what was said regarding the promotion
transformation, the instantiation transformation also
requires adaptations to the generative infrastructure of
the metamodeling tool. This is required so that the
generated code supports the semantics of the proposed
annotations. This support can be added in the same
way as presented in the previous section.

336336

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

M2 - Specialization
Metamodel

hasLiability

hasLiabilityTarget

amount
«EReference»

HasPhysicalDamage: EClass

elementName =
“HasPhysicalDamage”
lowerBound = 0
upperBound = 1
containment = true

hasPhysicalDamage

hasPhysicalDamageTarget

«subsets relationships»

eSuperTypes: Relationship
name = “HasLiability”

elementName = “hasLiability”
lowerBound = 1
upperBound = 1
containment = true

CarInsurance: EClass

eSuperTypes: Agreement
name = “CarInsurance”
elementName =
“CarInsurance”

«subsets relationships» Liability: EClass

eSuperTypes: Agreement
name = “Liability”
elementName : “Liability”

«EAttribute»
Amount: EClass

eSuperTypes: Property
name = “Amount”

elementName = “Amount”
kind = “Money”
value = <void>
changeable = true

PhysicalDamage: EClass

eSuperTypes: Agreement
name = “PhysicalDamage”
elementName =
”PhysicalDamage”

eSuperTypes: Relationship
name = “HasPhysicalDamage”

«subsets target»

«subsets target»

«subsets properties»

«defaultValue»

CarInsuranceRoot: EClass

eSuperTypes: AgreementRoot
name = “CarInsuranceRoot”

1

elementName =
“CarInsuranceRoot”

«refines agreement»

carInsurance

«defaultValue»

1

1

1

1

1

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»

«defaultValue»
«defaultValue»

«EClass»
InsuredCar: EClass

eSuperTypes: Role
name = “InsuredCar”
elementName =
“InsuredCar” «defaultValue»

«subsets roles»
insuredCar

«EReference»
insuredCarPlayer: EClass

eSuperTypes: Roleplayer
name = “insuredCarPlayer”

elementName =
“InsuredCarPlayer”
lowerBound = 1
upperBound = 1

«defaultValue»
«defaultValue»
«defaultValue»

«refines roleplayer»
insuredCarPlayer

Car

BusinessEntity

Domain Model

insuredCarTarget

«refines playedBy»

«eReferenceType»

1

1

1

«EReference»
HasLiability: EClass

Fig. 8. Native metamodel for a car insurance agreement (CarInsurance.ecore).

CarInsuranceRoot: EClass

eSuperTypes = AgreementRoot
name = “CarInsuranceRoot”

CarInsurance: EClass

eSuperTypes =
CarInsuranceAgreement
name = “CarInsurance”

Liability : EClass

eSuperTypes =
CarInsuranceAgreement
name = “Liability”

hasLiability

meta = Liability
amount : Money

PhysicalDamage : EClass

eSuperTypes =
CarInsuranceAgreement
name = “PhysicalDamage”

hasPhysicalDamage

meta = CarInsuranceRoot
meta = CarInsurance

meta = PhysicalDamage

carInsurance

hasLiability:
EReference

name = “hasLiability”
lowerBound = 1
upperBound = 1
containment = true

«derivedFrom hasLiability»

«derivedFrom Amount»

M1 – Instantiation
Metamodel

hasPhysicalDamage:
EReference

name = “hasPhysicaldamage”
lowerBound = 0
upperBound = 1
containment = true

«derivedFrom hasPhysicalDamage»

insuredCarPlayer :
EReference

name =
“insuredCarPlayer”
lowerBound = 1
upperBound = 1

«derivedFrom insuredCarPlayer»

insuredCar
Car

BusinessEntity

Domain Model

InsuredCar : EClass

eSuperTypes = Role
name = “InsuredCar”

meta = InsuredCar

insuredCar

CarInsuranceAgreement:
EClass

eSuperTypes = Agreement

Role: EClassroles

«refines agreement»

«subsets roles»

Fig. 9. Instantiation metamodel for a car insurance agreement (ICarInsurance.ecore).

5. Discussion

The case study we have presented was based on
experimental development made at the I2S company.
The actual solution running in the company is not truly
multi-staged in the sense we have presented here. It is
based on a domain modeling tool that was generated
using EMF (and GMF for the graphical part).
However, these are the only similarities with the
solution proposed in this paper: the code that supports
instantiation from the domain metamodel does not
reuse the EMF generative capabilities and domain

metamodels are not truly specialized between stages.
Since the domain modeling tool is the same for all
stages, model templates are used in each stage as a
starting point for modeling. In the approach presented
in this paper each stage has its own domain specific
modeling environment. The solution that is actually
running in the company does not escalate well since
the natural constraints that result from the
specialization of the metamodels in the approach
presented in this paper have to be hard coded into the
domain modeling tool. Since the results from the
experimental developments with our approach were

337337

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

considered by the company as very promising a
prototype is been developed. In this prototype we will
also tackle details that were not discussed in this paper
like the integration of GMF and the support for the
specialization of model constructs such as OCL
expressions. For the moment, model transformations
have been implemented with SmartQVT [8].

Multi-staged software development approaches are not
a new concept, particularly in the context of product
lines and software factories [9]. Czarnecki et al. have
discussed the subject and presented approaches to
support multi-staged modeling [10]. However, the
focus was on feature modeling and, therefore, their
approach is not as generic as the one presented in this
paper. The core of the approach we have presented in
this paper is based on promoting models to
metamodels. We had already started to tackle this topic
in a previous work [11]. In that work, we presented
how a feature model could be promoted to an EMF
metamodel in order to support feature configurations.
The approach was, nevertheless, limited to feature
models. However, that work and a discussion in the
EMF newsgroup [12] have inspired us to further
investigate the model promotion idea.

Promoting models to metamodels is an approach
already in use. For instance, in KerMeta, an action
metamodel is composed with EMOF [2] to obtain an
executable EMOF metamodel at the M2 level [13].
This metamodel is then promoted to the M3 meta-meta
level. The UML2 project [14] also adopts a promotion
like approach to transform UML class diagrams to
ecore models. Our approach extends these ones since
we propose a generic support for multi-staged
modeling. The specialization promotion and
instantiation transformations that support our approach
can be generically applied to whatever metamodels
since the approach is not intrusive, it does not require
modification of the metamodels. Regarding this aspect,
our approach is based on annotating the metamodels.
These annotations guide how and where the
transformation patterns are applied. We can say that
the approach has some similarities with the way EMF
uses genmodels to support code generation.

6. Conclusions

In this paper, we have presented and discussed a
problem that is common in software product lines and
software factories: multi-staged model driven
development. We have described our approach to
multi-staged model driven development following the
spirit of architectural and design patterns. The patterns

presented in this paper show how domain models can
be specialized at several stages by reusing as much as
possible the functionalities of actual publicly available
metamodeling tools and their generative capabilities.
We have illustrated the problem and the patterns using
EMF concepts and a case study from the insurance
domain. However, as discussed in the paper, our
approach can be generically applied to any
metamodeling tool that supports annotations..

We believe that, as metamodeling tools mature and
become more widely adopted also model driven
patterns, like the one discussed in this paper, will
become widely adopted and eventually incorporated
into the metamodeling tools.

7. References

[1]MDA, "Model Driven Architecture Guide Version 1.0.1," vol.

2007: OMG, 2007, http://www.omg.org.
[2]MOF, "Meta Object Facility (MOF) 2.0 Core Specification

(formal/06-01-01)," vol. 2006: OMG, 2006, http://www.omg.org.
[3]E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns - Elements of Reusable Object-Oriented Software:
Addison-Wesley, 1995.

[4]EMF, "Eclipse Modeling Framework," vol. 2007: Eclipse
Foundation, 2007, http://www.eclipse.org/emf/.

[5]K. Czarnecki, M. Antkiewicz, and C. H. P. Kim, "Multi-level
Customization in Application Engineering," Communications of
the ACM, vol. 49, 2006.

[6]M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline: Prentice Hall Publishing, 1996.

[7]JET, "Eclipse JET - Java Emitter Templates," vol. 2007: Eclipse
Foundation, 2007, http://www.eclipse.org/emft/projects/jet/.

[8]SmartQVT, "SmartQVT - Open Source Transformation Tool
Implementing the MOF 2.0 QVT-Operational Language," vol.
2007: France Telecom, 2007, http://smartqvt.elibel.tm.fr/.

[9]J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools: Wiley, 2004.

[10]K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged
Configuration Through Specialization and Multi-Level
Configuration of Feature Models," Software Process Improvement
and Practice, special issue on "Software Variability: Process and
Management", vol. 10, pp. 143-169, 2005.

[11]A. Braganca and R. J. Machado, "Automating Mappings
between Use Case Diagrams and Feature Models for Software
Product Lines," SPLC 2007, Kyoto, Japan, 2007.

[12]E. Merks and Others, "Making EMF models valid Ecore models
for a two-level code generation," eclipse.tools.emf newsgroup
thread, 2006,
http://dev.eclipse.org/newslists/news.eclipse.tools.emf/msg20713.
html.

[13]P.-A. Muller, F. Fleurey, and J.-M. Jezequel, "Weaving
Executability into Object-Oriented Meta-Languages,"
Models2005, Jamaica, 2005.

[14]UML2, "UML2 - Model Development Tools (MDT)," Eclipse
Foundation, 2007,
http://www.eclipse.org/modeling/mdt/?project=uml2.

338338

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 10:9 from IEEE Xplore. Restrictions apply.

