
Innovations Syst Softw Eng (2009) 5:65–78
DOI 10.1007/s11334-009-0078-3

ORIGINAL PAPER

A model-driven approach for the derivation of architectural
requirements of software product lines

Alexandre Bragança · Ricardo J. Machado

Received: 1 September 2008 / Accepted: 12 January 2009 / Published online: 12 February 2009
© Springer-Verlag London Limited 2009

Abstract The alignment of the software architecture and
the functional requirements of a system is a demanding task
because of the difficulty in tracing design elements to require-
ments. The four-step rule set (4SRS) is a unified modeling
language (UML)-based model-driven method for single sys-
tem development which provides support to the software
architect in this task. This paper presents an evolution of the
4SRS method aimed at software product lines. In particular,
we describe how to address the transformation of functional
requirements (use cases) into component-based requirements
for the product line architecture. The result is a UML-based
model-driven method that can be applied in combination with
metamodeling tools such as the eclipse modeling framework
(EMF) to derive the architecture of software product lines.
We present our approach in a practical way and illustrate
it with an example. We also discuss how our proposals are
related to the work of other authors.

Keywords Model-driven engineering · UML · Software
product lines · Logical architecture

1 Introduction

The alignment of the software architecture and the functional
requirements of a system is a demanding task. The conceptual

A. Bragança (B)
Department of Informatics Engineering,
School of Engineering of Polytechnic Institute of Porto,
Porto, Portugal
e-mail: alex@dei.isep.ipp.pt

R. J. Machado
Information Systems Department,
School of Engineering of University of Minho,
Guimarães, Portugal
e-mail: rmac@dsi.uminho.pt

gap that exists between the problem domain and the solution
domain is very significant for the majority of the software
projects. When this happens, it becomes difficult to co-relate
requirements specifications and design decisions. The soft-
ware architecture can rapidly become unsynchronized with
the specified requirements of the system. To address this
problem it is necessary to keep links between elements of
the different levels of development. Achieving this without
proper methodological and tool support is a daunting task.
Model-driven development is a promising approach since
models are treated as first-class software artifacts, as tradi-
tional development does with code.

Model-driven methods are still a research topic. Much
of the actual effort is on supporting techniques for trans-
formation of models. One example is query–view–transfor-
mation (QVT) [1], an Object Management Group (OMG)
initiative to standardize model transformations in model-
driven architecture (MDA). Also, reports of model-driven
approaches tend to focus on transformations and are usually
applied to design and implementation models, and usually do
not include requirement and analysis models. Nonetheless,
requirements specification and analysis are crucial activities
of all software development processes. They drive the design
of the system’s architecture. As such, they should be inte-
grated into model-driven methods.

Product lines are also another concept that is gaining pop-
ularity in the software industry [2]. In this paper we will
explore how a model-driven approach can be applied to derive
the architectural functional requirements of a product line
from its requirements. We illustrate our approach by show-
ing how a model-driven method called the four-step rule set
(4SRS) [3] is extended to support product lines and the inte-
gration of requirements models. The 4SRS method is based
on unified modeling language (UML) 2.0 [4]. The method
applies transformational rules in order to derive a high-level

123

66 A. Bragança, R. J. Machado

architecture from use case requirements. For modeling
variability within 4SRS we propose the adoption of the
UML-F profile [5]. Since the UML-F original focus was on
class diagrams this paper presents some extensions to address
variability modeling in analysis and requirements models.
This paper also describes rules that can be used to transform
analysis and requirements models into architectural models
in a way that preserves variability and can be used without
previous extensive knowledge of the problem domain.

To exemplify our approach, we will use a library product
line. Suppose there is a software company that is planning
to provide software management applications for libraries.
Such a company could adopt a product line approach. It could
develop products with different features to address the spe-
cific needs of its customers. It could also plan on releasing
versions of its products with different features at different
moments.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly describes the 4SRS method. Section 3 is con-
cerned with issues regarding modeling variability with UML
use cases. To illustrate our approach we present two use cases
of a hypothetical library product line. Section 4 describes how
functional requirements of a product line can be modeled
with use cases and activity diagrams. In Sect. 5, we describe
how use case realizations are used to derive the architectural
requirements of a product line. We address the global logical
architecture of the system in Sect. 6. In Sect. 7 we conclude
the paper by discussing our approach and related work.

2 The 4SRS model-driven method

The four-step rule set is a method aimed at supporting the
transition from system requirements to software architec-
tures and design elements. The method is essentially based on
mapping UML use case diagrams into UML component dia-
grams. It uses an approximation by which a use case is real-
ized by a collaboration of components of three kinds: inter-
face, control, and data; as similarly suggested in reuse-driven
software engineering business (RSEB) [6]. After this initial
transformation, a series of steps with transformation rules
are proposed to transform the initial component model into a
coherent component model that is compliant with the require-
ments. Basically, at each step, a set of refactoring rules are
applied that modify the initial component model by group-
ing, splitting or discarding components. Some of these rules
can be automated; others depend on human intervention.

Figure 1 presents an overview of possible activities of
model-driven methods aimed at the development of prod-
uct lines. These are also the activities that compose the 4SRS
method. In this paper we will only cover the activities that are
marked in gray (b, c, e, f, g, and h). For clarity reasons, some
details are left out of the diagram of Fig. 1. For instance,

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

ngise
D

stn e
meri uqe

R
sisy lan

A
n o itatne

m elp
mI

Fig. 1 Simplified view of the major activities of the 4SRS method

activities b, c, d, and e can be done in parallel but are not
independent; they require coordination between them.

In 4SRS, as transformation rules are applied and elements
are created, their names are prefixed with a special
codification enclosed in brackets that is used to guarantee
uniqueness and facilitate visual identification. The 4SRS
transformation rules are applied through several of the activ-
ities presented in Fig. 1. Briefly, the steps of the method are:
(1) component creation; (2) component elimination: (2i) use
case classification, (2ii) local elimination, (2iii) component
naming, (2iv) component description, (2v) component repre-
sentation, (2vi) global elimination, (2vii) component renam-
ing; (3) component packaging and aggregation; and (4) com-
ponent association.

The method has been applied (and adapted) in several
cases, from e-government [3] to protocol processing appli-
cations [7]. Experimental work on adapting the method to
handle variability in the context of product lines has also
been presented in the past [8]. From these previous works
we have identified two fundamental issues regarding UML
that require further clarification in order to fully integrate
use case models into the 4SRS method. These issues are the
semantics of the use case relationships (include, extend, and
generalization) and the formalization of use case behaviors.

These two issues are addressed by an extension to the
UML metamodel proposed in a previous work of the
authors [9]. The major adaptation proposed was that extend
relationships may require rejoin points that are different

123

A model-driven approach for the derivation of architectural requirements of software product lines 67

Regular flow a) Alternative
Insertion

b) Alternative
History

c) Use Case
Exception

d) Alternative
Fragment

e) Alternative
Cycle

a

c

b

a

x

b

c

a

x

b

c

b x

c

a

b

x

c

aa

x

b

c

Fig. 2 Types of alternative sequences of actions in use cases

from the original extension point in order to support all kinds
of alternative sequence of actions presented in Fig. 2. In the
next section, we elaborate on our proposal to handle variabil-
ity in use cases.

3 Handling variability in use cases

To fully integrate requirements into model-driven approaches
the requirement model has to be formalized. In the case of
UML this means the formalization of use cases. In software
product lines, a vital concern is the specification of vari-
ability. Figure 2 presents types of alternatives (variability in
action flows) that are common in the textual description of
use cases. The UML metamodel does not support all these
types of alternatives. In this section we address this limitation
and propose an extension to the UML metamodel to support
model-driven methods with such requirements for variability
modeling. For the formalization of the behavior of use cases
we propose the adoption of activity diagrams.

3.1 Use case relationships

According to the UML metamodel, use cases can be asso-
ciated by two major relationships: Include and Extend. The
Include relationship is used when there are parts (behavior) of
use cases that are common. When this happens, the common

UseCase

ExtensionPoint

Extend

Include

Constraint

extensionPoint

extensionLocation

extend

extension
extendedCase

includingCase addition

include

condition

useCase

Fig. 3 Excerpt UML 2.0 use case metamodel

part can be extracted to a new use case. The new use case is
related to the original use cases by an Include relationship.
According to the UML specification, an Include relationship
acts like a procedure call, since the location of the inclusion
of flow is coincident with the location of the rejoin of the
flow. The Extend relationship is used to model behavior that
can extend the behavior of a base use case. There is always a
condition associated with an Extend relationship. This con-
dition is used to specify when the extension will be active.
Figure 3 presents an excerpt of UML metamodel regarding
use cases. From the presented semantics and the metamodel,
it is clear that in UML the Extend relationship is more suited
to model variability because a condition can be associated
with the extension. Nevertheless, other approaches have been
proposed. For instance, Gomaa [10] proposes that the Include
relationship can be used to model optional use cases in prod-
uct lines.

When developing software product lines, features and fea-
ture diagrams are also commonly used to model variability.
Features represent user-visible aspects or characteristics of a
domain [11]. When they represent functional characteristics
of a product line they can be related to use cases. Usually a
feature can be modeled by one or more use cases [10,12].
However, in the case of fine-grain features, it is possible that
a use case encompass several features. Features can be man-
datory, optional or alternative. There can also be dependency
relations between features. Optional and alternative features
represent variability in a product line. These could be mod-
eled with the Extend relationship.

Usually, use cases are described in natural language. In
fact, there is a pattern for the textual description of use cases
that is generally accepted by practitioners [13]. In this pattern,
use cases are composed by sequences of steps, or actions.
There is usually one main sequence and many alternative

123

68 A. Bragança, R. J. Machado

Use case Renew Loan:
- Main flow:
1. The Librarian enters the renew loan data (user ID and
 Item ID)
2. The system retrieves loan info
3. The loan info is displayed to the librarian
4. The system retrieves item info «extension point»
5. The system renews the loan «extension point»
Use case ends

- Alternative flows:
2a. Loan does no exist (after step 2)
 2a1. The system displays a message to librarian
 Use case ends
3a. A fine is due (after step 3)
 3a1. The librarian collects the fine «extension point»
 Use case rejoins (before step 4)
 Alternative flows:
 3a1a The fine is not totally paid (after step 3a1)
 3a1a1. The system displays a message to the librarian
 Use case ends
4a. The item is reserved (after step 4)
 4a1. The system displays a message to the librarian
 Use case ends

Fig. 4 Excerpt of use case Renew Loan

sequences. There are five types of alternative sequences:
conditional insertion, use case exception, alternative history,
alternative part, and alternative cycle [14]. Figure 2 presents
a graphical representation of the possible sequence alterna-
tives.

An alternative insertion (Fig. 2a) is used to represent
conditional behavior that is inserted into a precise point
(extension point) of a flow. In this case the insertion point
is coincident with the rejoin point, i.e., at the end of the alter-
native behavior the flow rejoins the main flow at the initial
extension point. This is very similar to an Include relationship
with a condition of insertion. Alternative insertions can be
easily modeled by Extend relationships because the exten-
sion point and the rejoin point are coincident. In contrast,
the other types of alternatives (alternative history, use case
exception, alternative fragment, and alternative cycle) are not
directly supported by the UML use case metamodel (Fig. 2).
This is an important limitation since, in practice, it is not so
unusual for extensions to have flows that are diverse from
that of an alternative insertion.

To illustrate our approach we will consider the example
of a library system and two use cases of that system, as pre-
sented in Figs. 4 and 5.

In Fig. 4, where the behavior of the use case Renew Loan
is described, there are two types of alternatives: exceptions
(2a, 4a, and 3a1a) and alternative flow (3a). These are inter-
nal alternatives of the use case. One of the reasons to use the
Extend relationship is that it provides a way to extend already

Use case Handle Gold Member:
- Main flow: <empty>

- Alternative flows (Extension flows):
1. Handle Renew Loan
 Condition: MemberType=GoldMember
 1a. Handle Collect Fine
 (before Librarian collects the fine):
 1a1. If fine<member fee Rejoin base use case
 (before Retrieve item info).
 Rejoin base use case (before Librarian collects the
fine).
 1b. Handle Borrow Rule
 (after Retrieve item info):
 1b1. If Item Reserved by non-gold member Rejoin
 base use case (before Renew loan)
 1b2. Display a message to the librarian
 Base use case ends

Referenced Extension Points:
-Librarian collects the fine:

Renew Loan.The librarian collects the fine
-Retrieve item info:

Renew Loan.The system retrives item info
-Renew loan: Renew Loan.The system renews the loan

Fig. 5 Excerpt of use case Handle Gold Member

developed use cases with optional or alternative external
behavior without interfering with them (it only requires the
proper identification of the extension points in the extended
use cases). This is a common process used to develop use
cases: first identify and model usual and common behavior,
and only then reason about alternative and optional behavior.
Alternative and optional behavior is usually related to entity
instances and values of their attributes that imply different
behavior from one of the base use cases. The member type
is an example of an entity type of the library domain that
implies variability of behavior in use cases.

Figure 5 presents an excerpt of the description of the
extending use case Handle Gold Member. This excerpt con-
tains only the extending behavior that regards use case Renew
Loan. Handle Gold Member extends Renew Loan and uses
the three extension points defined in Renew Loan.

We adopt a similar structure to specify regular and extend-
ing use cases, even if it is not common to have extending use
cases with main flow. Also, we describe alternative flows and
extension flows in the same section because their structure is
basically the same, the major difference being the fact that
in an extending use case the alternative flows usually relate
to flows of other use cases.

Figure 5 presents common situations that reflect two types
of alternatives that are not adequately handled by the Extend
relationship of UML:

• The extending use case adds conditional behavior that
can result in an alternative flow (1a. Handle Collect Fine

123

A model-driven approach for the derivation of architectural requirements of software product lines 69

Borrow
Loancopy

Renew Loan

Return Loancopy

Handle Member
Type

«extend»

«extend»

«extend»

Handle
Gold Member

Fig. 6 Modeling MemberType as a dimension of variability in use
cases

and 1b. Handle Borrow Rule), i.e., there are rejoin points
that do not match the original extension point;

• The extending use case adds conditional behavior that can
result in an alternative history (1b. Handle Borrow Rule),
i.e., the new behavior can lead to an alternative ending in
the base use case.

These situations could be handled by the incorporation of the
alternatives into the base use case. Nonetheless, this option
would lead to base use cases that would be difficult to read
and understand. It would also become more difficult to handle
variability in a product line, because important features, such
as MemberType, would be disperse into several use cases. Our
approach (Sect. 3.2) enables an effective way to model alter-
native flows that facilitates the process of discovering new
dimensions of variable features and easily integrating them
into the use case model.

For instance, Fig. 6 presents how the alternative behaviors
related to MemberType can be modeled in such a way. In
this example, MemberType was identified as a dimension of
variability because alternative behaviors that depend on the
type of the member of the library need to be incorporated into
several base use cases. In order to address future new types
of members we can model the extensions regarding member
type in a single abstract use case. This type of abstract use
case represents a dimension of variability. Specific instances
of that variability dimension are modeled as sub-use cases. As
such, in our example, Handle Gold Member could become a
specialization of the abstract use case Handle Member Type.

The use of the generalization/specialization relationship
between the extending use cases (in our example, Handle
Member Type and Handle Gold Member) enables the proper
handling of dimensions of variability. The abstract extend-
ing use case acts as a template for the concrete extending use
cases. For instance, the conditions of the Extend relationships
are only specified in the concrete use cases.

As Fig. 3 shows, the UML metamodel only supports
extensions that are basically conditional Include relation-

ships. This represents a major limitation to the modeling of
the diverse variability types that are commonly specified by
textual use cases. In fact, it only supports alternative type a
(Fig. 2a). In the next section we present and discuss a proposal
of an extension to the use case metamodel that addresses the
modeling requirements identified in this section.

3.2 Extending the UML 2.0 metamodel

In the past, several proposals have been made to formalize
use cases [15–18]. Some more recent works also proposed
approaches to manage variability in use cases in the context
of product lines [19,20]. The main concern of their authors
has been the lack of formalism of the usual use case text
descriptions. Most well-known proposals regard nonvisual
languages. In our specific case we aim at integrating require-
ments into a model-driven method. In the context of UML,
the modeling of behavior can be addressed by activity dia-
grams, so we have adopted activity diagrams for modeling
use case behavior. Figure 7 presents an excerpt of the UML
metamodel adapted (extended) to support our proposal for
formalization of use cases.

Figure 7 presents in gray those elements that correspond
to extensions to the UML metamodel. Since, according to the
UML specification, a use case is a specialization of a Behavi-
oredClassifier, we use the classifierBehavior and ownedBe-
havior associations to model, respectively, the use case main
flow and the alternative flows.

We propose a new ExtensionFragment metaclass to sup-
port the issues identified in the previous section. In our pro-
posed metamodel it is clear that an Extend relationship can
have a condition and make several extensions (via Extension-
Fragment) to a base use case. Each extension has one exten-
sion location but can have several rejoin locations. An exten-
sion also specifies which behavior of the extending use case
will extend the base use case in the extension location. Since
use case behaviors are formalized through activity diagrams,
extension locations and rejoin locations refer to elements of
type Action of the corresponding behavior. To clarify if the
extension or the rejoin points are made before or after the
corresponding Action, we propose the attribute moment.

Regarding the Include relationship, we propose the new
InclusionPoint element so that we have a similar approach to
the one used in the Extend relationship. An InclusionPoint
refers to the location where the behavior is to be included.
This location has to refer to an element of type CallBe-
haviorAction of the same use case as the Include relation-
ship. It is not necessary to specify what behavior is to be
included because the semantic of the Include is to include
the main behavior (classifierBehavior) of the included use
case. The stereotypes extension_point, inclusion_point, and
rejoin_point are used as a visual aid to more easily identify
the semantics of the actions nodes of the activity diagrams.

123

70 A. Bragança, R. J. Machado

Fig. 7 Excerpt of proposed
metamodel

«stereotype»
inclusion_point

UseCase

ExtensionPoint

Extend

Include

Constraint

extensionPoint

extensionLocation

extend

extensionextendedCase includingCase

addition

include

condition

useCase

classifierBehavior

Parameter

ownedParameter

0..1 0..1

*
0..1

0..1 *

Constraintprecondition

postcondition

Activity

ownedBehavior

0..1

1

*

1

1

1

*

*

*

*

1 1

Behavior

ExtensionFragment

extension *

1

rejoinTarget

*

extendingBehavior

InclusionPoint

inclusionPoint*

1

inclusionLocation

location

ActivityNode

node

Action ObjectNode

Pin

ActivityParameterNode

parameter

ActivityEdge

activity

edge

incoming

outgoing

InvocationAction

CallAction

CallBehaviorAction

behavior

location

1

1

1

«stereotype»
rejoin_point

Location

moment:MomentKind
location

1

«enumeration»
MomentKind

before
after

Rejoin

*

1

rejoinSource

1

«stereotype»
extension_point

RefAction

refers

1

The formalization of use case behavior by means of activ-
ities is also depicted in Fig. 7. For each use case behavior
there is an activity. Extend and rejoin points of use cases
trace directly to nodes of activities. In Sect. 4 we elaborate
more on how activity diagrams relate to use cases and how
they can be constructed.

3.3 Relating use cases and features

Although feature diagrams [11] are not part of the UML
metamodel, they are a crucial artifact of product lines. They
model the characteristics of a product line and how they relate
to each other. A selection of the features represents a partic-

ular application of the product line. As such, features should
relate to the requirements of the product line.

The issue of relating use cases and features is not new.
Notably, there is the much referenced work of Griss et al.
[12]. In their work they propose an approach by which func-
tional features are extracted from the domain use case model.
They also propose that the structure of the feature model
can be created according to the structure of the use case
model (by using the include and extend relationships). As the
authors suggest, further types of features can be discovered
and added along the development process, such as features
resulting from architectural or design modeling tasks. More
recent works in this field are also aligned with this approach

123

A model-driven approach for the derivation of architectural requirements of software product lines 71

Fig. 8 Example of a use case
diagram for a library product
line

Borrow Loan Copy

Collect Partial Fine

Collect Total Fine

Librarian

«include»
«include»

«include»

{Collect Fine; cardinality:
1..1}

{Renew Loan
Collect Partial Fine;

cardinality: 0..1}

Renew Loan

extension points
Collect Fine

Get Item Status
Renew Loan

Handle Gold Member

«extend»

Extension: Handle Renew Loan
Cond.: {Member Type=Gold Member}
E. Fragment: Handle Collect Fine

before Collect Fine
E. Fragement: Handle Borrow Rule

after Get Item Status

«include»

{Handle Gold
Memberships;

cardinality: 0..1}

[10,20,21]. We also follow this approach, since feature mod-
eling requires an extensive knowledge of the domain, which
is only possible after the effective modeling of such a domain.
This is particularly true for the functional features of the
domain. So, the initial feature model can be built from the
domain use case model as described [22].

Figure 8 is an example of a use case diagram that con-
tains visual annotations that are used to model how variabil-
ity in use cases can be combined to represent the functional
features of a domain or of a software product line. We call
these annotations variability annotations and the annotated
use case models use case domain models. In Fig. 8, variabil-
ity annotations are represented as notes linked to the Include
and Extend relationships. They represent variability points
with a name, a minimum, and a maximum cardinality and
the respective options.

For instance, the variability annotation Collect Fine, has
a cardinality 1..1 that says that one and only one of the
options must be selected. The two options are the includes
that related the use case Borrow Loan Copy to the included
use cases Collect Total Fine and Collect Partial Fine. By
annotating the use case model with this approach it is possi-
ble to automate the creation of a feature model such as the
one presented in Fig. 9 [22]. Since it is the modeler of the
use case domain model who is editing these use cases and
relationships, he/she is also capable of making these annota-
tions.

3.4 UML-F

UML-F was proposed as a UML profile for frameworks
[5], and later support was added to product lines [23]. With
this profile it is possible to annotate UML elements with
stereotypes that properly model variability. Unfortunately,
the original UML-F profile only covers design elements.

LibrarianApplication

borrows {0..1}

ManageBorrows

BorrowLoanCopy

RenewLoan

renewLoan {0..1}

CollectPartialFine CollectTotalFine

collectFine {1..1}
«reference»

CollectPartialFine

renewLoanCollectPartialFine
{0..1}days: Int[1..1]

HandleGoldMemberships

handleGoldMemberships
{0..1}

«reference»
CollectPartialFine

Fig. 9 Excerpt of a library feature model

The 4SRS method adopts the UML stereotypes proposed
in UML-F and extends the UML-F profile with new ste-
reotypes to include support for requirements and analysis
models. Table 1 summarizes these stereotypes and informally
defines their semantics.

4 Modeling requirements with use cases and activity
diagrams

UML use cases are very useful in capturing requirements
because of their simplicity but, as discussed in the previ-
ous section, they also have some informal characteristics that
hinder their adoption in model-driven methods. To address
these issues, 4SRS extends the UML use case metamodel
and adopts Activities to formally specify use case behavior.
In 4SRS, for each use case behavior there is an activity
diagram.

123

72 A. Bragança, R. J. Machado

Table 1 Summary of UML-F stereotypes and their meanings

Stereotype Applies to element Description

variant UseCase Indicates that the behavior of the use case can vary

mandatory UseCase Classifies use cases according to their inclusion in the product line

optional

alternative

inclusion_point Action Indicates that the Action is an inclusion point for the classifierBehavior of the included use case

extension_point Action Indicates that the behavior of the use case can be extended at the Action

vp ExtensionPoint Indicates that the ExtensionPoint is a variation point of the product line

template «analysis»Component Indicates an element whose behavior is affected by variants that relate to a hook (based on [23])

«analysis»Class

DesignElement

hook «analysis»Interface An element that represents (or contains) a location where variations occur, i.e., a variation point
(based on [23])

DesignElement

rejoin_point RefAction Indicates that this RefAction rejoins the flow at the referenced Action of the base behavior

Attributes: Moment (before or after)

application DesignElement Indicates that the DesignElement relates to a specific application of the product line (based on [23])

framework DesignElement Indicates that the DesignElement is global to all applications of the product line (based on [23]).

variable Method Indicates that the behavior of the method varies (based on [5])

Attributes: Instantiation (dynamic or static)

extensible Class Indicates that new methods can be added to the class (based on [5])

Attributes: Instantiation (dynamic or static)

incomplete Generalization Indicates that the generalization set can be incomplete, i.e., it is possible to add new classifiers to
the set (based on [5])

Attributes: Instantiation (dynamic or static)

When use cases of the domain are identified, their behav-
ior is modeled by activity diagrams. This is not so different
from the traditional way of describing use case behavior by
natural language, such as in [13]. Basically, each step in a
text description of a use case is modeled as an Action node
in the activity diagram.

Sequence diagrams can be a helpful tool in modeling
diverse use case scenarios that together describe the global
behavior of a use case. Therefore, they also can help when
building the activity diagrams for the behavior of the use
cases.

Use case relationships are discovered during use case
modeling. The informal «include» and «extend» relation-
ships become formal as they are modeled in 4SRS, since they
relate Action nodes and use case elements in a precise way
(Fig. 7). Common use cases for diverse applications become
mandatory use cases of the product line. Optional and alter-
native use cases will participate in «extend» relationships
or, less commonly, in «include » relationships.1 As such,

1 Since an including use case is aware of the existence of the included
use case some precautions are necessary when modeling variability with
the include relationship. This is not the case for extending use cases,
since the extended use case is not aware of being extended.

during this process of modeling use cases, we are also iden-
tifying features of the product line. However, feature dia-
grams should not become direct mappings of use cases. For
instance, all mandatory use cases could relate to a single root
feature. In 4SRS, establishing relationships between features
and use cases is a human task since it requires human deci-
sion. Nonetheless, it is possible for a tool to automate a sig-
nificant part of this process, as described in [22].

The activity of the creation of the use case models is essen-
tial in any UML-based model-driven method, since use cases
drive the creation of a very significant number of design ele-
ments, i.e., the design elements that are derived from func-
tional requirements.

To illustrate this process we will describe how use case
textual descriptions with specifications similar to the ones
described in [13] can be modeled with our approach. Figures 4
and 5 are cases of such textual specification.

Use case specifications usually contain main flow descrip-
tions and alternative flows. For the construction of the use
case models it is usual to address first regular use cases (i.e.,
nonextending use cases) and Include relationships. As the
use case model is constructed, it is possible to start also devel-
oping the activity diagrams. For each regular use case, usu-
ally a single activity diagram is sufficient. According to the

123

A model-driven approach for the derivation of architectural requirements of software product lines 73

metamodel of Fig. 7, there should be an activity diagram for
each Behavior (ownedBehavior or classifierBehavior) of the
use case. Since the classifierBehavior specifies the main flow
of a use case, and main flow alternatives can also be spec-
ified in the classifierBehavior, a single activity diagram is
sufficient for the majority of the use cases.

4.1 Activity nodes

The construction of the activity diagrams is relatively
straightforward. The base idea is that each step of the use case
textual description becomes an ActivityNode in the activ-
ity diagram. Each ActivityNode refers to, or is performed
by, the system or an actor. As such, we adopt UML 2.0
ActivityPartitions associated with ActivityNodes to identify
«who» is related to the ActivityNode. For instance, step 1 of
Fig. 4, “The Librarian enters the renew loan data (user ID and
Item ID)” becomes the Action (ActivityNode) Enter Renew
Loan Data associated with the ActivityPartition Librarian.
Figure 10 presents the activity diagrams correspondent to the
flows of use cases Renew Loan (Fig. 4) and Handle Gold
Member (Fig. 5).

4.2 Decision nodes

An alternative flow implies a DecisionNode in the activity
diagram. The alternative flow “2a. Loan does not exist (after
step 2)” of Fig. 4 is transformed into the DecisionNode Check
if Loan Exists. This kind of DecisionNode usually has two
outgoing edges. One corresponds to the main flow and is tra-
versed when the condition for the alternative flow is false.
The other corresponds to the alternative flow. Usually, deci-
sion nodes in UML 2.0 are depicted with a diamond-shaped
symbol. We represent all activity nodes in a uniform way. To
identify control nodes we represent their symbols as small
icons within the right side of the node’s visual symbol. This
makes it possible to attach more information to control nodes
(such as stereotypes and partition names), making their visual
representation more meaningful.

4.3 Object nodes

A very important aspect of using activity diagrams to model
use case behavior is that it is possible to represent object
nodes and their flow. The process of identifying the objects
that are used as parameters of actions and behaviors can pro-
vide significant input to the entity model of the domain (see
activity Create Entity Model of Fig. 1). Another aspect of
object nodes and parameters is that they provide an effective
way to validate Include and Extend relationships, since the
parameters of the sources and targets of these relationships
must be compatible. Also, when we reason about conditions

for alternatives and Extend relationships, object nodes makes
it possible to do so in a formal way, because they provide a
way to constraint the modeler to only refer to objects that are
accessible from the specific location of the condition in the
activity diagram. These are all validations that are possible
in our proposed metamodel.

4.4 Include relationship

An Include relationship in which use case A includes use
case B, means that there is a CallBehaviorAction node is use
case A that calls the classifierBehavior of use case B. This
means that the main flow of use case B is included by the
CallBehaviorAction node of use case A. The parameters of
the CallBehaviorAction of use case A must be compatible
with the parameters of the classifierBehavior of use case B.

4.5 Extend relationship

In order to support all possible alternative flows, our Extend
relationship becomes significantly more complex than the
original UML Extend relationship. Regarding the extended
use case, there are no significant changes. Basically, we only
have to specify the extension points. In the case of the activity
diagrams, this is done by marking the respective nodes with
the stereotype extension_point. These become locations that
can be used by extending use cases as extension or rejoin
points. We maintain the term “extension point” in the base
use case to expose nodes that can be used either as out-
going flows or as incoming flows of extending behavior.
Maybe a more appropriate term would be “public point.”
Figure 8 presents three examples of extension_points for the
use case Renew Loan: Collect Fine, Get Item Status, and
Renew Loan.

Similarly to this simple case, it is possible to relate activ-
ities, use cases, and features as the analysis models are built.
In fact, as use case behavior is modeled by activity diagrams,
a trace can be made from elements of the activity diagrams
to features, through use case elements. In Fig. 10, the activity
nodes marked with the stereotype «extension_point» relate
to the correspondent use case extension points with the same
name. And, as we saw, these extension points relate to the
handleGoldMemberships subfeature relationship (Fig. 9).
Similarly, the alternative behaviors of use case Handle Gold
Member that extend the use case Renew Loan at the previ-
ous mentioned extension points must be related to the feature
HandleGoldMemberships.

Nodes of the 4SRS activity diagrams are marked with
additional information that is used to support the 4SRS trans-
formation rules. The stereotypes «interface» , «control» , and
«data» are used to classify each node regarding its seman-
tic role in the system. For instance, the node Find Loan

123

74 A. Bragança, R. J. Machado

Fig. 10 Activity diagrams for
Renew Loan and Handle Gold
Member

Enter Renew Loan Data

UserID
ItemID

«interface» (Librarian)

Display Loan Info

«interface» (Librarian)

Find Loan

LoanInfo
LoanStatus

«data» (System)

Check if Loan Exists

LoanInfo; LoanStatus

«control» (System)

Display Msg Loan Existent

«interface» (Librarian)

LoanStatus.Exists=No

LoanStatus.Exists=Yes

Get Item Status

«extension_point», «data» (System)

Collect Fine

«extension_point», «interface, data»
(Librarian)

Verify if Fine is Due

«control» (System)

LoanInfo

LoanStatus.Fine=FineDue

LoanInfo; LoanStatus

Else

LoanInfo; LoanStatus

LoanInfo; LoanStatus

LoanInfo; ItemStatus

Verify if Reserved

«control» (System)

Verify Fine Status

«control» (System)

LoanInfo

LoanStatus=FineDue

Else

Renew Loan

«extension_point», «interface, data»
(System)

LoanInfo

LoanInfo

Display Msg Fine Due

«interface» (Librarian)

Else

Display Msg Reserved

«interface» (Librarian)

LoanInfo

LoanInfo

ItemStatus=Reserved

Renew Loan.Collect Fine

«rejoin_point, before»

LoanInfo

Verify if Collect Fine

«control», (System)

LoanInfo; LoanStatus

LoanStatus.Fine>LoanInfo.Member.Fee

Else

Verify Condition

«control», (System)

LoanInfo; LoanStatus

Gold Membership Else

RenewLoan.Get Item Status

«rejoin_point, before»

LoanInfo

Verify if Can Borrow

«control», (System)

LoanInfo; ItemStatus

LoanInfo

Verify Condition

«control», (System)

LoanInfo; ItemStatus

Else
Gold Membership

ItemStatus.ReservationMemberType<>
Gold Member

Else

Display Msg Gold Reservation

«interface», (Librarian)

LoanInfo

Renew Loan.Renew Loan

«rejoin_point, before»

Renew Loan.Get Item Status

«rejoin_point, after»

Use Case Renew Loan
Main Flow

Use Case Handle Gold Member
Extend Flow: Handle Renew Loan
 Condition: Member Type=Gold Member

Extension: Handle Collect Fine
Extension Point: Renew Loan.Collect Fine
Moment: before

Extension: Handle Borrow Rule
Extension Point: Renew Loan.Get Item Status
Moment: after

represents a data operation in the system. We also use the
concept of partitions to model “who” has the responsibility
for the operation of the node or is the major “actor” of the
node. For instance, the System is responsible for the node Find
Loan.

5 Capturing functional architectural requirements with
use case realizations

The adoption of activity diagrams for modeling use case
behavior results in a precise specification of the functional
requirements of the product line. A use case realization
model acts like a link between the problem domain and the
solution domain. It has the responsibility of guaranteeing
that all functional requirements of the problem domain are

addressed in the solution domain, on a use case by use case
basis.

A use case realization is usually modeled by a group
of analysis components/classes that collaborate to perform
the use case behavior. They represent the first step in the
transition from the problem space to the solution space. As
such, they should be the primary (eventually the only) input
for the software engineer as he/she designs the product
line.

The first task of the design is the specification of the archi-
tecture of the product line, i.e., the collection of computa-
tional components of the product line and the interactions
between these components. These elements can be essen-
tially derived based on the input of use case realizations.
Other requirements may also influence the architecture.
For instance, the architectural style of a product line can be

123

A model-driven approach for the derivation of architectural requirements of software product lines 75

Fig. 11 Use case realization
diagram for Renew Loan
(filtered view) «component, analysis, template»

{C.i} RenewLoan

«analysis» {c.i}
EnterRenewLoanData

«analysis» {c.i}
DisplayMsgLoanExistent

«analysis» {c.i}
DisplayLoanInfo

«analysis» {c.d}
RenewLoan

«component, analysis, template»
{C.d} RenewLoan

«analysis» {c.d}
FindLoan

«analysis» {c.i}
CollectFine

«analysis» {c.i}
DisplayMsgFineDue

«analysis» {c.i}
DisplayMsgReserved

«analysis» {c.i}
RenewLoan

«analysis» {c.d}
CollectFine

«analysis» {c.d}
GetItemStatus

«component, analysis»
{C.c} RenewLoan{I.i}

EnterRenewLoanData

{I.i}
DisplayMsgLoanExistent

{I.i}
DisplayLoanInfo

{I.i}
DisplayMsgFineDue

{I.i}
DisplayMsgReserved

«hook» {I.i}
CollectFine

{I.d}
FindLoan

«hook» {I.d}
GetItemStatus

«hook» {I.i}
RenewLoan

{I.d}
CollectFine

{I.d}
RenewLoan

{I.c}
CheckIfLoanExists

{I.c}
VerifyIfFineIsDue

{I.c}
VerifyFineStatus

{I.c}
VerifyIfReserved

{I.c}
RenewLoan

influenced by the specific runtime platform, the topology of
the hardware, etc. In this paper we will only address the func-
tional requirements for the architecture.

Traditionally, the specification of use case realizations is
a very creative task. It requires a lot of experience from the
software engineer, as he/she identifies the classes that realize
the use case from the use case textual description. However,
even a very experienced software engineer can misinterpret
the requirements or forget some specification. What 4SRS
proposes is the automation of this task.

The automatic creation of use case realizations in 4SRS is
possible since use case behavior is totally specified by activ-
ity diagrams. The annotations made on the activity diagrams
(as described in the previous section) also support this auto-
matic transformation. Basically, the method follows a well-
known applied practice introduced by Jacobson et al. [24]
and creates three components for each use case: interface,
control, and data components. This corresponds to step 1
of 4SRS (Sect. 2). Since, in our approach, each use case is
complemented with activity diagrams, it is possible to use
these activity diagrams to populate each of the use case com-
ponents with classes and interfaces that are responsible for
realizing the behavior associated with the nodes of the activ-
ity diagrams. To guide this transformation each node in the
activity diagrams must be marked with the following stereo-
types: interface, control, and data. This facilitates the allo-
cation of the classes and interfaces to the three components
that realize the use case.

For a model-driven approach to be feasible there must
be simple and direct mappings between the models. In this

case, the mapping is done between Actions of activity models
and Methods of component/class models. For each Action in
the activity model we create an Interface with a Method in
the use case realization model and also a Class that imple-
ments the interface. In the use case realization model these
interfaces act like roles that are needed in the final system
to address the behavior required by the specific use case.
Extension, inclusion, and rejoin points are realized through
required/provided interfaces. Since the components are pop-
ulated with classes and interfaces, steps 2i and 2ii of 4SRS
(component elimination) can be automated, i.e., components
with no allocated classes and interfaces can be eliminated.
Steps 2iii, 2iv, and 2v are also addressed at activity create use
case realization model (Fig. 1), but they require the human
intervention.

Figures 11 and 12 presents the use case realization of,
respectively, use case Renew Loan and use case Handle Gold
Member. Since we are addressing design at an architectural
level we find that component diagrams are more adequate
than class diagrams to model use case realizations. As such,
in 4SRS use case realizations are component diagrams. As
we saw, each use case gives origin to up to three analysis
components. Each one is composed by the classes and inter-
faces that resulted from the transformation of the activity
nodes. For instance, for the use case realization of Renew
Loan, the Collect Fine node gives origin to two analysis clas-
ses: {c.i}CollectFine and {c.d}CollectFine because the corre-
spondent node was annotated with stereotypes interface and
data. Based on the extend relationship that exists between the
two use cases, it is also possible to automatically annotate the

123

76 A. Bragança, R. J. Machado

Fig. 12 Use case realization
diagram for Handle Gold
Member (filtered view)

«component, analysis»
{C.c} HandleGoldMember

{I.i}
CollectFine

{I.d}
GetItemStatus

«hook» {I.i}
RenewLoan

«component, analysis»
{C.i} HandleGoldMember

{I.i}
DisplayMsgGoldReservation

«hook» {I.d}
GetItemStatus

«hook» {I.i}
CollectFine

use case realization elements with the hook and template ste-
reotypes of UML-F.

Annotating these design elements with the stereotypes
from UML-F enables the adoption of the design transforma-
tions proposed in UML-F to detail the logical architecture of
the product line, as discussed in the next section.

The creation of use case realizations in 4SRS is a highly
totally automated task. As such, all the generated elements
are linked to their origins. This makes it possible to trace, for
instance, a feature to its realization elements. Another advan-
tage of this approach is that use case realizations can be easily
transformed into executable code for a specific language or
platform. Thus, use case realizations can also provide simple
prototypes of the product line that can be of great help for
the user validation of use cases.

One could argue that, with the proposed approach, a com-
plex use case could give origin to a complex use case reali-
zation. This is true, but eventually this would also probably
happen if the creation of use case realizations were not auto-
mated.

Besides the previously discussed characteristics of 4SRS
use case realizations, the fundamental value of the method is
that, as a result of a simple approach, the product line engi-
neer is able to reason with precise functional architecture
requirements.

6 Deriving the logical architecture

Each use case realization provides a partial view of the prod-
uct line. It is necessary to create a global model of the archi-
tecture of the product line. In 4SRS, this global architecture
is based on the use case realizations and represents an inte-
gration of them. In contrast to the creation of the use case
realizations, the creation of the architecture is a human-based
task.

In this task, the product line engineer has to transform
the analysis elements that resulted from the use case realiza-
tions into design elements. Each analysis element gives origin
to a new design element or is incorporated into an existing
one. For instance, all «interface» analysis components that
are related to the librarian role can be incorporated into the
LibrarianUI design component.

Similarly, analysis classes give origin to new design clas-
ses or are incorporated into existing design classes. In Fig. 13,
we can see that the analysis class {c.i}CollectFine was

«component»
LoanControl

«component»
LibrarianUI

«template»
LoanUI

enterLoanData(…)
...
enterRenewLoanData(…)
collectFine(…) «variable, hook»
...

ReservationUI

CatalogUI

«interface, hook»
{I.i} CollectFine

collectFine(…)

«interface, hook»
{I.i} RenewLoan

{I.i}
CollectFine

«component»
ReservationControl

«component»
LibraryRepository

«component»
CatalogControl

«component»
MemberControl

«component»
MemberUI

Fig. 13 Architectural logical view showing {I.i}CollectFine connect-
ing the LibrarianUI and LoanControl components (filtered view)

incorporated into the design class LoanUI. The only method
of the class {c.i}CollectFine becomes a part of the LoanUI
class.

To facilitate tracing to the original elements of the use
case realizations, analysis interfaces are not transformed,
i.e., analysis interfaces also exist in design. As the described
transformations are performed the global architecture of the
product line takes form. Associations between components
become visible as matching required and provided interfaces
are transformed from analysis to design. Variability points
identified in the requirements and analysis phases are trace-
able to variability points in the architecture of the product
line. For instance, the hook method collectFine of the Loa-
nUI class originates from the Collect Fine extension point of
use case Renew Loan.

As Fig. 1 shows, the design model is not based only on
use case realizations. The entity model is also an input for
the design model. Its classes also populate the design
model.

123

A model-driven approach for the derivation of architectural requirements of software product lines 77

«interface, hook»
HandleMemberRenewLoanUI

HandleGoldMemberUI HandleRegularMemberUI

«template»
LoanUI

handleMember

«interface, hook»
{I.i}CollectFine

«interface, hook»
{I.i}RenewLoan

Fig. 14 Applying the abstract factory design pattern to realize the
variability point of the collectFine method of the LoanUI class

The tasks described in this paper enable the creation of
an initial version of the architecture of a product line that
is traceable to requirements and incorporates all functional
requirements (as they were modeled). Obviously, the design
of a product line does not end with its architecture. More
detailed design tasks are required to achieve the goal of activ-
ity j (Fig. 1): the creation of executable code. One example
of such design tasks is the use of design patterns, such as the
ones proposed initially by Gamma et al. [25].

Figure 14 is an example of the result of applying the
abstract factory design pattern to realize the variability point
of the collectFine method of the LoanUI class. Originally
(Fig. 13), the hook (variability point), and the template were
at the same class. The abstract factory design pattern sep-
arates the template from the hook [23]. This realization of
the variability point supports changing variants at runtime.
Such a design decision should be made in accordance with
the requirements. In this case, for instance, the bindingTime
attribute of the feature HandleGoldMemberships should have
the value runtime (Fig. 9). If only static binding time were
required, the creation of subclasses of LoanUI would be suf-
ficient to support the variability point. More details about
how feature characteristics can influence the design can be
found in [23].

7 Conclusion

Use case realizations are a technique used to help the tran-
sition from the problem domain to the solution domain. The
4SRS method also adopts this technique. The particularity
of 4SRS is that its use case realizations can be totally auto-
mated. This is possible because use case behaviors are for-
mally modeled with activity diagrams and also because of
the adaptations made to the UML metamodel. These adap-
tations support the proper modeling of variability in all the
activities of the method. As a result of the 4SRS approach,
it is possible to maintain traces between elements at differ-
ent conceptual levels. In the case of product lines, use case
requirements are traced to architectural requirements, use
case variability is traceable into architectural elements, and
features are related to architectural elements.

Transforming requirements to analysis models is a very
difficult task since the semantic gap between the problem and
solution domain is usually very significant. Usually, meth-
ods take for granted that the analyst is a domain expert and
will discover the architectural elements without difficulty or
that the architectural elements can be easily discovered by
applying simple heuristics, such as transforming nouns into
objects and verbs into operations. We can find this kind of
approach in methods such as RSEB [6,12], PLUS [10], and
Catalysis [26]. In real projects the transformation process
is much more difficult. Our approach (as well as the one of
the original 4SRS) has more similarities with methods which
make the initial transformation based on objects and not clas-
ses (e.g., Fujaba [27]). With this kind of approach, use cases
are first realized by object collaboration diagrams. Only after
realizing all use cases with object collaborations do we pro-
ceed to create class models. Our approach goes even further
since the use case realizations are based on performing the
actions of the activity diagrams essentially by fragments of
analysis classes. These fragments must exist to realize the
system but are only transformed into design elements after
the initial architecture of the system is completed. With this
approach we aim to facilitate the work of the analyst since
prior domain knowledge or architectural experience is not
required to build the first complete architecture of the sys-
tem. One relative drawback of our approach is that it requires
metamodeling tools for the adaptation of the UML metamod-
el. Tool support for 4SRS is being developed experimentally
with EMF [28] and GMF [29]. Details on how the approach
presented in this paper can be applied using publicly avail-
able tools can be found in [9,22,30–32].

References

1. OMG (2005) MOF QVT final adopted specification. OMG, Avail-
able at http://www.omg.org/

2. Clements P, Northrop L (2002) Software product lines—practices
and patterns. Addison Wesley, Reading

3. Machado RJ, Fernandes JM, Monteiro P, Rodrigues H (2005) On
the transformation of UML models for service-oriented software.
In: ECBS international conference and workshop on the engineer-
ing of computer based systems. Greenbelt, MD

4. OMG (2006) Formal/05-07-04 unified modeling language version
2.0: superstructure. OMG, Available at http://www.omg.org/

5. Fontoura M, Pree W, Rumpe B (2000) UML-F: a modeling lan-
guage for object-oriented frameworks. ECOOP 2000-object-ori-
ented programming conference

6. Jacobson I, Griss M, Jonsson P (1997) Software reuse: archi-
tecture, process and organization for business success. Addison
Wesley Longman, New York

7. Marcus Alanen, Lilius J, Porres I, Truscan D (2005) On model-
ing techniques for supporting model driven development of pro-
tocol processing applications. In: Beydeda S, Book M, Gruhn V
(eds) Model driven software development—vol II of research and
practice in software engineering, vol 2. Springer-Verlag, New York,
pp 305–328

123

http://www.omg.org/
http://www.omg.org/

78 A. Bragança, R. J. Machado

8. Braganca A, Machado RJ (2005) Deriving software product
line’s architectural requirements from use cases: an experimen-
tal approach. In: Second international workshop on model-based
methodologies for pervasive and embedded software. Rennes,
France

9. Braganca A, Machado RJ (2006) Extending UML 2.0 metamodel
for complementary usages of the «extend» relationship within use
case variability specification. SPLC 2006. Baltimore, Maryland

10. Gomaa H (2005) Designing software product lines with UML.
Addison Wesley, Reading

11. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990)
Feature-oriented domain analysis (FODA) feasibility study tech-
nical report, CMU/SEI-90-TR-21. Software Engineering Institute,
Carnegie Mellon University

12. Griss ML, Favaro J, d’Alessandro M (1998) Integrating feature
modeling with the RSEB. In: Fifth international conference on
software reuse. Victoria, Canada

13. Cockburn A (2001) Writing effective use cases. Addison-Wesley,
Reading

14. Metz P, O’Brian J, Weber W (2004) Specifying use case interaction:
clarifying extension points and points of rejoin. J Object Technol

15. Hurlbut R (1998) Managing domain architecture evolution through
adaptive use case and business rule models. Ph.D. at Graduate
College, Illinois Institute of Technology, Chicago

16. Overgaard G, Palmkvist K (1998) A formal approach to use cases
and their relationships. In: «UML» 98: beyond the notation, ecole
superieure des sciences appliques pour l’Ingenieur, Mulhouse.
Universite de Haut-Alsace, France

17. Porres I (2001) Modeling and analysing software behavior in UML.
Ph.D. at Department of Computer Science, Abo Akademi Univer-
sity, Turku, Finland

18. Stevens P (2001) On use cases and their relationships in the unified
modelling language. FASE’01

19. Fantechi A, Gnesi S, Lami G, Nesti E (2004) A methodology
for the derivation and verification of use cases for product lines.
SPLC2004, Boston

20. Eriksson M, Borstler J, Borg K (2005) The PLUSS approach—
domain modeling with features, use cases and use case realizations.
SPLC2005, Rennes, France

21. Jacobson I, Ng P-W (2005) Aspect-oriented software development
with use cases. Addison Wesley, Reading

22. Braganca A, Machado RJ (2007) Automating mappings between
use case diagrams and feature models for software product lines.
SPLC 2007, Kyoto, Japan

23. Pree W, Fontoura M, Rumpe B (2002) Product line annotations with
UML-F. In: Software product lines—second international confer-
ence. SPLC 2, San Diego

24. Jacobson I, Christerson M, Jonsson P, Overgaard G (1992)
Object-oriented software engineering: a use case driven approach.
Addison-Wesley, Reading

25. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design pat-
terns—elements of reusable object-oriented software. Addison-
Wesley, Reading

26. D’Souza DF, Wills AC (1998) Objects, components, and frame-
works with uml: the catalysis(SM) approach. Addison-Wesley
Professional, Boston

27. University of Paderborn Software Engineering Group, 2006,
Fujaba “Fujaba”, vol 2007. http://wwwcs.uni-paderborn.de/cs/
fujaba/index.html

28. Eclipse (2006) “Eclipse Modeling Framework,” Eclipse Founda-
tion. Available at http://www.eclipse.org/emf/

29. Eclipse (2006) “Graphical Modeling Framework,” Eclipse Foun-
dation. Available at http://www.eclipse.org/gmf/

30. Braganca A, Machado RJ (2007) Adopting computational indepen-
dent models for derivation of architectural requirements of software
product lines. Mompes, Braga, Portugal

31. Braganca A, Machado RJ (2008) Transformation patterns for multi-
staged model-driven software development. SPLC 2008. Limerick,
Ireland

32. Bragança A (2008) Methodological approaches and techniques for
model driven development of software product lines. Ph.D. at Infor-
mation Systems Department, School of Engineering, University of
Minho, Braga

123

http://wwwcs.uni-paderborn.de/cs/fujaba/index.html
http://wwwcs.uni-paderborn.de/cs/fujaba/index.html
http://www.eclipse.org/emf/
http://www.eclipse.org/gmf/

	A model-driven approach for the derivation of architectural requirements of software product lines
	Abstract
	1 Introduction
	2 The 4SRS model-driven method
	3 Handling variability in use cases
	3.1 Use case relationships
	3.2 Extending the UML 2.0 metamodel
	3.3 Relating use cases and features
	3.4 UML-F

	4 Modeling requirements with use cases and activity diagrams
	4.1 Activity nodes
	4.2 Decision nodes
	4.3 Object nodes
	4.4 Include relationship
	4.5 Extend relationship

	5 Capturing functional architectural requirements with use case realizations
	6 Deriving the logical architecture
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

