

R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 411–422, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Refinement of Software Product Line Architectures
through Recursive Modeling Techniques

Sofia Azevedo1, Ricardo J. Machado1, Dirk Muthig2, and Hugo Ribeiro3

1 University of Minho, Portugal
{sofia.azevedo,rmac}@dsi.uminho.pt

2 Lufthansa Systems, Germany
dirk.muthig@lhsystems.com

3 Primavera Business Software Solutions, Portugal
hugo.ribeiro@primaverabss.com

Abstract. Currently, modeling methods applicable to software product line
architectures do not explicitly comprise refinement, which implies dealing with
a lot of complexity during their application to a high number of requirements.
This paper suggests the extension of a modeling method applicable to product
line architectural modeling, the 4SRS (Four Step Rule Set), to support the
refinement of product lines. We have used the GoPhone case study to illustrate
the approach and the recursion capability of the method as a solution to the
challenges of modeling product line architectures. The strength of our approach
resides in its stepwise nature and in allowing the modeler to work at the user
requirements level without delving into lower abstraction concerns.

Keywords: software product line architectural modeling, logical architecture,
refinement, recursion.

1 Introduction

A logical architecture can be faced as a view of a system composed of a set of
problem-specific abstractions supporting functional requirements and it is represented
as objects or object classes [1]. In this paper, logical architectures will be represented
as component diagrams. The software product line architecture, in the context of this
contribute, is the design artifact representing the functionality-based structure of the
product line, and embraces both the product line’s reusable components and the
foundation from which the architectures of the product line members can be isolated.
The non-functional requirements are out of the scope of this paper, although they will
have to be considered, most likely through the application of patterns, in moments
following the product line logical architecture’s design.

Product line architectures can be obtained from functional requirements expressed
in use cases with variability exposure [2, 3]. Since use cases can be more or less
detailed, architectural components can be refined according to the detail level of the
use cases they originate from. But the relation between use case and component is not
one-to-one. It may be the case that many components are affected by the refinement
of a use case and many more than the original set.

412 S. Azevedo et al.

The refinement of product line logical architectures may be due to two reasons: (1)
the addition of detail to the product line logical architecture; and (2) the transition from
a phase of user requirements to a phase of system requirements in the product line
development.

Currently, the modeling approaches that support product line architecture design
do not take refinement into consideration at the user requirements level, at the use
cases level and in a stepwise way (see Section 2 for evidence to support this
statement).

Not considering refinement when modeling a product line architecture using a
specific product line modeling method, in our case, the 4SRS (Four Step Rule Set)
[4], constitutes a problem of complexity in the modeling activity. The pertinence of
refinement resides in large-scale contexts, even though we are going to demonstrate
our approach to refinement with GoPhone [5], which is of small-scale. Our intention
is to expose our contribution and the concepts we want the reader to understand in a
straightforward way. In order to circumvent the scale problem, we propose to extend
the 4SRS modeling method to support the refinement of product line architectures.
The motivation for the extension of the 4SRS is not restricted to addressing a
limitation or weakness of the method, rather it is based on an unsolved problem or
need in the product line engineering as evidenced by the related work analysis we will
present in the next section of the paper. We will address the recursive character of the
4SRS as solution for the refinement.

The Fraunhofer IESE’s GoPhone case study presents a series of use cases for a part
of a mobile phone product line, particularly concerning the interaction between the
user and the mobile phone software. The use cases had to be extended with a
variability mechanism for product line modeling. Actors and use cases can be variant
if they are not supported by every product of the product family. Variant use cases
can be alternative to other use cases or they can be optional (refer to Section From
Components to Use Cases for more information on the different stereotypes that can
be applied to the use cases). Figure 1a depicts the user level use cases concerning the
messaging domain.

The remainder of this paper is structured as follows. Section 2 is targeted at
describing the strengths of our approach when compared to other approaches.
Section 3 describes the 4SRS general approach. Section 4 explains the filtering and
collapsing techniques that we use in refinement contexts. Section 5 is dedicated to the
technical details on the derivation of use cases from components. Section 6 affords
the recursion of the 4SRS. Section 7 provides for some concluding remarks.

2 Related Work

There are other approaches to variability modeling besides the 4SRS, such as FODA,
KobrA or FAST [6-8]. None of them explicitly approaches refinement through
recursion incorporated in the modeling method itself.

Smaragdakis and Batory [9] mention refinement in their work on collaboration-
based design of large-scale software applications, applicable to the design of product
line architectures. In their approach, refinement is achieved through collaborations. In
our approach, we use a method that considers user level requirements in the first

 Refinement of Software Product Line Architectures 413

place, before dealing with artifacts that would reside in product line conception
phases posterior to the product line architecture definition and refinement (artifacts
like collaborations). This allows us to work at the level of the user requirements,
without having to make finer grained design decisions in the beginning of the product
line architecture’s conception.

Fig. 1. Use case diagrams from the GoPhone case study

Working at the level of the user requirements is our strength when comparing our
perception to the perception of refinement that also Greenfield and Short [10] and
Egyed et al. [11] have.

Batory also created a model, the AHEAD model [12], for expressing the
refinement of system representations as equations. Despite his approach being based
on stepwise refinement, he worked at a code-oriented level. The work we are
presenting in this paper allows refining, also in a stepwise manner, software models
that shall be handled before code is handled during the software construction phase.

Gomaa [13] explored refinement in the context of feature modeling, where a
feature can be a refinement of another. But in order to get to the features, use cases
have to be modeled and mapped to features. Our approach eliminates the mapping
activity. Eriksson et al. [14] have an understanding of refinement similar to the
Gomaa’s.

PuLSE comprises the refinement of partial product line architectures [15] (a partial
product line architecture is a product line architecture that can be popped in the one

414 S. Azevedo et al.

whose refinement originated it; product line architectures going to be refined are also
partial product line architectures), but the refinement is not conducted in a stepwise
manner. PuLSE’s approach includes testing steps to assure that the architecture
supports the requirements from which it was conceived. Ours doesn’t include such
kind of steps, yet. Despite that, our approach is stronger than PuLSE’s in allowing the
refinement in a stepwise, thus, guided mode.

The 4SRS is a method to allow the iterative and incremental model-based
transformation of user level functional requirements in the shape of use cases into
logical architectures in the shape of component diagrams. Originally, the 4SRS didn’t
support variability considerations in the modeling of software systems, which didn’t
allow for the method to support product line modeling. But after some extension, that
was possible [2].

3 General Principals of the 4SRS

Shortly, the 4SRS is composed of the following steps: (1) Component Creation, whose
goal is to create three kinds of components for each use case: an interface component, a
control component and a data component; (2) Component Elimination, whose goal is to
remove redundant requirements and to find missing requirements (this step is vital in
order to validate the components blindly created in the previous step and it includes
eliminating the components whose requirements are already represented by other
components); (3) Component Packaging and Aggregation, whose goal is to semantically
group components in packages; and (4) Component Association, whose goal is to
introduce associations of components with each other into the component diagram.

In the past, the 4SRS has been extended to support tabular transformations in the
execution of its steps, as well as some filtering and collapsing techniques to enable the
refinement of logical architectures [4]. After that, the method has been extended to
support product line logical architecture modeling, which added the notion of variability
to it [2]. Our work in this paper is both the conjunction and the prosecution of these
previous works on the 4SRS as it will allow for a systematic application of filtering and
collapsing techniques for the refinement of product line logical architectures.

Software product line architectural modeling (see [1] for an example of a logical
architecture representation through models) may be conducted with specific instruments
tailored to explicitly expose the variability of the product line, like the 4SRS method
with its extension to variability support. Architectural refinement is the approach the
4SRS takes to increment a primary logical architecture with detail (by primary we mean
the baseline architecture, the architecture that is going to be detailed). Recursion, in the
context of this paper, is the ability of the modeling method to call itself within
the process of modeling the architecture. Recursion leads to various executions of the
method, an initial architecture and various partial architectures. The number of partial
architectures is equal to the number of executions minus one.

According to what was just stated, the method can be applied to product line
architectural modeling. As depicted in Figure 2, the 4SRS may be applied recursively,
in several executions. In the context of each one of those executions, various
iterations can be performed. Although there is no stopping rule for iterating over the
same use case diagram, it can be performed until the results obtained generate a
logical architecture that does not benefit from additional iterations in terms of the

 Refinement of Software Product Line Architectures 415

elimination of redundant requirements, the finding of missing requirements and the
increasing of the cohesion of the logical architecture itself. In the case of refinement
(by recursion), when one of the executions is considered to be finished by the
modeler, the output of that execution’s last iteration is going to be transformed into
the input of the subsequent execution’s first iteration. The task flow of the new
execution is exactly the same as the task flow of the preceding one. Again, in the case
of refinement (by recursion), the logical architectures the various executions produce
over time are situated in lower levels of abstraction and cover less functionality than
their preceding ones.

Roadmap of the Extension
We divided the extension of the 4SRS to product line architecture refinement into two
parts: before the method execution and during the method execution. Before the recursive
execution of the 4SRS, three steps must be performed: (1) the filtering and collapsing; (2)
the derivation of use cases from components; and (3) the detailing of use cases. The
following is the new sequence of steps for the 4SRS: (1) Component Creation; (2)
Component Elimination; (3) Component Packaging and Aggregation; (4) Component
Association; (4+1) Filtering and Collapsing; and (4+2) From Components to Use Cases.
The first four steps are the original steps and the other ones are what we call the new
intermediate steps, which are performed in between executions of the 4SRS.

We have extended step 4 of the 4SRS with rules for the association of components
with each other, based on the inclusion and the extension of use cases, as well as on
the categorization of components, according to the interface-control-data heuristic,
performed when they are created in step 1.

Fig. 2. Schematic representation of the recursive execution of the 4SRS

416 S. Azevedo et al.

4 Filtering and Collapsing

We use techniques of filtering and collapsing in between executions of the 4SRS to
achieve the refinement of the input product line logical architecture. The filtering is
about allowing subsystem partitioning for further subsystem design and specification.
The collapsing is about defining the border of the subsystem whose components are
going to be refined. Later on, those components will be replaced, inside the limits of
that same border, by others of lower abstraction level or higher detail level.

The filtering is what we, in the current work, call the selection of components. This
selection is concerned with choosing the components that shall be the input for the
subsequent recursive execution of the 4SRS. Earlier, the filtering activity of the 4SRS
consisted of considering some components as the subsystem for refinement and
discarding those that were not related to them [4]. Now, in this work, the same
applies, but we have systematized the choice of the most adequate components for
refinement. Components can be classified into filtering types: (type 1) the components
to which we may apply refinement; (type 2) the components to which we cannot
apply refinement; and (type 3) the components that we are actually going to refine.
The components in Figure 3 that have a white background are of type 1, whereas the
ones marked with a cross are of type 2 and the ones with a grey background are of
type 3.

Components originated from use cases not marked with the stereotype «variant»
(consider that this stereotype has been omitted from included use cases) have been
classified as type 2 components. From the remaining components, the ones originated
from decomposable use cases (those use cases not marked with the stereotype «final»;
decomposable use cases cannot be either included use cases or extension points that
cannot be decomposed any further) that are simultaneously leaf use cases have been
classified as type 3 components. Despite type 2 components being originated from
leaf use cases, they are neither longer refinable through inclusion relationships, nor
through extension relationships at the use cases level. From the type 1 and the type 3
components, the type 1 components can be «final», therefore, not decomposable, or
they can be not leaf use cases, which means that they are no longer extendable.
Therefore, the reduction of the components to the selected ones is very much coupled
with the decomposition extension capacity of the requirements they represent.

For instance, the component {C 0.1.1.1e1.i} Phone Number from Address Book
Choice UI, from Figure 3, originated from the use case {U 0.1.1.1e1} Choose Phone
Number from Address Book, in Figure 4, has been classified as of type 2, since that
use case has not been tagged with the stereotype «variant», which makes of it a
variant use case.

After the filtering is performed, the result obtained is the diagram in Figure 5. Only
the type 3 components, along with the component which is associated with them (in
this case it is only one) appear in the figure. The actor that relates to all the
components is also represented in the diagram.

Earlier, the collapsing activity of the 4SRS was about hiding package details [4].
Currently, in this work, the same applies with no change. As we can see from Figure
6a, the collapsed diagram is an evolution of the filtered diagram in Figure 5, as it
presents a subsystem in place of the once classified as type 3 components. As the
components have been removed from the subsystem to refine, the associations

 Refinement of Software Product Line Architectures 417

between the component {C 0.1.2.i} Message Composition UI and those components
have been removed as well and replaced by two interfaces, one for each of the
components. The new components that will be placed inside the borders of the
subsystem will have to comply with those interfaces.

Fig. 3. Component diagram, which resulted from the first execution of the 4SRS, with
variability support, to the Send Message use case of the GoPhone case study, while being
filtered

Fig. 4. Choose Recipient extension points

418 S. Azevedo et al.

Fig. 5. Filtered component diagram with regards to the object insertion and object attaching
functionalities of the Send Message use case from the GoPhone case study

Fig. 6. a) Filtered and collapsed diagram for object insertion and attaching; b) Use case diagram
for the first recursive execution of the 4SRS

5 From Components to Use Cases

This intermediate step is composed of two intermediate substeps. The goal of the first
one, the Deriving Use Cases from Components, is to derive, from the component
diagram, the use cases to hand out as input for the succeeding recursive execution of
the 4SRS. This is an important procedure as it will define the use cases that will feed
the refinement process. These use cases are an expression of the requirements that the
architecture of the subsystem defined in the collapsed diagram must represent.

The components that survived the selection process were the {C 0.1.2e3.i} Object
Insertion UI and the {C 0.1.2e4.i} Object Attaching UI. A use case diagram with the
use cases derived from the components is depicted in Figure 6b. The use cases in the
subsystem were defined taking into consideration the descriptions of the components
that survived the selection process (those descriptions were elaborated during the
execution of the prior step 2 from the 4SRS). It was concluded that there was no need
to create new actors, based on those descriptions, so, the component which was
associated with the subsystem in the collapsed diagram of Figure 6a is the only actor
in the use case diagram of Figure 6b.

The goal of the second intermediate substep, the Detailing Use Cases, is to elicit,
from the use cases in the diagram in Figure 6b, the inclusion and extension
relationships that will further on steer the recursive execution of the 4SRS. The use
cases must be detailed in order for them to be decomposed through inclusion
relationships. After determining the included use cases, they are analyzed in terms of

 Refinement of Software Product Line Architectures 419

extension points, which originate the extending use cases. Next, we have to
materialize, by means of diagrams, the inclusion and extension relationships. The
result is going to be a use case model with the use case diagram in Figure 6b and
another use case diagram for each one of the use cases in it with its included and
extending use cases.

Comparing the description of the use case Send Message in Figure 7 and the
description of the use case Insert Object in Figure 8, we can see that the last one is the
detailing of the three alternatives the step 7 comprised in the Send Message’s
description. The step 7 of the Send Message’s description is the one that gave origin
to the use case {U 0.1.2e3} Insert Object.

1. The user chooses the menu item to send a message.
2. The user chooses the menu item to start a new message.
3. The system may ask the user which kind of message he wants to send.
4. The system switches to a text editor.
5. The user enters the text message.
6. If T9 is supported and activated, the system compares the entered word with the dictionary.
7. Which kind of objects can be inserted into a message?
<ALT 1> The user can insert a picture into the message.
<ALT 2> The user can insert a picture or a draft text into the message.
<ALT 3> ø
8. The user may attach objects to a message.
9. The user chooses the menu item to send the message.
10. The system asks the user for a recipient.
11. The user chooses the recipient.
12. The system connects to the network and sends the message, then, the system waits for an
acknowledgement.
13. The network sends an acknowledgement to the system.
14. The system shows an acknowledgement to the user that the message was successfully sent.
15. The system saves the message in the sent messages folder, directly or upon user request.
16. The system switches to the main menu.

Fig. 7. Send Message use case textual description

1. Which kind of objects can be inserted into the message?
<ALT 1> The user can insert a picture into the message

1.1. The system shows the user a browsable directory of folders and/or picture files
1.2. The user browses the directory and selects a picture from it
1.3. The picture is inserted into the message and displayed to the user in the message area

<ALT 2> The user can insert a picture OR a draft text into the message
<ALT 2.1> The user chooses to insert a picture into the message

1.1. The system shows the user a browsable directory of folders and/or picture files
1.2. The user browses the directory and selects a picture from it
1.3. The picture is inserted into the message and displayed to the user in the message area

<ALT 2.2> The user chooses to insert a draft text into the message
1.1. The system shows the user a list of draft texts
1.2. The user browses the list and selects a draft text from it
1.3. The draft text is inserted into the message and displayed to the user in the message area

<ALT 3> The user cannot insert any object into the message

Fig. 8. Detailing of the use case Insert Object

420 S. Azevedo et al.

For instance, after analyzing the first two alternatives of Send Message’s step 7, we
see that they have a common part, the insertion of a picture, which can be performed
in each one of the alternatives. Hence, we repeated the detailing of the picture
insertion in the detailing of alternatives 1 and 2. We have also divided the detailing of
alternative 2 into the detailing of the picture insertion and of the draft text insertion,
since these are functionalities of alternative 2 separated by a logical operator (OR).
We are excluding the third alternative as there is no functionality attached to it. When
detailing the functionalities of picture insertion and of draft text insertion, a common
verbal expression emerged: display. The display object functionality is extendable by
the display picture and the display draft text functionalities and included in the insert
object functionality. Figure 9 illustrates a diagram of the object insertion
functionality.

The following stereotypes must be applied to the use cases, which are going to be
the input for the recursive execution of the 4SRS, according to the following rules: (1)
«mandatory», applicable to the use cases present in all product line members and to
the inclusion relationships; (2) «alternative», applicable to the extending use cases;
(3) «optional», applicable to the extending use cases as well, but only when the
requirement may not exist or the use case may not be performed in the product line
member; (4) «final», applicable to the included use cases and to the extension points
that cannot be decomposed any further; and (5) «variant», applicable to the use cases
which functionality can vary between the product line members.

6 The Recursive Execution of the 4SRS

The goal of the recursive execution of the 4SRS is to actually apply the 4SRS after one
or more executions of this modeling method have occurred beforehand. This process is
about applying the tabular transformations 4SRS is composed of, as already explained
in [4], to the target use cases. The result will be a list of components that shall be
associated with each other. The association of components with each other can be an
automatic process, based on predefined rules directly related to the inclusion and the
extension relationships established between the use cases the components originate
from. Hence, it is possible to systematically generate associations between components
in the component diagram from the relationships established between the use cases in
the use case diagram, as suggested in [2]. The value of this generation lies in the
possibility of verifying the consistency of the component diagram with the system’s
functional requirements, as well as of avoiding too many iterations to each one of the
executions of the 4SRS. Taking figures 1c, 3 and 4 as an example, the component {C
0.1.2.i} Message Composition UI, originated from the use case {U 0.1.2} Compose
Message, is associated with the component {C 0.1.2e1.i} Message Type Selection UI,
originated from the use case {U 0.1.2e1} Select Type of Message. In the use case
diagram, these two use cases are connected through an extension relationship. Consider
the existence, for a single use case, of all the three corresponding components resulting
from the 4SRS’ categorization, i, c and d. They shall always be connected in this order:
the i component to the c and the c to the d. The resulting artifact from the execution of
the 4SRS with refinement to the Send Message functionality of the GoPhone case study
is the component diagram in Figure 10. This diagram has, then, to be integrated into the
logical architecture the preceding execution of the 4SRS originated.

 Refinement of Software Product Line Architectures 421

Fig. 9. Insert Object decomposition and included use case’s extension points

Fig. 10. Component diagram resulting from the recursive execution of the 4SRS

7 Conclusions

The 4SRS considered refinement in past works, yet, so far, there hasn’t been any
experimentation on the systematization of its recursive execution. The relevance of
the exercise we presented in this paper resides on the demonstration that a modeling
method is capable of dealing with the refinement of product line logical architectures
systematically, which gains acute importance in the context of a high number of
functionalities. With its extension, the 4SRS provides, now, for specific guidelines for
modeling functional requirements when refining product line architectures. Besides
the extension of a modeling method, we have worked on filtering and collapsing
techniques in order to prepare the recursive execution of the modeling method over
product line architectures. We were guided by the belief that not all components of
product line architectures need refinement. We strongly believe that stepwise methods
for the modeling of product line architectures would have a significant impact on the
execution effort of some of their steps, if refinement was taken into account.

422 S. Azevedo et al.

References

[1] Kruchten, P.: Architectural Blueprints - The "4+1" View Model of Software Architecture.
IEEE Software 12, 42–50 (1995)

[2] Bragança, A., Machado, R.J.: Deriving Software Product Line’s Architectural
Requirements from Use Cases: An Experimental Approach. In: 2nd International
Workshop on Model-Based Methodologies for Pervasive and Embedded Software
(MOMPES 2005), Rennes, France. TUCS General Publications (2005)

[3] Bragança, A., Machado, R.J.: Extending UML 2.0 Metamodel for Complementary
Usages of the «extend» Relationship within Use Case Variability Specification. In: 10th
International Software Product Line Conference (SPLC 2006), Baltimore, Maryland,
USA. IEEE Computer Society, Los Alamitos (2006)

[4] Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of UML
Models for Service-Oriented Software Architectures. In: 12th IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems (ECBS
2005), Greenbelt, Maryland, USA. IEEE Computer Society, Los Alamitos (2005)

[5] Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr, J., Schmid, K.: GoPhone - A
Software Product Line in the Mobile Phone Domain. Fraunhofer IESE, IESE-Report No.
025.04/E (March 5, 2004)

[6] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Software Engineering Institute, Carnegie Mellon
University, Technical Report (1990)

[7] Atkinson, C., Bayer, J., Muthig, D.: Component-Based Product Line Development: The
KobrA Approach. In: 1st Software Product Line Conference (SPLC 2000), Denver,
Colorado, USA. Kluwer Academic Publishers, Dordrecht (2000)

[8] Weiss, D.M.: Commonality Analysis: A Systematic Process for Defining Families. In:
van der Linden, F.J. (ed.) Development and Evolution of Software Architectures for
Product Families. LNCS, vol. 1429, pp. 214–222. Springer, Heidelberg (1998)

[9] Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions on
Software Engineering and Methodology 11, 215–255 (2002)

[10] Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, Indianapolis (2004)

[11] Egyed, A., Mehta, N., Medvidovic, N.: Software Connectors and Refinement in Family
Architectures. In: 3rd International Workshop on Development and Evolution of Software
Architectures for Product Families (IWSAPF-3), Las Palmas de Gran Canaria, Spain.
Springer, Heidelberg (2000)

[12] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering 30, 355–371 (2004)

[13] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley, Boston (2004)

[14] Eriksson, M., Börstler, J., Borg, K.: Software Product Line Modeling Made Practical.
Communications of the ACM 49, 49–53 (2006)

[15] Bayer, J., Flege, O., Gacek, C.: Creating Product Line Architectures. In: 3rd International
Workshop on Development and Evolution of Software Architectures for Product Families
(IWSAPF-3), Las Palmas de Gran Canaria, Spain. Springer, Heidelberg (2000)

	Refinement of Software Product Line Architectures through Recursive Modeling Techniques
	Introduction
	Related Work
	General Principals of the 4SRS
	Filtering and Collapsing
	From Components to Use Cases
	The Recursive Execution of the 4SRS
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

