
Multistage Model Transformations in Software Product Lines

Sofia Azevedo, Ricardo J. Machado
Departamento de Sistemas de Informação

Universidade do Minho
Guimarães, Portugal

sofia.azevedo@dsi.uminho.pt, rmac@dsi.uminho.pt

Dirk Muthig
Software Development Division

Fraunhofer – IESE
Kaiserslautern, Germany

dirk.muthig@iese.fraunhofer.de

Abstract—Raising the level of abstraction for software
engineers to write applications is still an undergoing issue. So,
models will most likely become the dominant artifact in the
development of software. However, models are nothing without
the framing of a methodology, like the software factories
methodology, which includes the software product lines
approach. In the context of software product lines, model-
driven development imposes the structuring of the software
development process around models adequate to each one of
the moments within the software supply chain. The different
moments are the different stages that comprise different
development teams, as well as the target user of the different
software family members. This multistage process is a
powerful vision of software development in general when
compared with the current software development processes’
state-of-the-art and this is the vision that feeds the Ph.D. work
presented in this paper. This work is concerned with the
transformations that models must suffer in the particular
context of software product lines development, inside each
stage and in between stages.

Keywords: software engineering process, software
requirements, software design.

I. INTRODUCTION
Software factories [1] is a model-driven development

approach from Microsoft, which integrates domain-specific
modeling languages, a kind of domain-specific languages
[2], with software product lines [1, 3].

When a family of software products shares the same
features, it can be called a software product line, although the
product line development process must comprise not only
the concern with the commonality among products but with
the variation between them as well.

Software product lines are mainly concerned with
domain, which contextualizes the use of domain-specific
modeling languages by the software factories approach [4, 5]
and justifies the domain specificity of these languages within
the context of software factories. In the context of product
lines, domain-specific modeling languages are an instrument
to let users determine the values of variabilities between
family members.

Software product lines are going to be mentioned
throughout this paper despite domain-specific languages are
not. This is because product lines are the approach where
domain-specific languages make the most sense. Instead of

referring to software factories, we prefer to be more specific
and refer to software product lines.

The software factories methodology is much about the
distinction between the commonalities and the variabilities
of software product lines. In fact, as the relationship between
product lines and domain-specific modeling languages is a
premise of software factories, product lines are a process that
may make use of domain-specific modeling languages to
determine the variabilities of a product family in order to
realize it in individual products. Model transformations allow
producing those individual products out of models.

In the context of software product lines, as well as in the
context of other approaches, transformations are useful when
transforming models between different levels of abstraction,
but they are also useful when transforming models at the
same level of abstraction [6]. A model transformation is a
process of mapping a model (or more than one model) into
another model (or more than one model), in which a
mapping function is involved to give birth to either other
models that still need to be transformed or different levels of
generated code [6]. Mapping functions represent repeated
design decisions that conduct to the reuse of those functions
in models of similar design.

Model transformations are contextualized within stages.
Stages have been defined in [7] as the stages of software
product lines development. Stage configuration was first
mentioned also in [7]. This kind of configuration is the
process of specifying a member of a product line, which is
performed in stages of configuration where features are
selected. Software factories are developed with stage
configuration. Configuration stages may be the different
phases of the product lifecycle (design, testing, deployment,
maintenance and others) or the different parties/roles in the
configuration process (facing this process as the process of
eliminating variabilities). In multistage contexts, model
transformations occur inside and between stages.

At the present time, it is essential to consider software
development methodologies based on models. The reason for
this is that models per se are useless; they must be
contextualized within a methodology. If organizations
describe their computer-based systems using UML (Unified
Modeling Language), then, they will be aware that UML is
only about notation and that methodologies to develop
models are one step ahead. It is also essential to consider the
guidance of methodologies for modeling, since modeling
without the guidance of a methodology can be ineffective

2009 Fourth International Conference on Software Engineering Advances

978­0­7695­3777­1/09 $26.00 © 2009 IEEE

DOI 10.1109/ICSEA.2009.89

565

and is, in general, costly. At last, if a software product line is
fabricated with a model-driven methodology behind and also
with the roles of each actor within that methodology
thoroughly defined, the way to a well established process
begins to be delineated and the industry can begin to benefit
from the advantages of model-driven software development
and the product lines approach.

The remainder of this paper is structured as follows.
Section II is devoted to the state-of-the-art in what software
factories, from a procedural point of view, are concerned.
Section III presents the research goals, deliverables and
research approach. Section IV expresses the first results
obtained with the work of this Ph.D. Section V is about the
work plan’s concerns and activities. Finally, Section VI
provides for some concluding remarks.

II. STATE-OF-THE-ART
Software factories aim at reaching a wider range of

customer needs with a wider software scope. A product
family realizes an economy of scope, which means that
multiple related designs are produced, and is targeted at
custom markets where each product is unique [1]. Regarding
the multiple related designs produced for each product
family, models play a significant role as they can be reused
across a number of applications in the product family. This is
a strategy of long-term investment based on improving the
quality of software design [5].

Software product lines are software systems that share
common features considered as necessary for a market
segment [8]. The development of family members is done
using patterns, models, tools and frameworks (a framework
can be seen as all the code that implements common domain
aspects and extension points to customize applications built
from that framework). Product lines are all about the
distinction between commonalities and variabilities. Within
the software development process of product lines two
processes are related to each other [8]: the one that designs
an architecture for the product line framework, which is the
core asset development, and the other that uses the
framework to produce individual products, which is the
product development.

Domain-specific languages, which are described at the
metamodeling level, are used to describe the concepts a
software product line framework presents. Variability points
in a domain-specific framework may be filled by using a
domain-specific model. This is called framework completion
[1]. The product line scope can also be defined through a
domain-specific language [8]. Variabilities were defined by
Mernik, et al. [2] as the information required to instantiate a
system out of a broader one. Variabilities may be defined
with a domain-specific language [2, 8]. Despite this, a
generic architecture detaining the commonalities shared by
the product line members must also be defined.

Software maintenance is a very important activity when
working with models to generate software solutions over
time. Some Software Engineering solutions that cover
software evolution are [9]:

• Object-oriented design patterns; Design patterns are
an approach for redesigning and generalizing design

traces of object-oriented software. Software
evolution, in this case, occurs when a design pattern
is applied to an already existing software solution’s
design;

• Software product line architectures; Product line
architectures represent reusable designs of product
line members. Software evolution occurs when
components with new features implemented are
added to the overall architecture or others are
removed from that same architecture;

• Domain-specific languages; Finally, when software
needs to evolve, domain-specific languages must
meet the required changes in software caused by that
evolution.

The procedural dimension is imperative in the modeling
of software product lines. The definition of such a process is
needed in order to determine the role of models, patterns,
domain-specific languages, tools and frameworks in the
development of product lines. The process shall also be an
agreement on how to handle commonalities, variabilities and
architectures for the development of product families. Two
examples of processes that consider models as the key
artifacts to be manipulated in the development of software
are the VA (Virtual Automation) methodology [10], which is
about the roles of engineering professionals within the
computer-based systems development, and the Bragança and
Machado’s multi-staged model-driven software development
approach expressed in a series of model-driven
transformation patterns [11]. Both the VA methodology and
the multi-staged model-driven software development
approach have well delimitated stages, actors who play well
delimitated roles within one or more of those stages and
activities which can be performed within one or more stages.
Only this way companies can take advantages of applying a
model-driven software development approach to their
product lines’ conception. Only by using a well structured
process, companies can avoid the problems that emerge from
ad-hoc modeling principles.

A multistage software development process can be
defined as a software development process composed of
some stages organized in a consecutive temporal order. Each
stage is separated from the contiguous ones by well defined
borders. Moreover, each particular stage is composed of a
flow of well defined activities. Each stage’s activities are
conducted by specific professionals, using specific
technologies (frameworks, languages, tools), under the
directives of specific methodologies (processes, notations
and methods) to achieve specific goals. A software product
line can be considered as a software development process
concerned with the features of a software product family
according to three axis or dimensions: commonality,
variability and detail. The modeling of a product line takes
place at different stages, as Bragança and Machado stated
earlier in [11]. Even though Bragança and Machado’s multi-
staged model-driven software development approach
considered multistage software product lines, with actors and
activities matching different stages, the process of
developing product lines in a multistage manner was left
unveiled. In particular, the stage transitions have not been

566

defined, as well as the stages’ technologies, methodologies
and goals. In general, the implications of developing product
lines obeying to a multistage process have not been
addressed yet.

III. RESEARCH OBJECTIVES AND APPROACH
Our work is targeted at accomplishing the following

goals:
1. Formalize a multistage software development

process; This goal is concerned with defining a
software development process within the framing of
the model-driven software development approach.
The process’ definition demands for the definition of
the stages where the domain objects, which need to
be identified as well, shall be specialized at. The
refinement of models at different stages of a model-
driven software development process is a current
theme of the software product lines area;

2. Characterize the model transformations required to
occur in the context of the multistage process; Model
transformations will need to be performed inside
each stage of the software development process, as
well as between different stages. This second goal is
about determining these model transformations and
describing them. Process-oriented organizations
benefit from the advantages of having a well defined
process for developing their product families, which
includes well defined model transformations, if the
model-driven software development approach is
considered. The software product lines’ scientific
community explores these topics nowadays.

3. Automate the transformations to be executed
throughout the software factory’s development
process; This last goal has to do with exemplifying
the whole set of model transformations that need to
be performed between and inside the stages of the
software development process. This goal must
consider that automated models creation and
maintenance is a current concern within the software
product lines’ community and, so, the model
transformations will likely consider the automation
requirement throughout the process. We shall also
state that not only model-to-model transformations
but also model-to-code transformations will have to
be executed.

In the context of the company where the Ph.D. project is
going to be developed, the following are going to be
delivered:

• The software product line’s formalization,
corresponding to the product line’s product portfolio;

• The multistage model-driven software product line’s
development process model, which will contemplate
the refinement of models by means of automated
model transformations, a set of modeling tools, or
the same configurable modeling tool, as well as a set
of professional roles, contextualized at different
stages of the product line’s development lifecycle;

• A process-integrated variability and commonality

requirements traceability method with the support of
modeling.

The research approach which is going to be used is the
proof of concept, or concept implementation [12]. The proof
of concept research approach is about demonstrating the
feasibility of a solution to a problem. In this work, the
question with feasibility is whether it is possible to sustain
well defined processes for the development of software
product lines with model-driven approaches using Microsoft
tools in the context of a business software company’s
products, thus, to a practical problem, or not [13]. A series of
mock-ups is going to be used as a means of validation of the
software development process to be defined.

IV. CURRENT WORK AND PRELIMINARY RESULTS
Commonality and variability are not the only concerns

that must be kept in mind when modeling software product
lines. Their scale is also a factor influencing the software
development process based on modeling. The scale of
product lines may justify the need for the refinement of
product line architectures. Transforming models by adding
details to those models is equivalent to refining them [6].

The first results of this work have to do with the
refinement of software product line logical architectures. We
have elaborated some refinement techniques to complement
a product line modeling method. The refinement may be due
to three reasons:

• The addition of detail to the software product line
logical architecture;

• The transition from a phase of user requirements to a
phase of system requirements in the development of
the software product line, meaning that design
decisions already present at the user requirements
phase were used in the system requirements phase
and are applicable to the product line logical
architecture;

• Exceeding the maximum limit of use cases to which
the modeling method we used, the 4SRS [14], can be
applied.

The refinement of logical architectures is relevant to the
software product lines development process as the logical
architectures are one of the artifacts that shall be handled
during the modeling-based development of product lines.

V. WORK PLAN AND IMPLICATIONS
Our work will comprise the characterization of the model

transformations required to occur in the context of the
software product lines multistage modeling process to be
defined and the automation of those transformations to be
executed throughout the company’s product line’s
development process. The process of modeling product lines
in a multistage way is intimately related to the refinement of
models at different stages of a model-driven software
development process, including models of logical
architectures for product lines, as well as other types of
design models, like mechanistic ones. The derivation of
mechanistic views of product lines from their logical

567

architectures is an issue that requires exploration due to the
value it adds to the process.

Despite the automated refinement of models during the
software product lines multistage development process, the
work plan embeds some other concerns. Among those are
the correlation of processes for the purpose of elaborating an
integrated multistage model-driven product lines
development process traversal to all of the organization’s
teams, the variability (requirements) management throughout
the product lines development lifecycle, the elaboration of
systematic transformational patterns for the conversion
between different modeling views of the product line and the
elicitation of variability supporting use cases elaborated from
user requirements.

From the requirements engineering perspective, the work
plan is considering that software product line requirements
shall be traceable at the M1 level of the four-layer modeling
architecture for synchronization purposes, whenever one of
the models is refined. This traceability strategy may
encompass the construction of meta-metamodels at the M3
level of the four-layer modeling architecture, the MOF
(MetaObject Facility). This work plan also takes in the study
of the possibility of having the elicitation of user
requirements, with the client, through tools delivered by
modeling frameworks, which may force elicitators, by means
of tool restrictions imposed by the modeling framework
team’s decisions, to use a set of concepts above the solution
terrain (the solution terrain is the M1 level), a set of concepts
above the concepts in the problem terrain (the problem
terrain is the M2 level) or even both (to facilitate the creation
of traceability links between metamodels at the M2 level, the
problem domain level). This strategy may avoid the
elicitation of solutions instead of the elicitation of problems
or user needs, which would bias the goal of the whole
requirements elicitation process with the client.

The work plan is also concerned with software product
line customization and team interface. The product line
modeling framework must support the concept of role.
Consider the roles that people and organizations play within
the context of a business. The domain-specific languages and
the models must reflect the changes the product may suffer
in the presence of different roles. The modeling framework
tools shall also be aligned with the specializations of the
development team (e.g. finances coding). During this task’s
execution, investigation is going to be performed to
understand in which form business patterns can be provided
to business analysts by the modeling framework tools, as
well as to understand how the modeling framework tools can
be provided to developers as resources they can use to detail
the design of the product based on the analysis supplied by
the Product Management.

The work plan is organized in some major activities:
(1) practical research in order to analyze the company’s
software development activities by means of model-driven
approaches, to analyze the company’s products suite and,
finally, to determine to which extent the suite is being
handled as a software product line; (2) formalization of a
multistage model-driven product lines development process;
and (3) validation of that process in the real context of the

company.
Major activity 1, which focuses on the company’s

product suite, is composed of the software product line
formalization by defining the company’s product portfolio,
the product line’s products, the product categories, the
product requirements, the product line’s functionalities, the
product line’s domain and subdomains and, at last, the
responsibilities of the professionals who shall be involved in
these definitions with particular roles, at different stages of
the product line lifecycle. Naturally, the connections between
the diverse definitions are going to be characterized with the
aim of correlating them within the context of the process we
are going to design. During major activity 1, each team
working at the company is going to be analyzed in terms of
accountabilities and established processes, since each one of
them represents a different stage in the (internal) software
development process, therefore, a different target user for the
software product line’s model-driven development
framework.

Major activity 2 shall bring forth some discussion
sessions within the company and particularly within each
one of the software factory’s teams, with the intention of
arguing the proposed multistage model-driven software
product line’s development process and the effects of its
activities projected on each of that teams’ work.

Major activity 3 is going to yield some experiencing
sessions, in which the process that is going to be proposed
shall be experimented by its future key users (at least, these
key users shall be the company’s collaborators from the
teams that are going to make use of the software product line
modeling framework), according to some experimentation
guidelines to be delineated. Such sessions shall also suit the
purpose of iteratively improving the process with the
participants’ feedback, prompted by their trialing of the
process and the implicated tools.

One of the most important outputs of this work is going
to be the knowledge of the artifacts each team is going to
manipulate, in which state they will enter the team’s work, in
which state they will leave the team’s work and what
transformations they will suffer in the context of each team’s
work in order to satisfy the needs of the team that is going to
take those output artifacts as input for its work. Another
important output of this work is going to be the knowledge
of which artifacts in the metamodels and in the models shall
be handled by the developers, only, and which shall be
handled by the business analysts in the first place, for
instance. These two outputs are going to be embedded in the
process to be delineated during the execution of this work.

Figure 1 shows the evolution of the work plan over time.
The plan is presented as a series of six exercises. The first is
related to the preliminary results already mentioned in
Section IV. It will address research objective 2 and has to
precede experience 3 as it involves the transformation of
models to increase the detail of the product line architecture.
The second will propose a systematic approach for the use of
patterns, in order to avoid subjective interpretations of
patterns and to position the patterns along the stages of the
multistage process that will be defined. It will address
research objectives 1 and 2 as it will provide for procedural

568

refinement of
software product

line logical
architectures

systematic use of
patterns and their

process-level
classification

3-dimensional
software product

lines

the role of features in
the process of software

product line
development

definition of
multistage
software

product lines

automatization of model
transformations in the

multistage development of
software product lines

t

experience nr. 1 experience nr. 3 experience nr. 4 experience
nr. 5

experience nr. 6experience nr. 2

Figure 1. Work plan over time.

guidelines on the use of patterns, and a model-driven view of
pattern transformations inside and between stages. It has to
precede experiences 3 and 5 since it will deal with the detail
dimension of product lines and plays a vital role in the
multistage process because it attaches patterns to different
stages. The third is targeted at exploring product lines from
three dimensions: commonality, variability and detail. It will
tackle research objective 1 since these dimensions are the
basis of the whole product line procedural approach.
Naturally, it has to precede experiences 4 and 5 as features
have to be handled according to these dimensions and the
whole multistage process must be founded on these same
dimensions. The fourth is dedicated to features in the context
of the whole product line development process and it must
precede experience 5 as features are central in the whole
process. For this reason, it will address research objective 1.
The fifth is the process’ definition and it will address
research objective 1. At last, the sixth exercise is the
automation of multistage model transformations and has to
be performed after the multistage process is defined and all
the transformations are characterized. It will address research
objective 3.

VI. CONCLUSION
This work intends to accomplish the goals presented in

Section III and it must be guided by the following principles:
(1) model-driven software development and software product
lines convey several advantages to organizations comparing
with the well established code only approach;
(2) organizations can profit from the implementation of
processes specifically tailored to their approaches.

This project is going to be executed within the
environment of an enterprise resource planning software
house, therefore, within a real-world context. The
demonstration case to be undertaken at the company is
needed in order to validate the thesis to be proposed during
the project’s execution. The company’s conscience on the
need of a process to harmonize and optimize its undergoing
and future activities on the field of model-driven
development, reporting to the company’s software product
family, is preponderant to our work’s grounding.

This thesis will provide for a contribute in the software
engineering process area due to the considerations on the
multistage development of product lines it will give, namely
on the stage transitions, the stages’ technologies,
methodologies and goals.

REFERENCES
[1] J. Greenfield and K. Short, "Software Factories: Assembling

Applications with Patterns, Models, Frameworks and Tools," in 18th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA
2003). Anaheim, California, USA: ACM, 2003.

[2] M. Mernik, J. Heering, and A. M. Sloane, "When and How to
Develop Domain-Specific Languages," ACM Computing Surveys,
vol. 37, pp. 316-344, 2005.

[3] P. Knauber, D. Muthig, K. Schmid, and T. Widen, "Applying Product
Line Concepts in Small and Medium-Sized Companies," Software,
vol. 17, pp. 88-95, 2000.

[4] A. Demir, "Comparison of Model-Driven Architecture and Software
Factories in the Context of Model-Driven Development," in 4th
Workshop on Model-Based Development of Computer-Based
Systems and 3rd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MBD/MOMPES'06). Potsdam, Germany: IEEE Computer Society,
2006, pp. 75-83.

[5] J. Bettin, "Model-Driven Software Development," in MDA Journal,
2004.

[6] A. W. Brown, J. Conallen, and D. Tropeano, "Introduction: Models,
Modeling, and Model-Driven Architecture (MDA)," in Model-Driven
Software Development, S. Beydeda, M. Book, and V. Gruhn, Eds.
New York: Springer-Verlag, 2005, pp. 1-16.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged Configuration
Through Specialization and Multi-Level Configuration of Feature
Models," Software Process: Improvement and Practice, vol. 10, pp.
143-169, 2005.

[8] D. S. Frankel, "Business Process Platforms and Software Factories,"
in International Workshop on Software Factories. San Diego,
California, USA: ACM, 2005.

[9] D. Batory, C. Johnson, B. Macdonald, and D. v. Heeder, "Achieving
Extensibility Through Product-Lines and Domain-Specific
Languages: A Case Study," ACM Transactions on Software
Engineering and Methodology, vol. 11, pp. 191-214, 2002.

[10] R. J. Machado and J. M. Fernandes, "Heterogeneous Information
Systems Integration: Organizations and Methodologies," in 4th
International Conference on Product Focused Software Process
Improvement (PROFES 2002). Rovaniemi, Finland: Springer-Verlag,
2002, pp. 629-643.

[11] A. Bragança and R. J. Machado, "Transformation Patterns for Multi-
staged Model Driven Software Development," in 12th International
Software Product Line Conference 2008 (SPLC 2008). Limerick,
Ireland: IEEE Computer Society, 2008.

[12] I. Vessey, V. Ramesh, and R. L. Glass, "Research in Information
Systems: An Empirical Study of Diversity in the Discipline and Its
Journals," Journal of Management Information Systems, vol. 9, pp.
129-174, 2002.

[13] M. Shaw, "The Coming-of-Age of Software Architecture Research,"
in 23rd International Conference on Software Engineering (ICSE).
Toronto, Ontario, Canada: IEEE Computer Society, 2001.

[14] A. Bragança and R. J. Machado, "Deriving Software Product Line's
Architectural Requirements from Use Cases: An Experimental
Approach," in 2nd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MOMPES'05). Rennes, France: TUCS General Publications, 2005.

569

