
An Apporach to Improving Software Inspections Performance

Andre L. Ferreira, Ricardo J. Machado
Dept. de Sistemas de Informação, Universidade do Minho

{andre.ferreira,rmac}@dsi.uminho.pt

José G. Silva and Rui F. Batista
Critical Software S.A. Portugal

{jsilva,rui.f.batista}@criticalsoftware.com

Lino Costa

Dept. de Produção e Sistemas, Universidade do Minho
lac@dps.uminho.pt

Mark C. Paulk
Institute for Software Research

Carnegie Mellon University, USA
mcp@cs.cmu.edu

Abstract�— Software inspections allow finding and removing
defects close to their point of injection and are considered a
cheap and effective way to detect and remove defects. A lot of
research work has focused on understanding the sources of
variability and improving software inspections performance. In
this paper we studied the impact of inspection review rate in
process performance. The study was carried out in an industrial
context effort of bridging the gap from CMMI level 3 to level 5.
We supported a decision for process change and improvement
based on statistical significant information. Study results led us
to conclude that review rate is an important factor affecting code
inspections performance and that the applicability of statistical
methods was useful in modeling and predicting process
performance.

Software inspections; Software Process Improvement

I. INTRODUCTION
It is generally accepted that quality in software remains a

challenge. A major quality issue with software is that defects
are a byproduct of the complex development process and the
ability to develop defect free software remains a big challenge
for the software community. It is possible to improve the
quality of software product by injecting fewer defects or by
identifying and removing defects injected. Software testing is
an activity for defect identification and removal of these
defects. Testing can be static if a simple examination of the
software artifact is performed to find problems or dynamic if
an actual run of the software is required [1].A form of static
testing is software inspections. An inspection is characterized
�“as a systematic approach to examine a product in detail,
using a predefined sequence of steps to determine if the
product is fit for its intended use�” [2]. Software inspections
require that a person, usually called a reviewer, spends and
amount of time analyzing the product to find defects. Whatever
the structure/steps of the inspection process assumes, there is
an amount of time spent by a reviewer inspecting the product
and a corresponding number of defects found resulting from
the review.

It is recognized that software inspections are a simple, and
cost effective approach to detect and eliminate defects [3].They
require less training when compared to other defect detection
techniques. Inspections are cost effective in the perspective that
detecting and fixing defects at earlier phases of development
requires less effort when compared to finding and fixing these

same defects at later phases of development. Moreover,
inspections provide means to improve maintainability of
software by allowing to detect certain types of defects that are
not detectable using other defect detection techniques [4].An
example are evolvability defects found in a ratio between 5:1
and 3:1 to functional defects that otherwise would never be
identified [5].

It is also general accepted that performance of software
inspections is affected by several factors. Inspection
performance is associated with the effort spent to carry out the
process and/or the number of defects found.

A wide set of empirical studies and new approaches have
been proposed to understand and improve the inspection
process since it was introduced by Fagan [6].Sources of
process variability range from structure (how steps of the
inspection are organized), inspection inputs(reviewer ability
and product quality) techniques (applied to defect detection
that define how each step is carried out), context and tool
support [7]. Most empirical studies try to assess the impact of
specific process settings on performance. Some sources of
variation are: absence or presence of inspection meetings,
experience of the reviewers, initial code quality, number of
reviewers participating in the inspection, time spent to detect
defects and the rate at which products are inspected. Despite
the efforts, a general �‘theory�’ that combines this sources of
variability into a comprehensive set it still to be unveiled [8].

Review rate seems to be an important factor affecting
inspection performance. High review rates have been
conceptually and empirically associated to a decrease in
inspections effectiveness [9]. When considering code as the
inspected artifact, review rate establishes the number of lines of
code (LOC) each reviewer reads per hour to find defects.
Recommended rates that maximize the number of defects
found are around 125 LOC/hour with a fast decline for rates
above 200LOC/hour [10, 11]. However, limited investigations
are available on the subject of finding the optimal rate to
perform code inspections in industrial settings [9].

Recently, Critical Software S.A., a Portuguese software
house was assessed for CMMI-Dev [12] maturity level 5.Under
the scope of the Organizational Innovation and Deployment
process area implementation, a goal was set to improve the
inspection process. An objective was defined to understand
process performance by building a process performance model.

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george

george

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

george

We were required to base a decision to change and improve the
process on a quantitative estimate of improvement.

This paper describes the approach taken to build this
process performance model for the inspection process and how
it was used to support a decision on how to improve it. From
the work we concluded that review rate is an important factor
in code inspection performance, reinforcing previous research
on the subject. We obtained a statistical significant
improvement in the number of defects found when controlling
review rate. Despite the improvement in the average number of
defects found, variability of results also increased. Extra
analysis allowed us to identify that reviewers contributed to
this variation with statistical significance.

The following sections are organized as follows: Section 2
describes relevant previous research work on software
inspections. Section 3 describes and discusses the approach and
data used in the study. Section 4 summarizes results and
elaborates on lessons learned from the study.

II. STATE OF THE ART
Software inspections were introduced by Fagan in 1976 [6].

The goal of performing inspections is to improve the software
product quality by finding and removing product defects. Main
advantage of inspections when compared to other verification
and validation activities is that defect identification and
removal occurs closely to the point of injection, thus effort
associated with finding and fixing defects is reduced [6].

An inspection is defined as a sequence of process steps or
operations. The original proposal by Fagan considers five
steps, namely: overview, preparation, inspection meeting,
rework and follow-up [6]. Since their introduction, inspections
were subject of considerable research [8].The literature makes
available a set of experiments designed to identify and quantify
sources of process variability with the goal of improving
inspection performance. Performance can be characterized as
process effectiveness and efficiency. Effectiveness of
inspection is the capability of the inspection process to detect
all existing defects in the software artifact. Efficiency is
concerned with the effort spent in finding those defects.

Sources of variability can be associated with process
structure, techniques used and process inputs. Studies focusing
on process structure often re-define or remove process steps
from the initial structure proposed by Fagan. Studies on
process inputs involve controlling inputs by engineering or
tightly controlling their attributes. A correlation is later
established between these attributes and the resulting process
performance.

Process inputs account for sources of variation that change
across inspections; these are related with who inspects and
what is inspected. Process structure and techniques are
associated with how the steps are organized and how they are
carried out, respectively.

A. Process structute as source of variation
Since the introduction of inspections by Fagan, a few

approaches have been proposed by several authors. Those
focus mainly on re-definition of the process steps. Examples
are Active Design Reviews [13], Phased Inspections [14] and

N-fold inspections [15]. These methods rely mainly on the
argument that several persons focusing on special inspection
techniques are more effective in finding defects than a single
large team with no special techniques.

A synthesis on the subject of verification and validation is
available in [16]. The term peer review is used to name any
activity of reviewing software products created during software
development. Peer reviews are categorized as deck-checks,
walkthrough or inspections. The degree of formality may vary
in deck-checks and walkthroughs. Inspections are strictly
formal reviews and their applicability varies according to the
state of the product. The previously mentioned approaches are
examples of formal reviews.

A formal review or inspection according to [16] follows the
typical Fagan approach with a slight relevant change. The
preparation step is used both for understanding and inspection.
This simple change motivated, in the past, most empirical
studies to evaluate the relevance of conducting the meeting
inspection step. If we consider a cost efficiency analysis, it is
argued that meetings require too much effort for the additional
defects found.

An example is a controlled experiment by Johnson and
Tjahjono [17]. They analyzed the impact of executing
inspections with and without the inspection meeting step.
They analyzed the impact on the following variables: total
defects, effort, false positive defects, duplicates and synergism.
They were unable to find significant differences in the total
number of defects found when comparing meeting-based with
meeting-less-based inspections (the meeting is eliminated and
inspection occurs only in the preparation step). Conversely,
the meeting-based required more total effort and effort per
defect but resulted in significant less false positives defects
(defects that were considered by the rework responsible as not
true defects). Also, synergism (interaction between reviewers
in meetings) as a result of meeting-based inspections resulted
in 30% of total defects identified. Meeting-less-based
inspections resulted in more issues but one third of these
issues were duplicates (found by more than one reviewer).
Although results in what concerns productivity point in favor
of meeting-less-based inspections, as cost per defect is lower,
meetings allow participants to share review experiences,
obtain insight into overall effectiveness of review, gain
additional insight into the work product and its quality and
finally it fosters collective ownership and responsibility for the
review outcome.

McCarthy and Porter also suggest that meetings are not
necessarily essential to successful inspections [18].They carried
out the study to clarify previous studies on the matter that
apparently reported meeting gains of 33% on defects found
[19]. They measured total defects applying different inspection
structures. More defects were identified with meeting-less-
based approaches in a context where artifacts inspected were
requirements specifications.

Another structural factor subject of study is the optimal
number of reviewers performing inspections. In this matter a
study by Porter et.al [20] compared the performance of two
and four element teams as single inspections. No improved

performance in effectiveness was attained with four reviewers
when compared with two reviewers. Single inspections were
less effective than two elements inspection, but the difference
was small.

Kantorowits et. al.[21] explored the use of an estimator to
determine inspections team size. The estimator considers as
parameters a characterization of detection ability and code
domain knowledge of the reviewers to obtain a desired defect
detection probability. The characterization of detection ability
is a function of the individuals performing the inspections,
type of artifact inspected and the method used for inspection.
Code domain knowledge is specified as a continuous value
between 0 and 1 and characterizes the limitation resulting
from lack of knowledge in the domains by the reviewers in
detecting defects. The study showed that values delivered by
the estimator are close to the observed values from a
controlled experiment. The estimator delivers the required
number of reviewers to attain the desired defect detection. A
reference to no more than seven reviews per meeting is
suggested in [16].

Other aspects of process structure are preparation time and
meeting duration. Is was been suggested that an increase in the
preparation time correlated with the number of defects
found [20]. Meeting duration also correlated with the number
of defects found and meetings should occur no more than
twice a day and duration should not exceed 120 minutes.

Another structural related factor is the review rate at which
inspection are performed. It relates product size (number of
lines of code, requirements pages, etc) with the time each
reviewer takes to inspect the product. High reviews rates are
associated with a decrease in review effectiveness [9].
Recommended rates for preparation are around 100 and 125
LOC/hour with fast decline for higher above 200 LOC/hour
[9-11].

B. Techniques as sources of variation
Hatton et. al. conducted a rigorous experiment to assess the

impact on inspection performance of using checklists [22].
The result was inconclusive on whether the checklist
improved the number of defects found when enforcing a code
review rate. No statistical significance was obtained from the
results of the experiment. However the checklist focused only
in one type of defect and code reviewed was relatively short.
Reference to the successful use of checklists to aid the
inspection process are described in [23].

A technique to improve the effectiveness of the inspection
meeting is explored by Vitharana and Ramamurthy in [24].
Through a controlled experiment, they studied the influence of
anonymity in meeting/team based inspections. Anonymity
implies that elements of the inspection team do not know the
identity of participating elements. They observed the effect of
anonymity in an experiment with a control group, by
controlling the following variables: effectiveness (total
defects), efficiency (less time) and reviewer attitude (freely
express their tasks centered comments and views). They used
two distinct groups with different background experiences and
samples of code with different levels of complexity. The
results showed that anonymity had no impact on efficiency

and a significant impact on effectiveness occurred only when
the code sample for inspection was classified as more
complex. Anonymity also favored inspector attitude towards
the inspection.

C. Inputs as source of variation
Important sources of variability are the artifacts to be

inspected and the reviewer inspecting the product. It is
expectable that a product with a high number of initial defects
be associated with high number of defects found. This
association depends also on the reviewers�’ ability to find
defects. Reviewers less able or less experienced are expected
to find fewer defects.

Nair and Suma conducted an empirical experiment to study
the effectiveness of the inspection process. They observed
project data from several leading service based and product-
based software companies rated at level CMM level 5 [25].
Two metrics were considered to quantify the capability of the
inspection process in capturing defects within the constraints
of parameters affecting inspections. The first, characterized as
people metric is the inspection performance metric (IPM) that
considers the number of defects caught in the inspection
process (NI) over the inspection effort (IE). The second is
depth of inspection (DI) characterized as a process metric,
considers NI over the total number of defects (TD), where TD
is NI plus the number of defects caught in the testing process.
DI is characterized as a measure of effectiveness of inspection,
defect prevention metric, quality metric and a measure of the
ability of the inspection process in reducing the test effort.
From the observed data they concluded that major sources of
variability on effectiveness of inspections are the number,
experience and skill of the inspectors but also preparation and
inspection time. The IPM and DI are proposed as
benchmarking tools to improve industry defect management
practices. In another study Vitharana, and Ramamurthy also
concluded that more experience has a significant impact in
efficiency and effectiveness of inspections [24].

In summary, it is not clear the degree to which process
structure impacts effectiveness, but the impact seems to be
small. Efficiency seems to be negatively affected by
performing the meeting step. It is plausible that meetings
improve the number of detected defects but require
substantially more effort. Effectiveness also seems too
improve when inspections are performed individually when
compared with in a team based approach. Scenario-based
detection techniques seem to be more effective than ad-hoc or
checklist approaches and process inputs seam to explain more
variation than structural factors [8]. Despite the effort for
improving inspections, the relevant problem seems to be the
wide adoption of inspections spite the overwhelming
evidences of their benefits [26, 27].

III. IMPROVING INSPECTIONPROCESS PERFORMANCE
This section documents the approach taken to improve the

performance of the inspection process. The project was carried
out in a Portuguese software house, Critical Software S.A
(CSW). The study was performed in the context of a program
to implement the necessary practices to bridge the gap of a

CMMI maturity level 3 to a maturity level 5. A goal was set to
improve code inspection process performance as an
Organizational Innovation and Development process area
project. To achieve this goal we followed a typical Define,
Measure, Analyze, Improve and Control model for process
improvement [16], by:

A. Define the problem and goals for process improvement
The main goal motivating project efforts was to select and

deploy an improvement for the inspection process. This goal
was aligned with organization business quality objectives for
product quality improvement. The challenge was to
understand code inspection performance and obtain a strong
statistical estimate of improvement to support the decision for
implementing a change in the process. This required a
preliminary quantifiable understanding or model of process
performance.

 We assumed that our ability to find defects was not in an
optimal value and could be improved. This implied we were
looking to improve process defect detection capability. We
considered defects as �‘an imperfection or deficiency in a work
product where that work product does not meet its
requirements or specifications and needs to be either repaired
or replaced�’ [28] and used an Orthogonal Defect
Classification [29] based checklist to guide defect
classification.

B. Measure and collection of process performance data
As a formerly CMMI level 3 rated organization, CSW has a

defined and disseminated a process for verification and
validation of software products. The process includes a
procedure for performing code inspections monitored by a set
of metrics. The process structure follows similar steps as
described in [16], namely:

Preparation (P), each reviewer inspects the code. A code
review checklist is used in the preparation step to help the
reviewer perform the inspection. A list of defects is expected as
a result of this step.

Review Meeting (M), in the review meeting, a
walkthrough reading of the code sample is performed to collect
and discuss each defect identified in the preparation step. The
author and reviewers participate in the meeting. Additional
defects are recorded if identified as result of the group
interactions. A full reading of the code may be performed but
it�’s not mandatory.

Rework (R), the author receives a list of defects that must
be removed. In a later step, the removal is validated by the
inspection responsible.

Entity Attribute Metric
Code Size Lines of code (LOC)
Code Language Categorical
Code Pre-inspection

unit testing
Yes/No

Table 1 - Process Input Entities

Based on these steps, two types of reviews are possible. A
first one includes preparation, review meeting and rework
(P-M-R). In the second, only preparation and rework (P-R) are
performed. The available set of metrics, previously collected,

enabled us to characterize the entities participating in the
inspection process as follows. Table 1 depicts input related
entities. Table 2 depicts process structural-related entities. Each
attribute has an associated base measure.

Entity Attribute Metric
Preparation session Duration Hours
Review meeting Duration Hours
Review meeting Review team size Number

Table 2 - Process Structural Entities

Based on this set of process related metrics, we considered
code inspection review rate as the primary factor affecting
process performance and modeled inspection effectiveness as a
function of code inspection rate.

 (1)

Code review effectiveness is a measure of defects found by
reviewers normalized by the size of code inspected. Review
rate is the derived measure that relates code size and
preparation session duration in number of lines of code per
hour of review performed. The decision to consider a single
factor in (1) to model code inspection process was support by
two reasons: firstly, available data from past inspections
limited the number of variables that could be considered for
modeling process performance. We needed past process
metrics and collecting extra data to characterize previous
inspections did not present itself as a viable option as it
required collecting information on past events and could not
present itself as a very reliable approach to collect quality
data. We made a choice to work with existing data.

Secondly, data available associated to the majority of
process entities had limited variation. Concerning process
structure, all inspection followed a P-M-R process structure.
The range of values for review team size varied from 3 to 4
reviewers and review meeting duration were around 120
minutes with no significant variation. Conversely, review rate
variability was considerable. No control was enforced by the
defined process. It was up to the reviewer to inspect the code
at the desired rate. This provided a good base for studying the
impact of review rate on defect density. Additionally, review
rate has been considered, based on empirical evidence, by
several authors as an important non-negligible factor
impacting the number of defect found.

With this decision we assumed that review rate was the
main justification for process performance variation in the
specific context we were performing inspections. The data
used to build the model was obtained from code inspections
performed by professional developers participating in a total
of three projects. These were characterized as being
representative of the typical software development projects at
CSW. A sample of three projects was chosen. These used C
programming language and were characterized by having
atypical team size and project length.

Inspection data was collected from inspections following a
P-M-R inspection process structure. Inspection teams varied
from 3 to 4 reviewers. The reviewers spent an average of 90
minutes in the preparation session. A single inspection

meeting lasted no more than 120 minutes. A sample of 45
code inspections was considered to build the model, after a
data set reduction to eliminate deficient quality records and
outliers. Prior to inspection, code was subject to static analysis
using a compiler. Reviewers were members of the
development team and inspections were first time inspections
(the code was never reviewed before).

For collection, data sheet templates were used to gather
inspection data. All reviewers received from the inspection
moderator a code sample to be reviewed. Each reviewer
registered defects, typically in a printout of the code sample.
In the review meeting the moderator registered the time each
reviewer spent on the preparation session, the final total
number of defects found and code size. The inspection
meeting duration was also registered.

C. Analyze performance and consider possible improvements
With inspection data available the analysis step focused on

finding an association between review rate and defect density.
Additionally, we needed to build a model to estimate defect
density based on review rate data. A regression analysis was
used with the goal of characterizing this possible association.
Figure 1 depicts a scatter plot of how defect density (y-axis)
varies with inspection code rate (x-axis). Since data is from
real project inspections the values for defect density are
masked. Based on the scatter plot information we started by
considering a linear association between variables. Firstly, we
considered the conditions of applicability of regression
analysis. Using the Kolmogorov-Smirnov non-parametric test
[30] the normality of distributions of both variables was
confirmed. Table 3 lists the models considered to explain the
relation between variables and the resulting R-square.

Model Formula R-square Sig
Linear Y(t)=b0+b1t 0.317 0.000
Inverse Y(t)=b0+b1/t 0.583 0.000
Quadratic Y(t)=b0+b1t+b2t2 0.485 0.000
Cubic Y(t)=b0+b1t+b2t2+b3t3 0.569 0.000
Power Y(t)=b0tb1 0.093 0.044
Exponential Y(t)=b0eb1t 0.061 0.170

Table 3 - Considered fit models

The Linear, Inverse, Quadratic, Cubic and Power regression
models are statistically significant (p-values<0.05). The
inverse model has the highest R-square with a value of 0.583,
a Fisher test statistic of F(1;42) = 58.676 for the Analysis of
Variance (ANOVA) and a p-value=0.000<0.05 (Table 4). The
Inverse model explains 58.3% of the variability of the
dependent variable. The data and models curve fits are
depicted in the scatter plot (see Figure 1).With the objective to
obtain a better fit with a higher R-square we tested a curve fit
without the constant b0. We obtained a better fit with an
improved R-square of 0.752. The inverse model without
constant is significant (p-value=0.000<0.05) with a Fisher test
statistic value of F(1;43)=130.218 and with a higher R-square
(Table 5). The model is given by Y(t)= b1/t and it is linear in
terms of their parameters.

Equation Model Summary
R-square Sig

Inverse 0.583 0.000
Table 4�–Inverse model summary

We tested an additional non linear model based on the
inverse relation: Y(t)=b0/tb1. The R-square obtained was 0.61
(inferior to the inverse model without constant).

Equation Model Summary
R-square Sig

Inverse 0.752 0.000
Table 5 - Inverse model without constant summary

Thus, the model with higher prediction power is the
Inverse model without constant. Having an acceptable
R-square we considered the inverse model as the best
predictor of process performance, considering defect density
as a function of preparation review rate.

Figure 1 - Data and linear models considered

D. Change the process definition based on quantitative data.
As we mentioned earlier, our goal was to change the

inspection process based on a quantitative estimate of
improvement. Looking at the adopted model (Table 5 and
Figure 2) it is possible to see that a wide range of review rates
were being used by reviewers. The average value was about
800LOC/hour and defect density declined considerably for
high review rates.

We considered then a change to the process. A new review
rate was to be used for performing inspections in order to
improve the number of defects found. Based on literature
recommendations that argue a maximum of 200 LOC/hour we
used the model to estimate the expected defect density for this
review rate. We compared it with the project sample average
defect density. If the model was accurate, reducing the review
rate would provide a 70% increase in defect density.

Based on this information, we decided to carry out a pilot
program where inspections would be performed with a
controlled review rate. Firstly, we wanted to assess if in fact

the defect density would improve and secondly, if the
improvement was achieved, in which percentage did it occur.

Figure 2 �– Code inspection performance model

E. Assess the impact of reducing review rate
A set of projects for the pilot program were chosen to

perform code inspections using the specific review rate. A
new project context was in place for the pilot program. The set
of projects available to perform code inspections limited the
possibility to have a similar context to the sample projects that
originated the data for the performance model. We could not
control all the dependent variables. This fact was a challenge
to the predicting power of the model.

Inspections were now performed in projects using JAVA
programming language. The reviewers performing inspections
also changed and the structure used to perform the inspections
was the P-R approach (the review meeting did not occur). The
inspections were also performed by a single reviewer.

Based on the literature, these changes could impact the
ability to find more defects and by that, put at risk the
improvement in process performance. In what concerns the
meeting step, it has been argued that removing the meeting
step does not impact significantly the ability to find more
defects [17].Thus, an increase in the number of defects found
was not expectable by removing the meeting step.

A performance decrease was expectable by using a single
reviewer instead of a team of reviewers. Intuitively, a team of
3 or 4 reviewers is able to find more defects than a single
reviewer. The added experience or ability of each reviewer
may improve defect detection. Although, previous studies
concluded that a decrease in performance for single reviewer
inspections may be negligible when compared with two and
four element teams [20].

Some factors with uncontrolled influence in defect density
were: programming language used, impact of the reviewers
performing the inspections and possible variation in initial
code quality.

The pilot inspections followed a similar collection
procedure as described in sub-section B except that the
reviewers had a review rate criterion to be met. A review rate
between 200 and 250 LOC/hour as recommended to the

reviewers. Additionally, a single preparation session should
not take longer than 120 minutes.

 Defects were registered in data sheet templates and were
sent directly to the author for rework. During this pilot study
extra context information was collected to investigate possible
influence of the unknown factors. Motivated by the literature
studies concerning the impact of the reviewer, we decided to
collect information about ability and inspection experience of
reviewers. Ability is defined here as the number of years
developing in the programming language used in the code and
inspection experience as the number of formal reviews
performed in the past. A total of 39 inspections were carried
out by a pool of three reviewers in a context of four different
projects.

1) Inspection review rate impact on defect density

The scatter plot of Figure 3 depicts the results for defect
density for the pilot inspections. The plot depicts the same
relation of the performance model in sub-section C relating
defect density and inspection review rate.

Figure 3 - Scatter plot for new inspection setting

The Pearson correlation coefficient was computed to
measure variables association. With the review rate controlled
no significant correlation between the variables is evident
(p-value=0.233>0.05).

The average review rate changed from 800LOC/hour to
215 LOC/hour with a standard deviation of 46. The average
value for defect density significantly improved. The box plot
(Figure 4) depicts the variation in average defect density
values for both scenarios, prior (1.00) and after (2.00) the
controlled review rate.

A statistical t-test for independent samples was used to
evaluate the significance of this variation (Table 6). The test
indicates that defect density increased significantly,
t(68.167)=-6.306 and p-value=0.000 <0.05.

Analyzing the box plot we suspected also an increase in
the variability of results. A Levene test was used to assess
equality of variances for both samples (Table 6). The test
provided a p-value=0.033<0.05 therefore, the variances are
significantly different. Variability has increased in the review
rate controlled scenario. We also checked to which extension
the model delivered a reliable estimate of improvement. If the

resulting defect density value for the pilot inspections was
within the 95% percent range of the value predicted by the
model, we would accept the model as a reasonable
approximation of real process performance.

Figure 4 �– Defect density by scenario

Variances
Levene Test t-test for Equality of Means
F Sig. t df Sig. (2-

tailed)
Equal 4.692 0.033 -6.430 0.000 0.000

Unequal -6.306 0.000 0.000
Table 6 - Test for equality of means and variances

We used the average review rate from the pilot
(215LOC/hour) and used the performance model to get the
defect density estimate for that specific rate. A 95% percent
confidence interval was computed for the resulting defect
density. The top limit for improvement acceptable by the
model implied a 165% improvement in defect density. The
obtained value for defect density by the pilot was 142%.

Thus, the value obtained in the pilot study is within the
95% confidence interval of the estimated value by the model,
leading us to conclude that the model provided an acceptable
prediction of process performance.

2) Understanding the increase in process variability

In order to try to understand the increase in the variability,
we isolated two factors with the expectation that, at least, one
of them would provide some explanation for such variability.
We began by checking if variability could be explained by
variation in initial code quality. We considered projects to
study possible differences in initial code quality. For the
second source of variation we considered the reviewers
impact. One of the reviewers was a senior developer, the
others were juniors. This classification translated their ability
as developers and experience as reviewers. The senior status
evidences both more years using the programming language
and more experience as a reviewer.

To test the impact of code quality, a box plot of defect
density by project is depicted in Figure 5. Applying an one-
way ANOVA to assess significance in the two or more
samples, the following result is obtained: F(3,35)=1.197 and

p-value=0.325>0.05 (Table 7). This indicates that differences
in average defect density are not significant between projects.

Figure 5 - Defect density by project

Groups Sum of

Squares
df Mean

Square
F Sig

Between 2264,417 3 754,806 1.197 0.325
Within 22076,897 35 630,768
Total 24341,314 38

Table 7 - ANOVA test for project means

The box plot showing the impact on defect density by
reviewer is depicted in Figure. We applied the ANOVA test
and the following result is obtained(2,36)=4.620,
p-value=0.016<0.05 (Table 8). This indicates the differences
in the average defect density by reviewers are statistically
significant.

Figure 6 - Defect density by reviewer

Groups Sum of Squares df Mean
Square

F Sig

Between 4971,348 3 2485,675 4.620 0.016
Within 19369,965 36 539,055
Total 24341,314 38

Table 8 - ANOVA test for reviewer means

A deeper analysis on the reviewer�’s academic background
allowed finding that R3 had above average performance as a
student developer. This fact may justify the variation in
performance of the reviewer and as result a source of
significant performance variability in the pilot study.

Additionally, an interesting finding was that there was a
difference in reviewer experience and programming
experience between reviewer R1 and R3 but the final average
defect density was similar.

IV. CONCLUSION
This paper documents an approach to improve the

performance of an inspection process. We were required to
support a decision to change the process on a quantitative
estimate of improvement. A model of the inspection process
performance as a function of inspection review rate was
defined. We applied statistical methods (linear and non-linear
regression) to understand and build a real process performance
model. Based on the estimate delivered by the adopted model
we decided to control the review rate by reducing it. We tested
this process change experimentally and obtained an
improvement in process performance. We also validated
statistically the predictive power of the estimate with the
experimental result.

In an industrial setting is not always possible to have a
strict control of the environment. We had limited control in
some process variables that were important to validate with
strong statistical reasoning the impact of the review rate in
process performance. The limitation came mainly due lack of
�‘perfect match�’ projects to replicate the same conditions used
when the first set of inspection data was collected.
Additionally, data volume in terms of number of reviewers,
number of projects and number of inspections limits the ability
to generalize on the study findings, concerning a deeper
understanding of sources of variation for the general
inspection process. Even so, we carried out the experiment in
a context that was useful to understand the impact of review
rate in process performance and provided additional evidence
of previous research that considered the review rate an
important factor in inspections performance.

REFERENCES
[1] L. Hatton. Testing the Value of Checklists in Code Inspections.

In Software, IEEE, vol. 25, no. 4, pp. 82 - 88, 2008.
[2] D. L. Parnas and M. Lawford. Inspection's role in software

quality assurance. In Software, IEEE, vol. 20, 2003.
[3] O. Laitenberger. Studying the effects of code inspection and

structural testing on software quality. In Software Reliability
Engineering, Proceedings. The Ninth International Symposium
on, pp. 237-246, 1998.

[4] H. Siy, and L. Votta. Does the modern code inspection have
value? In Software Maintenance, 2001. Proceedings. IEEE
International Conference on, 2001.

[5] M. V. Mantyla, and C. Lassenius. What Types of Defects Are
Really Discovered in Code Reviews. In Software Engineering,
IEEE Transactions on, vol. 35, no. 3, pp. 430-448, 2009.

[6] M. E. Fagan. Design and Code inspections to reduce errors in
program development. In IBM Systems Journal 15 pp. 182-211,
1976.

[7] D. E. Perry, A. Porter, M. W. Wade. Reducing inspection
interval in large-scale software development. In Software
Engineering, IEEE Transactions on, vol. 28, no. 7, pp. 695-
705, 2002.

[8] A. Porter, and L. Votta. What makes inspections work? In
Software, IEEE, vol. 14, no. 6, pp. 99-102, 1997.

[9] C. F. Kemerer, and M. C. Paulk. The Impact of Design and
Code Reviews on Software Quality: An Empirical Study Based
on PSP Data. In Software Engineering, IEEE Transactions on,
vol. 35, no. 4, pp. 534-550, 2009.

[10] M. E. Fagan. Advances in software inspections. In IEEE Trans.
Softw. Eng., vol. 12, no. 7, pp. 744-751, 1986.

[11] E. F. Weller. Lessons from three years of inspection data
[software development]. In Software, IEEE, vol. 10, no. 5, pp.
38-45, 1993.

[12] M. B. Chissis, and M. Konrad. CMMI for Development,
Version 1.2. Addison-Wesley, 2006.

[13] D. L. Parnas, and D. M. Weiss. Active design reviews:
principles and practices. In Proceedings of the 8th international
conference on Software Engineering, London, England, 1985.

[14] J. C. Knight, and E. A. Myers. In an improved inspection
technique. In Commun. ACM, vol. 36, no. 11, pp. 51-61, 1993.

[15] G. M. Schneider, J. Martin, and W. T. Tsai. An experimental
study of fault detection in user requirements documents. In
ACM Trans. Softw. Eng. Methodol., vol. 1, no. 2, 1992.

[16] L. Westfall. The Certified Software Quality Engineer
Handbook: ASQ Quality Press, 2009.

[17] P. M. Johnson, and D. Tjahjono. Does Every Inspection Really
Need a Meeting? In Empirical Software Engineering, vol. 3,
no. 1, pp. 9-35, 1998.

[18] P. McCarthy, A. Porter, H. Siy et al. An experiment to assess
cost-benefits of inspection meetings and their alternatives: a
pilot study. In Proceedings of the 3rd International Symposium
on Software Metrics: From Measurement to Empirical Results,
1996.

[19] A. Porter, H. Siy, C. A. Toman et al. An experiment to assess
the cost-benefits of code inspections in large scale software
development. In SIGSOFT Softw. Eng. Notes, vol. 20, no. 4, pp.
92-103, 1995.

[20] A. A. Porter, H. P. Siy, C. A. Toman et al. An experiment to
assess the cost-benefits of code inspections in large scale
software development. In Software Engineering, IEEE
Transactions on, vol. 23, no. 6, pp. 329-346, 1997.

[21] E. Kantorowitz, T. Kuflik, A. Raginsky. Estimating the
Required Code Inspection Team Size. In IEEE International
Conference on Software-Science, Technology & Engineering
(SwSTE'07), 2007.

[22] L. Hatton. Testing the Value of Checklists in Code Inspections.
In Software, IEEE, vol. 25, no. 4, pp. 82-88, 2008.

[23] J. R. de Almeida, Jr., J. B. Camargo, Jr., B. A. Basseto et al.
Best practices in code inspection for safety-critical software. In
Software, IEEE, vol. 20, no. 3, pp. 56-63, 2003.

[24] P. Vitharana, and K. Ramamurthy. Computer-mediated group
support, anonymity, and the software inspection process: an
empirical investigation. In Software Engineering, IEEE
Transactions on, vol. 29, no. 2, pp. 167-180, 2003.

[25] G. Nair, and Suma, V. Impact Analysis of the Inspection
Process for Effective Defect Management in Software
Development. In Software Quality Professional, vol. 12, no. 2,
2010.

[26] C. Denger, and F. Shull. A Practical Approach for Quality-
Driven Inspections. In Software, IEEE, vol. 24, no. 2, 2007.

[27] J. Remillard. Source code review systems. In Software, IEEE,
vol. 22, no. 1, pp. 74 - 77, Jan 1, 2005.

[28] IEEE. Standard Classification for Software Anomalies. 2009.
[29] R. Chillarege, I. S. Bhandari, J. K. Chaar et al. Orthogonal

defect classification-a concept for in-process measurements. In
Software Engineering, IEEE Transactions on, vol. 18, no. 11,
pp. 943-956, 1992.

[30] A. Field. Discovering statistics using SPSS. Sage, 2009.

