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Abstract�— Software inspections allow finding and removing 
defects close to their point of injection and are considered a 
cheap and effective way to detect and remove defects. A lot of 
research work has focused on understanding the sources of 
variability and improving software inspections performance. In 
this paper we studied the impact of inspection review rate in 
process performance. The study was carried out in an industrial 
context effort of bridging the gap from CMMI level 3 to level 5. 
We supported a decision for process change and improvement 
based on statistical significant information. Study results led us 
to conclude that review rate is an important factor affecting code 
inspections performance and that the applicability of statistical 
methods was useful in modeling and predicting process 
performance.  

Software inspections; Software Process Improvement 

I. INTRODUCTION 
It is generally accepted that quality in software remains a 

challenge. A major quality issue with software is that defects 
are a byproduct of the complex development process and the 
ability to develop defect free software remains a big challenge 
for the software community. It is possible to improve the 
quality of software product by injecting fewer defects or by 
identifying and removing defects injected. Software testing is 
an activity for defect identification and removal of these 
defects. Testing can be static if a simple examination of the 
software artifact is performed to find problems or dynamic if 
an actual run of the software is required [1].A form of static 
testing is software inspections. An inspection is characterized 
�“as a systematic approach to examine a product in detail, 
using a predefined sequence of steps to determine if the 
product is fit for its intended use�” [2]. Software inspections 
require that a person, usually called a reviewer, spends and 
amount of time analyzing the product to find defects. Whatever 
the structure/steps of the inspection process assumes, there is 
an amount of time spent by a reviewer inspecting the product 
and a corresponding number of defects found resulting from 
the review. 

It is recognized that software inspections are a simple, and 
cost effective approach to detect and eliminate defects [3].They 
require less training when compared to other defect detection 
techniques. Inspections are cost effective in the perspective that 
detecting and fixing defects at earlier phases of development 
requires less effort when compared to finding and fixing these 

same defects at later phases of development. Moreover, 
inspections provide means to improve maintainability of 
software by allowing to detect certain types of defects that are 
not detectable using other defect detection techniques [4].An 
example are evolvability defects found in a ratio between 5:1 
and 3:1 to functional defects that otherwise would never be 
identified [5]. 

It is also general accepted that performance of software 
inspections is affected by several factors. Inspection 
performance is associated with the effort spent to carry out the 
process and/or the number of defects found. 

A wide set of empirical studies and new approaches have 
been proposed to understand and improve the inspection 
process since it was introduced by Fagan [6].Sources of 
process variability range from structure (how steps of the 
inspection are organized), inspection inputs(reviewer ability 
and product quality) techniques (applied to defect detection 
that define how each step is carried out), context and tool 
support [7]. Most empirical studies try to assess the impact of 
specific process settings on performance. Some sources of 
variation are: absence or presence of inspection meetings, 
experience of the reviewers, initial code quality, number of 
reviewers participating in the inspection, time spent to detect 
defects and the rate at which products are inspected. Despite 
the efforts, a general �‘theory�’ that combines this sources of 
variability into a comprehensive set it still to be unveiled [8].  

Review rate seems to be an important factor affecting 
inspection performance. High review rates have been 
conceptually and empirically associated to a decrease in 
inspections effectiveness [9]. When considering code as the 
inspected artifact, review rate establishes the number of lines of 
code (LOC) each reviewer reads per hour to find defects. 
Recommended rates that maximize the number of defects 
found are around 125 LOC/hour with a fast decline for rates 
above 200LOC/hour [10, 11]. However, limited investigations 
are available on the subject of finding the optimal rate to 
perform code inspections in industrial settings [9]. 

Recently, Critical Software S.A., a Portuguese software 
house was assessed for CMMI-Dev [12] maturity level 5.Under 
the scope of the Organizational Innovation and Deployment 
process area implementation, a goal was set to improve the 
inspection process. An objective was defined to understand 
process performance by building a process performance model. 
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We were required to base a decision to change and improve the 
process on a quantitative estimate of improvement. 

This paper describes the approach taken to build this 
process performance model for the inspection process and how 
it was used to support a decision on how to improve it. From 
the work we concluded that review rate is an important factor 
in code inspection performance, reinforcing previous research 
on the subject. We obtained a statistical significant 
improvement in the number of defects found when controlling 
review rate. Despite the improvement in the average number of 
defects found, variability of results also increased. Extra 
analysis allowed us to identify that reviewers contributed to 
this variation with statistical significance. 

The following sections are organized as follows: Section 2 
describes relevant previous research work on software 
inspections. Section 3 describes and discusses the approach and 
data used in the study. Section 4 summarizes results and 
elaborates on lessons learned from the study. 

II. STATE OF THE ART 
Software inspections were introduced by Fagan in 1976 [6]. 

The goal of performing inspections is to improve the software 
product quality by finding and removing product defects. Main 
advantage of inspections when compared to other verification 
and validation activities is that defect identification and 
removal occurs closely to the point of injection, thus effort 
associated with finding and fixing defects is reduced [6].  

An inspection is defined as a sequence of process steps or 
operations. The original proposal by Fagan considers five 
steps, namely: overview, preparation, inspection meeting, 
rework and follow-up [6]. Since their introduction, inspections 
were subject of considerable research [8].The literature makes 
available a set of experiments designed to identify and quantify 
sources of process variability with the goal of improving 
inspection performance. Performance can be characterized as 
process effectiveness and efficiency. Effectiveness of 
inspection is the capability of the inspection process to detect 
all existing defects in the software artifact. Efficiency is 
concerned with the effort spent in finding those defects. 

Sources of variability can be associated with process 
structure, techniques used and process inputs. Studies focusing 
on process structure often re-define or remove process steps 
from the initial structure proposed by Fagan. Studies on 
process inputs involve controlling inputs by engineering or 
tightly controlling their attributes. A correlation is later 
established between these attributes and the resulting process 
performance. 

Process inputs account for sources of variation that change 
across inspections; these are related with who inspects and 
what is inspected. Process structure and techniques are 
associated with how the steps are organized and how they are 
carried out, respectively.  

A. Process structute as source of variation 
Since the introduction of inspections by Fagan, a few 

approaches have been proposed by several authors. Those 
focus mainly on re-definition of the process steps. Examples 
are Active Design Reviews [13], Phased Inspections [14] and 

N-fold inspections [15]. These methods rely mainly on the 
argument that several persons focusing on special inspection 
techniques are more effective in finding defects than a single 
large team with no special techniques. 

A synthesis on the subject of verification and validation is 
available in [16]. The term peer review is used to name any 
activity of reviewing software products created during software 
development. Peer reviews are categorized as deck-checks, 
walkthrough or inspections.  The degree of formality may vary 
in deck-checks and walkthroughs. Inspections are strictly 
formal reviews and their applicability varies according to the 
state of the product. The previously mentioned approaches are 
examples of formal reviews. 

A formal review or inspection according to [16] follows the 
typical Fagan approach with a slight relevant change. The 
preparation step is used both for understanding and inspection. 
This simple change motivated, in the past, most empirical 
studies to evaluate the relevance of conducting the meeting 
inspection step. If we consider a cost efficiency analysis, it is 
argued that meetings require too much effort for the additional 
defects found. 

An example is a controlled experiment by Johnson and 
Tjahjono [17]. They analyzed the impact of executing 
inspections with and without the inspection meeting step. 
They analyzed the impact on the following variables: total 
defects, effort, false positive defects, duplicates and synergism. 
They were unable to find significant differences in the total 
number of defects found when comparing meeting-based with 
meeting-less-based inspections (the meeting is eliminated and 
inspection occurs only in the preparation step). Conversely, 
the meeting-based required more total effort and effort per 
defect but resulted in significant less false positives defects 
(defects that were considered by the rework responsible as not 
true defects). Also, synergism (interaction between reviewers 
in meetings) as a result of meeting-based inspections resulted 
in 30% of total defects identified. Meeting-less-based 
inspections resulted in more issues but one third of these 
issues were duplicates (found by more than one reviewer). 
Although results in what concerns productivity point in favor 
of meeting-less-based inspections, as cost per defect is lower, 
meetings allow participants to share review experiences, 
obtain insight into overall effectiveness of review, gain 
additional insight into the work product and its quality and 
finally it fosters collective ownership and responsibility for the 
review outcome. 

McCarthy and Porter also suggest that meetings are not 
necessarily essential to successful inspections [18].They carried 
out the study to clarify previous studies on the matter that 
apparently reported meeting gains of 33% on defects found 
[19]. They measured total defects applying different inspection 
structures. More defects were identified with meeting-less-
based approaches in a context where artifacts inspected were 
requirements specifications. 

Another structural factor subject of study is the optimal 
number of reviewers performing inspections. In this matter a 
study by Porter et.al [20] compared the performance of two 
and four element teams as single inspections. No improved 



performance in effectiveness was attained with four reviewers 
when compared with two reviewers. Single inspections were 
less effective than two elements inspection, but the difference 
was small. 

Kantorowits et. al.[21] explored the use of an estimator to 
determine inspections team size. The estimator considers as 
parameters a characterization of detection ability and code 
domain knowledge of the reviewers to obtain a desired defect 
detection probability. The characterization of detection ability 
is a function of the individuals performing the inspections, 
type of artifact inspected and the method used for inspection. 
Code domain knowledge is specified as a continuous value 
between 0 and 1 and characterizes the limitation resulting 
from lack of knowledge in the domains by the reviewers in 
detecting defects. The study showed that values delivered by 
the estimator are close to the observed values from a 
controlled experiment. The estimator delivers the required 
number of reviewers to attain the desired defect detection. A 
reference to no more than seven reviews per meeting is 
suggested in [16]. 

Other aspects of process structure are preparation time and 
meeting duration. Is was been suggested that an increase in the 
preparation time correlated with  the number of defects 
found [20]. Meeting duration also correlated with the number 
of defects found and meetings should occur no more than 
twice a day and duration should not exceed 120 minutes.  

Another structural related factor is the review rate at which 
inspection are performed.  It relates product size (number of 
lines of code, requirements pages, etc) with the time each 
reviewer takes to inspect the product. High reviews rates are 
associated with a decrease in review effectiveness [9]. 
Recommended rates for preparation are around 100 and 125 
LOC/hour with fast decline for higher above 200 LOC/hour 
[9-11].  

B. Techniques as sources of variation   
Hatton et. al. conducted a rigorous experiment to assess the 

impact on inspection performance of using checklists [22]. 
The result was inconclusive on whether the checklist 
improved the number of defects found when enforcing a code 
review rate. No statistical significance was obtained from the 
results of the experiment. However the checklist focused only 
in one type of defect and code reviewed was relatively short. 
Reference to the successful use of checklists to aid the 
inspection  process are described  in [23].   

A technique to improve the effectiveness of the inspection 
meeting is explored by Vitharana and Ramamurthy in [24]. 
Through a controlled experiment, they studied the influence of 
anonymity in meeting/team based inspections. Anonymity 
implies that elements of the inspection team do not know the 
identity of participating elements. They observed the effect of 
anonymity in an experiment with a control group, by 
controlling the following variables: effectiveness (total 
defects), efficiency (less time) and reviewer attitude (freely 
express their tasks centered comments and views). They used 
two distinct groups with different background experiences and 
samples of code with different levels of complexity. The 
results showed that anonymity had no impact on efficiency 

and a significant impact on effectiveness occurred only when 
the code sample for inspection was classified as more 
complex. Anonymity also favored inspector attitude towards 
the inspection.  

C. Inputs as source of variation   
Important sources of variability are the artifacts to be 

inspected and the reviewer inspecting the product. It is 
expectable that a product with a high number of initial defects 
be associated with high number of defects found. This 
association depends also on the reviewers�’ ability to find 
defects. Reviewers less able or less experienced are expected 
to find fewer defects. 

Nair and Suma conducted an empirical experiment to study 
the effectiveness of the inspection process.  They observed 
project data from several leading service based and product-
based software companies rated at level CMM level 5 [25].  
Two metrics were considered to quantify the capability of the 
inspection process in capturing defects within the constraints 
of parameters affecting inspections. The first, characterized as 
people metric is the inspection performance metric (IPM) that 
considers the number of defects caught in the inspection 
process (NI) over the inspection effort (IE). The second is 
depth of inspection (DI) characterized as a process metric, 
considers NI over the total number of defects (TD), where TD 
is NI plus the number of defects caught in the testing process. 
DI is characterized as a measure of effectiveness of inspection, 
defect prevention metric, quality metric and a measure of the 
ability of the inspection process in reducing the test effort. 
From the observed data they concluded that major sources of 
variability on effectiveness of inspections are the number, 
experience and skill of the inspectors but also preparation and 
inspection time. The IPM and DI are proposed as 
benchmarking tools to improve industry defect management 
practices. In another study Vitharana, and Ramamurthy also 
concluded that more experience has a significant impact in 
efficiency and effectiveness of inspections [24]. 

In summary, it is not clear the degree to which process 
structure impacts effectiveness, but the impact seems to be 
small. Efficiency seems to be negatively affected by 
performing the meeting step. It is plausible that meetings 
improve the number of detected defects but require 
substantially more effort. Effectiveness also seems too 
improve when inspections are performed individually when 
compared with in a team based approach. Scenario-based 
detection techniques seem to be more effective than ad-hoc or 
checklist approaches and process inputs seam to explain more 
variation than structural factors [8]. Despite the effort for 
improving inspections, the relevant problem seems to be the 
wide adoption of inspections spite the overwhelming 
evidences of their benefits [26, 27]. 

III. IMPROVING INSPECTIONPROCESS PERFORMANCE 
This section documents the approach taken to improve the 

performance of the inspection process. The project was carried 
out in a Portuguese software house, Critical Software S.A 
(CSW). The study was performed in the context of a program 
to implement the necessary practices to bridge the gap of a 



CMMI maturity level 3 to a maturity level 5. A goal was set to 
improve code inspection process performance as an 
Organizational Innovation and Development process area 
project. To achieve this goal we followed a typical Define, 
Measure, Analyze, Improve and Control model for process 
improvement [16], by: 

A. Define the problem and goals for process improvement 
The main goal motivating project efforts was to select and 

deploy an improvement for the inspection process.  This goal 
was aligned with organization business quality objectives for 
product quality improvement. The challenge was to 
understand code inspection performance and obtain a strong 
statistical estimate of improvement to support the decision for 
implementing a change in the process. This required a 
preliminary quantifiable understanding or model of process 
performance. 

 We assumed that our ability to find defects was not in an 
optimal value and could be improved. This implied we were 
looking to improve process defect detection capability. We 
considered defects as �‘an imperfection or deficiency in a work 
product where that work product does not meet its 
requirements or specifications and needs to be either repaired 
or replaced�’ [28] and used an Orthogonal Defect 
Classification [29] based checklist to guide defect 
classification. 

B. Measure and collection of process performance data 
As a formerly CMMI level 3 rated organization, CSW has a 

defined and disseminated a process for verification and 
validation of software products. The process includes a 
procedure for performing code inspections monitored by a set 
of metrics. The process structure follows similar steps as 
described in [16], namely: 

Preparation (P), each reviewer inspects the code. A code 
review checklist is used in the preparation step to help the 
reviewer perform the inspection. A list of defects is expected as 
a result of this step. 

Review Meeting (M), in the review meeting, a 
walkthrough reading of the code sample is performed to collect 
and discuss each defect identified in the preparation step. The 
author and reviewers participate in the meeting. Additional 
defects are recorded if identified as result of the group 
interactions. A full reading of the code may be performed but 
it�’s not mandatory. 

Rework (R), the author receives a list of defects that must 
be removed. In a later step, the removal is validated by the 
inspection responsible. 

 
Entity Attribute Metric 
Code Size Lines of code (LOC) 
Code Language Categorical 
Code Pre-inspection 

unit testing 
Yes/No 

Table 1 - Process Input Entities 

Based on these steps, two types of reviews are possible. A 
first one includes preparation, review meeting and rework  
(P-M-R). In the second, only preparation and rework (P-R) are 
performed. The available set of metrics, previously collected, 

enabled us to characterize the entities participating in the 
inspection process as follows. Table 1 depicts input related 
entities. Table 2 depicts process structural-related entities. Each 
attribute has an associated base measure. 

 
Entity Attribute Metric 
Preparation session Duration Hours 
Review meeting  Duration Hours 
Review meeting Review team size Number 

Table 2 - Process Structural Entities 

Based on this set of process related metrics, we considered 
code inspection review rate as the primary factor affecting 
process performance and modeled inspection effectiveness as a 
function of code inspection rate. 

        (1) 

Code review effectiveness is a measure of defects found by 
reviewers normalized by the size of code inspected. Review 
rate is the derived measure that relates code size and 
preparation session duration in number of lines of code per 
hour of review performed. The decision to consider a single 
factor in (1) to model code inspection process was support by 
two reasons: firstly, available data from past inspections 
limited the number of variables that could be considered for 
modeling process performance. We needed past process 
metrics and collecting extra data to characterize previous 
inspections did not present itself as a viable option as it 
required collecting information on past events and could not 
present itself as a very reliable approach to collect quality 
data. We made a choice to work with existing data.  

Secondly, data available associated to the majority of 
process entities had limited variation. Concerning process 
structure, all inspection followed a P-M-R process structure. 
The range of values for review team size varied from 3 to 4 
reviewers and review meeting duration were around 120 
minutes with no significant variation. Conversely, review rate 
variability was considerable. No control was enforced by the 
defined process. It was up to the reviewer to inspect the code 
at the desired rate. This provided a good base for studying the 
impact of review rate on defect density. Additionally, review 
rate has been considered, based on empirical evidence, by 
several authors as an important non-negligible factor 
impacting the number of defect found. 

With this decision we assumed that review rate was the 
main justification for process performance variation in the 
specific context we were performing inspections. The data 
used to build the model was obtained from code inspections 
performed by professional developers participating in a total 
of three projects. These were characterized as being 
representative of the typical software development projects at 
CSW. A sample of three projects was chosen. These used C 
programming language and were characterized by having 
atypical team size and project length. 

Inspection data was collected from inspections following a 
P-M-R inspection process structure. Inspection teams varied 
from 3 to 4 reviewers. The reviewers spent an average of 90 
minutes in the preparation session. A single inspection 



meeting lasted no more than 120 minutes. A sample of 45 
code inspections was considered to build the model, after a 
data set reduction to eliminate deficient quality records and 
outliers. Prior to inspection, code was subject to static analysis 
using a compiler. Reviewers were members of the 
development team and inspections were first time inspections 
(the code was never reviewed before). 

For collection, data sheet templates were used to gather 
inspection data. All reviewers received from the inspection 
moderator a code sample to be reviewed. Each reviewer 
registered defects, typically in a printout of the code sample. 
In the review meeting the moderator registered the time each 
reviewer spent on the preparation session, the final total 
number of defects found and code size. The inspection 
meeting duration was also registered.  

C. Analyze  performance and consider possible improvements 
With inspection data available the analysis step focused on 

finding an association between review rate and defect density. 
Additionally, we needed to build a model to estimate defect 
density based on review rate data. A regression analysis was 
used with the goal of characterizing this possible association. 
Figure 1 depicts a scatter plot of how defect density (y-axis) 
varies with inspection code rate (x-axis). Since data is from 
real project inspections the values for defect density are 
masked. Based on the scatter plot information we started by 
considering a linear association between variables. Firstly, we 
considered the conditions of applicability of regression 
analysis. Using the Kolmogorov-Smirnov non-parametric test 
[30] the normality of distributions of both variables was 
confirmed. Table 3 lists the models considered to explain the 
relation between variables and the resulting R-square. 
 

Model Formula R-square Sig 
Linear Y(t)=b0+b1t 0.317 0.000 
Inverse Y(t)=b0+b1/t 0.583 0.000 
Quadratic Y(t)=b0+b1t+b2t2 0.485 0.000 
Cubic Y(t)=b0+b1t+b2t2+b3t3 0.569 0.000 
Power Y(t)=b0tb1 0.093 0.044 
Exponential   Y(t)=b0eb1t 0.061 0.170 

Table 3 - Considered fit models 

The Linear, Inverse, Quadratic, Cubic and Power regression 
models are statistically significant (p-values<0.05). The 
inverse model has the highest R-square with a value of 0.583, 
a Fisher test statistic of F(1;42) = 58.676 for the Analysis of 
Variance (ANOVA) and a p-value=0.000<0.05 (Table 4). The 
Inverse model explains 58.3% of the variability of the 
dependent variable. The data and models curve fits are 
depicted in the scatter plot (see Figure 1).With the objective to 
obtain a better fit with a higher R-square we tested a curve fit 
without the constant b0. We obtained a better fit with an 
improved R-square of 0.752. The inverse model without 
constant is significant (p-value=0.000<0.05) with a Fisher test 
statistic value of F(1;43)=130.218 and with a higher R-square 
(Table 5). The model is given by Y(t)= b1/t and it is linear in 
terms of their parameters.  

 

Equation Model Summary 
R-square Sig 

Inverse 0.583 0.000 
Table 4�–Inverse model summary 

We tested an additional non linear model based on the 
inverse relation: Y(t)=b0/tb1. The R-square obtained was 0.61 
(inferior to the inverse model without constant). 
 

Equation Model Summary 
R-square Sig 

Inverse 0.752 0.000 
Table 5 - Inverse model without constant summary 

Thus, the model with higher prediction power is the 
Inverse model without constant. Having an acceptable  
R-square we considered the inverse model as the best 
predictor of process performance, considering defect density 
as a function of preparation review rate. 

 
Figure 1 - Data and linear models considered 

D. Change the process definition based on quantitative data. 
As we mentioned earlier, our goal was to change the 

inspection process based on a quantitative estimate of 
improvement. Looking at the adopted model (Table 5 and 
Figure 2) it is possible to see that a wide range of review rates 
were being used by reviewers. The average value was about 
800LOC/hour and defect density declined considerably for 
high review rates. 

We considered then a change to the process. A new review 
rate was to be used for performing inspections in order to 
improve the number of defects found. Based on literature 
recommendations that argue a maximum of 200 LOC/hour we 
used the model to estimate the expected defect density for this 
review rate. We compared it with the project sample average 
defect density. If the model was accurate, reducing the review 
rate would provide a 70% increase in defect density.  

Based on this information, we decided to carry out a pilot 
program where inspections would be performed with a 
controlled review rate. Firstly, we wanted to assess if in fact 



the defect density would improve and secondly, if the 
improvement was achieved, in which percentage did it occur.  

 
Figure 2 �– Code inspection performance model 

E. Assess the impact of reducing review rate 
A set of projects for the pilot program were chosen to 

perform code inspections using the specific review rate. A 
new project context was in place for the pilot program. The set 
of projects available to perform code inspections limited the 
possibility to have a similar context to the sample projects that 
originated the data for the performance model. We could not 
control all the dependent variables. This fact was a challenge 
to the predicting power of the model. 

Inspections were now performed in projects using JAVA 
programming language. The reviewers performing inspections 
also changed and the structure used to perform the inspections 
was the P-R approach (the review meeting did not occur). The 
inspections were also performed by a single reviewer. 

Based on the literature, these changes could impact the 
ability to find more defects and by that, put at risk the 
improvement in process performance. In what concerns the 
meeting step, it has been argued that removing the meeting 
step does not impact significantly the ability to find more 
defects [17].Thus, an increase in the number of defects found 
was not expectable by removing the meeting step. 

A performance decrease was expectable by using a single 
reviewer instead of a team of reviewers. Intuitively, a team of 
3 or 4 reviewers is able to find more defects than a single 
reviewer. The added experience or ability of each reviewer 
may improve defect detection. Although, previous studies 
concluded that a decrease in performance for single reviewer 
inspections may be negligible when compared with two and 
four element teams [20].  

Some factors with uncontrolled influence in defect density 
were: programming language used, impact of the reviewers 
performing the inspections and possible variation in initial 
code quality. 

The pilot inspections followed a similar collection 
procedure as described in sub-section B except that the 
reviewers had a review rate criterion to be met. A review rate 
between 200 and 250 LOC/hour as recommended to the 

reviewers. Additionally, a single preparation session should 
not take longer than 120 minutes. 

 Defects were registered in data sheet templates and were 
sent directly to the author for rework. During this pilot study 
extra context information was collected to investigate possible 
influence of the unknown factors. Motivated by the literature 
studies concerning the impact of the reviewer, we decided to 
collect information about ability and inspection experience of 
reviewers. Ability is defined here as the number of years 
developing in the programming language used in the code and 
inspection experience as the number of formal reviews 
performed in the past. A total of 39 inspections were carried 
out by a pool of three reviewers in a context of four different 
projects. 

 
1) Inspection review rate impact on defect density  

The scatter plot of Figure 3 depicts the results for defect 
density for the pilot inspections. The plot depicts the same 
relation of the performance model in sub-section C relating 
defect density and inspection review rate. 

 
Figure 3 - Scatter plot for new inspection setting 

The Pearson correlation coefficient was computed to 
measure variables association. With the review rate controlled 
no significant correlation between the variables is evident 
(p-value=0.233>0.05).  

The average review rate changed from 800LOC/hour to 
215 LOC/hour with a standard deviation of 46. The average 
value for defect density significantly improved. The box plot 
(Figure 4) depicts the variation in average defect density 
values for both scenarios, prior (1.00) and after (2.00) the 
controlled review rate. 

A statistical t-test for independent samples was used to 
evaluate the significance of this variation (Table 6). The test 
indicates that defect density increased significantly, 
t(68.167)=-6.306  and p-value=0.000 <0.05.  

Analyzing the box plot we suspected also an increase in 
the variability of results. A Levene test was used to assess 
equality of variances for both samples (Table 6). The test 
provided a p-value=0.033<0.05 therefore, the variances are 
significantly different. Variability has increased in the review 
rate controlled scenario. We also checked to which extension 
the model delivered a reliable estimate of improvement. If the 



resulting defect density value for the pilot inspections was 
within the 95% percent range of the value predicted by the 
model, we would accept the model as a reasonable 
approximation of real process performance.  

 

 
Figure 4 �– Defect density by scenario 

Variances 
Levene Test t-test for Equality of Means 
F Sig. t df Sig. (2-

tailed) 
Equal  4.692 0.033 -6.430 0.000 0.000 

Unequal  -6.306 0.000 0.000 
Table 6 - Test for equality of means and variances 

We used the average review rate from the pilot 
(215LOC/hour) and used the performance model to get the 
defect density estimate for that specific rate. A 95% percent 
confidence interval was computed for the resulting defect 
density. The top limit for improvement acceptable by the 
model implied a 165% improvement in defect density. The 
obtained value for defect density by the pilot was 142%. 

Thus, the value obtained in the pilot study is within the 
95% confidence interval of the estimated value by the model, 
leading us to conclude that the model provided an acceptable 
prediction of process performance. 

 
2) Understanding the increase in process variability 

In order to try to understand the increase in the variability, 
we isolated two factors with the expectation that, at least, one 
of them would provide some explanation for such variability. 
We began by checking if variability could be explained by 
variation in initial code quality. We considered projects to 
study possible differences in initial code quality. For the 
second source of variation we considered the reviewers 
impact. One of the reviewers was a senior developer, the 
others were juniors. This classification translated their ability 
as developers and experience as reviewers. The senior status 
evidences both more years using the programming language 
and more experience as a reviewer. 

To test the impact of code quality, a box plot of defect 
density by project is depicted in Figure 5. Applying an one-
way ANOVA to assess significance in the two or more 
samples, the following result is obtained: F(3,35)=1.197 and 

p-value=0.325>0.05 (Table 7). This indicates that differences 
in average defect density are not significant between projects. 

 

 
Figure 5 - Defect density by project 

 
Groups Sum of 

Squares 
df Mean 

Square 
F Sig 

Between 2264,417 3 754,806 1.197 0.325 
Within  22076,897 35 630,768   
Total 24341,314 38  

Table 7 - ANOVA test for project means 

The box plot showing the impact on defect density by 
reviewer is depicted in Figure. We applied the ANOVA test 
and the following result is obtained(2,36)=4.620,  
p-value=0.016<0.05 (Table 8). This indicates the differences 
in the average defect density by reviewers are statistically 
significant.  

 
Figure 6 - Defect density by reviewer 

Groups Sum of Squares df Mean 
Square 

F Sig 

Between  4971,348 3 2485,675 4.620 0.016 
Within  19369,965 36 539,055   
Total 24341,314 38  

Table 8 - ANOVA test for reviewer means 

A deeper analysis on the reviewer�’s academic background 
allowed finding that R3 had above average performance as a 
student developer. This fact may justify the variation in 
performance of the reviewer and as result a source of 
significant performance variability in the pilot study. 



Additionally, an interesting finding was that there was a 
difference in reviewer experience and programming 
experience between reviewer R1 and R3 but the final average 
defect density was similar. 

IV. CONCLUSION 
This paper documents an approach to improve the 

performance of an inspection process. We were required to 
support a decision to change the process on a quantitative 
estimate of improvement. A model of the inspection process 
performance as a function of inspection review rate was 
defined. We applied statistical methods (linear and non-linear 
regression) to understand and build a real process performance 
model. Based on the estimate delivered by the adopted model 
we decided to control the review rate by reducing it. We tested 
this process change experimentally and obtained an 
improvement in process performance. We also validated 
statistically the predictive power of the estimate with the 
experimental result.  

In an industrial setting is not always possible to have a 
strict control of the environment. We had limited control in 
some process variables that were important to validate with 
strong statistical reasoning the impact of the review rate in 
process performance. The limitation came mainly due lack of 
�‘perfect match�’ projects to replicate the same conditions used 
when the first set of inspection data was collected. 
Additionally, data volume in terms of number of reviewers, 
number of projects and number of inspections limits the ability 
to generalize on the study findings, concerning a deeper 
understanding of sources of variation for the general 
inspection process. Even so, we carried out the experiment in 
a context that was useful to understand the impact of review 
rate in process performance and provided additional evidence 
of previous research that considered the review rate an 
important factor in inspections performance. 
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