
Support for Variability in Use Case Modeling with
Refinement

Sofia Azevedo, Ricardo J. Machado
Universidade do Minho

Dep. de Sistemas de Informação
Guimarães, Portugal
+351 253 510 319

{sofia.azevedo,rmac}@dsi.uminho.pt

Alexandre Bragança
ISEP

Dep. de Eng. Informática
Porto, Portugal

+351 22 834 05 24
alex@dei.isep.ipp.pt

Hugo Ribeiro
Primavera BSS

Rua Cidade do Porto, 79
Braga, Portugal

+351 253 309 900
hugo.ribeiro@primaverabss.com

ABSTRACT
The development of software product lines with model-driven
approaches involves dealing with diverse modeling artifacts such
as use case diagrams, component diagrams, class diagrams,
activity diagrams, sequence diagrams and others. In this paper we
focus on use cases for product line development and we analyze
them from the perspective of variability. In that context we
explore the UML (Unified Modeling Language) «extend»
relationship. We also explore the functional refinement of use
cases with «extend» relationships between them. This work allows
understanding the activities of use case modeling with support for
variability and of use case modeling with functional refinement
when variability is present.

Keywords
Use case, software product line, variability, «extend», alternative,
option, specialization, refinement.

1. INTRODUCTION
Use case diagrams are one of the modeling artifacts modelers have
to deal with when developing product lines with model-driven
approaches. This paper envisions use cases according to the
perspective of variability. The «extend» relationship plays a vital
role in variability modeling in the context of use cases and allows
for the use case modeling activity to be applicable to the product
line software development approach. That is possible by
determining the locations in use case diagrams where variation
will occur when instantiating the product line. This paper’s
contribution is on the formalization and understanding of the use
case modeling activity with support for variability. We will
illustrate our approach with the Fraunhofer IESE’s GoPhone case
study [1], which presents a series of use cases for a part of a
mobile phone product line particularly concerning the interaction
between the user and the mobile phone software. We propose an
extension to the UML (Unified Modeling Language) metamodel
[2] in order to formally provide for both the concrete and abstract

syntaxes to represent different types of variability in use case
diagrams. We consider use cases in different abstraction levels to
elaborate on the (functional) refinement of use cases with
«extend» relationships between them. In this paper we focus on
the variability support as well as on the process point of view with
regards to the use case modeling activity.
The paper is structured as follows. Section 2 elaborates on the
differences between others’ approaches and this paper’s approach.
Section 3 elaborates on the different types of variability we
propose to be used in the context of use case modeling. Section 4
provides for the analysis of the UML «extend» relationship in
contexts of variability and also for the extension we propose to the
UML metamodel to support the different variability types. Section
5 analyzes the process of handling variability in use case diagrams
in the context of the functional refinement of use cases. Section 6
illustrates our approach with the GoPhone case study. Finally
Section 7 affords some concluding remarks.

2. RELATED WORK
Despite use cases being sometimes used as drafts during the
process of developing software and not as modeling artifacts that
actively contribute to the development of software, use cases shall
have mechanisms to deal with variability in order for them to have
the ability to actively contribute to the process of developing
product lines. For instance, modeling variability in use case
diagrams is important to later model variability in activity
diagrams [3].
This paper’s work is inspired on the approach of Bragança and
Machado to variability modeling in use case diagrams [4].
Bragança and Machado represent variation points explicitly in use
case diagrams through extension points. Their approach consists
of commenting «extend» relationships with the name of the
products from the product line on which the extension point shall
be present. Their approach to product line modeling is bottom-up
(rather than top-down), which means that all the product line’s
products are known a priori. A top-down approach would
consider that the product line would support as many products as
possible within the given domain. In [5] John and Muthig refer to
required and anticipated variations as well as to a planned set of
products for the product line, which indicates that their approach
to product line modeling is bottom-up. The approach in this paper
adopts the top-down approach for product line modeling,
therefore discarding the comments to the «extend» relationships.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOMPES’10, September 20, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0123-7/10/09…$10.00.

1

In [5] John and Muthig refer the benefits of representing
variability in use cases. Although we totally agree with the
position of these authors towards those benefits, we cannot agree
when they state that information on whether certain use cases are
optional or alternatives to other use cases shall only be in decision
models as it would overload use case diagrams and make them
less readable. Our position is that features as well as use cases
shall be suited for treating variability in its different types. If a use
case is an alternative to another use case, then both use cases shall
be modeled in the use case diagram, otherwise the use case
diagram will only show a part of the possibilities of the possible
products John and Muthig mention in [5].
Gomaa and Shin [6] analyze variability in different modeling
views of product lines. They mention that the «extend»
relationship models a variation of requirements through
alternatives. They also model options in use case diagrams by
using the stereotype «optional» in use cases. We adopt these
approaches to alternatives and options but we elaborate on
another form of variability (specializations, which we consider to
be a special kind of alternatives). Gomaa and Shin refer
specialization as a means to express variability in [6]. Besides
alternative and optional use cases, Gomaa and Shin consider
kernel use cases (use cases common to all product line members).
Gomaa models in [7] kernel and optional use cases both with the
«extend» as well as with the «include» relationships (our
approach is towards modeling kernel and optional use cases
independently of their involvement in either «extend» or
«include» relationships and with a stereotype in the use cases).
Halmans and Pohl propose in [8] use cases as the means to
communicate variability relevant to the customer and they also
propose extensions to use case diagrams to represent variability
relevant to the customer. Halmans and Pohl consider that
generalizations between use cases are adequate to represent use
cases’ variants. This is not our position. We recommend using the
«extend» relationship instead of the generalization relationship.
Halmans and Pohl consider that modeling mandatory and optional
use cases with stereotypes in use cases is not adequate because the
same use case can be mandatory for one use case and optional for
another. Again this is not our position. We also consider that a
mandatory use case is not mandatory with regards to another use
case, rather it is mandatory for all product line members. We also
consider that an optional use case is optional with regards to one
or more product line members. Halmans and Pohl end up by
introducing additional graphical elements to use case diagrams to
represent variation points and variability cardinality explicitly in
use case diagrams. We do not agree with this approach since it
introduces more complexity to use case diagrams than modeling
variability with stereotypes and use case relationships as well as it
introduces a reasoning about variability that should be present in
decision models (the selection of the variants to be present in the
system and the system/product to which that selection applies
according to the features).
Maßen and Lichter talk about three types of variability in [9]:
optional, alternative and optional alternative (as opposite to
alternatives that represent a “1 from n choice”, optional
alternatives represent a “0 or 1 from n choice”). In this context
they propose to extend the UML metamodel to incorporate two
new relationships for connecting use cases. Our approach
considers options and alternatives as well but we introduce these
concepts into the UML metamodel through stereotypes (we

consider that the «extend» relationship is adequate for modeling
alternatives and a stereotype applicable to use cases for modeling
options).
According to Gomaa [7], and John and Muthig [5], use cases can
be tagged with some stereotypes concerning variability. Table 1
shows the applicability of those stereotypes in our approach.

Table 1. Some use case stereotypes concerned with variability.

Stereotype Applicability

«kernel» Use cases in general

«alternative» «extend» relationships

«optional» Use cases in general

«variant» Use cases in general

Some examples of approaches to functional decomposition of
software systems are the 4SRS (Four Step Rule Set) method [10],
KobrA or RSEB (Reuse-Driven Software Engineering Business)
[11, 12]. However neither KobrA nor RSEB clearly contemplate a
technique for refining use cases like the 4SRS method does.
Greenfield and Short [13] refer to refinement as the inverse of
abstraction or the process of turning a description more complex
by adding information to it. They refer to the process of
developing software through refinement as progressive
refinement. The process starts with requirements and ends up with
the more concrete description of the software (the executable).
They consider refinement as a concatenation of interrelated
transformations mapping a problem to a solution. The goal of
refinement is to smoothly decrease the abstraction levels that
separate the problem from the solution. In general terms,
Greenfield and Short talk about refinement as the stepwise
decomposition of features’ granularity. In the context of use cases,
refinement is their detailing. However we defend that use cases
can themselves be refined in order to facilitate the transformation
of a problem (which can be modeled with use cases) to a solution
(which shall be modeled with design artifacts e.g. logical
architectures).
Gomaa [7] explored refinement in the context of feature
modeling, where a feature can be a refinement of another. But in
order to get to the features, use cases have to be modeled and
mapped to features. Our approach eliminates this mapping
activity. To Gomaa the refinement is expressed through «extend»
relationships in the context of use cases. To us the refinement
shall be expressed through the «refine» relationship we proposed
in [14].
Cherfi, et al. [15] (in their work on quality-based use case
modeling with refinement) describe the refinement process as the
application of a set of decomposition and restructuring rules to the
initial use case diagram. Their approach is iterative and
incremental. It consists of decomposing the initial use case
diagram into smaller and more cohesive ones to decrease the
complexity of the diagram and increase its cohesion. In the
approach of Cherfi, et al. to refinement, use cases are not actually
detailed (like in ours), rather they are decomposed without detail
being added to the description of those use cases.

2

Figure 1. The use case variability types.

3. HANDLING VARIABILITY IN USE
CASE MODELING
Figure 1 illustrates the variability types we consider and propose
to be applicable in the context of use cases [16]. Use cases can be
non-option or option. Non-option use cases are present in all
product line members. Option use cases can be present in one
product of the product line and not in another. It is not mandatory
that option use cases are present in all products of the product
line. Non-variant use cases are use cases that do not support
variability. Variant use cases are use cases that support variability.
This means that different products will support different
alternatives for performing the same functionality or that different
products will support different specializations of the same
functionality. Later on during the modeling activity variant use
cases are realized into alternatives or specializations respectively.
Alternative use cases represent alternatives for performing the
same system’s use in mutually exclusive products or sets of
products from the product line. Specialization use cases represent
a special kind of alternatives. A specialization use case is a
specialization of another use case. Specialization use cases that
specialize the same use case represent alternatives for performing
the same system’s use in mutually exclusive products or sets of
products from the product line. Option, alternative and
specialization use cases are the representation of the three
variability types that will be translated into stereotypes to be
applicable to use cases. The use cases that do not represent
options and are not variant (later alternatives or specializations)
are non-option and non-variant, and shall not be marked with any
stereotype. Non-option and option use cases are mutually
exclusive as well as non-variant and variant use cases. Figure 1
represents the activity of classifying use cases with variability
types: either non-option and non-variant or option and non-
variant or non-option and variant or option and variant. These
last two variability types can be realized into the alternative or the
specialization variability types (as already explained). The activity
of classifying use cases with the variability types is important for
applying the corresponding stereotypes to the use cases (except
for the non-option and non-variant variability type, which shall
not be marked with any stereotype). The conditions of the
decision nodes express the semantics of each one of the variability
types. We would like to give emphasis to a particular variability

type: the option and variant variability type. This variability type
is applicable to a use case that is not present in all product line
members but the different members in which it is present support
different alternatives for performing that use case’s functionality
or different specializations of that use case’s functionality. Option
and non-variant use cases shall be marked as option use cases;
non-option and variant as variant use cases; and option and
variant use cases as both option and variant use cases.

4. THE «extend» RELATIONSHIP
The «extend» relationship allows modeling alternative and
specialization use cases in use case diagrams.
Consider that an extending use case is a use case that extends
another use case and that an extended use case is a use case that is
extended by other use cases. As any other use case, an extending
use case represents a given use of the system by a given actor or
actors.
In the context of alternatives [16] both extending and extended
use cases represent supplementary functionality since both
represent alternatives, which are not essential for a product
without variability to function. It shall be noted that alternatives
are no longer supplementary when product line members are
instantiated from the product line. Alternatives can be modeled
with the generalization relationship in use case diagrams, but we
recommend to model alternatives with the «extend» relationship
in order to evidence their supplementary character according to
the UML semantics.
If the intention is to use differential specification, specializations
[16] shall be modeled with the «extend» relationship, otherwise
they shall be modeled with the generalization relationship.
Differential specification of specializations means that
specialization use cases represent supplementary functionality
regarding the use case they specialize, therefore a product without
variability does not require the specialization use cases to
function.
Options [16] represent functionality that is only essential for a
product with variability to function, therefore options represent
supplementary functionality. However we do not recommend
modeling options with the «extend» relationship because if the
stereotype was on the relationship, the relationship itself would be
optional and that is not the case (the use case is not optional with
regards to any other use case, rather it is optional by itself).

3

Figure 2. The specialization of the variant use case Borrow

Book with a single actor.

Figure 3. The specialization of the use case Borrow Book with

two different actors.

Figure 4. The specialization of the variant use case Borrow

Book with two different actors.

Figure 5. The specialization of the variant use case Borrow

Object.

Options shall be modeled with a stereotype in use cases. The
involvement of an option use case in either «extend» or «include»
relationships, or even in none of those does not imply the
presence of that use case in all product line members (which
makes of it optional).
In principle an extending use case is a use case that extends
another use case both in the case of alternatives and in the case of
specializations. In the case of specializations we consider that
there is no multiple inheritance, therefore it is impossible for an
extending use case to extend more than one use case. If we have
more than one alternative use case for the same functionality, one
of those use cases shall be the alternative to all the others and
extended by them. That use case is the one to be present in the
products less robust in terms of functionality. The extended use
case is not aware of the functionality described in the extending
use case.
As previously mentioned if the intention is not to use differential
specification, generalization relationships shall be used because
specializations are complementary under those circumstances.
However we may argue in a different way that the generalization
relationship shall not be used to represent specializations in
contexts of variability. Consider the examples depicted in figures
2 through 5 Figure 2. The example is an exception in terms of the
(GoPhone) case study we will use further on in this paper. The
figure shows that the use case Borrow Book can be specialized
into Borrow Book to Student and Borrow Book to Teacher. If the
actor is the same (the Librarian, who registers the borrowing),
then the use cases that specialize the Borrow Book use case are
alternatives to borrowing a book as both can be performed by the
same actor. If the actor is not the same (the Student in the case of
the Borrow Book to Student and the Teacher in the case of the
Borrow Book to Teacher), then the use cases that specialize the

Borrow Book use case are not alternatives to borrowing a book as
both cannot be performed by the same actor (the same actor does
not have an alternative way of borrowing a book). In this case in
order for the generalization to be considered as variability, the
actor of Borrow Book has to be the Library User (connected to
Borrow Book) specialized into the Student (connected to Borrow
Book to Student) and into the Teacher (connected to Borrow Book
to Teacher). Another example: the use case Borrow Object can be
specialized into Borrow Book and Borrow CD. In this case the
actor can be the same for all of the use cases (the Student OR the
Teacher). In order to support all the actors at the same time (the
Student AND the Teacher), the Library User has to be specialized
into them (the Student and the Teacher) and connected to the
Borrow Object use case. This way the same actor (the Library
User) can borrow an object (a Book) or alternatively another (a
CD).
Figure 6 depicts the extension we propose to the UML metamodel
concerning the «extend» relationship and use cases. We have
added the stereotypes «alternative», «specialization» and
«option» to the standard UML stereotypes in order to distinguish
the three variability types that were to be translated into
stereotypes to be applicable to use cases. We have also added the
stereotype «variant» to the standard UML stereotypes in order to
mark use cases at higher levels of abstraction before they are
realized into alternatives or specializations. We propose the
stereotype «option» to be applicable to use cases that represent
options. We also propose the stereotypes «alternative» and
«specialization» to be applicable to the «extend» relationship for
modeling alternatives and specializations respectively. Extending
use cases involved in «alternative» relationships do not need to be
marked with the stereotype «alternative» to evidence them as
alternatives since they do not make sense without being involved

4

in that kind of relationships (an alternative use case is always
alternative to another use case). The same happens with the
stereotype «specialization» (a use case involved in a
specialization relationship always specializes another use case).
Regarding Figure 6 and the Extend metamodel element, as far as
the unidirectional association is concerned, the end named
extendedCase references the use case that is being extended (the
extended use case) and the association means that many (zero or
more) «extend» relationships refer to one extended use case.
Regarding the aggregation, the end named extend references the
«extend» relationships owned by the use case, and the end named
extension references the use case that represents the extension (the
extending use case) and owns the «extend» relationship. The
metamodel means that one «extend» relationship is owned by one
extending use case. Summarily a use case can be extended by
many use cases and a use case can extend another use case. There
can be zero or more alternatives («alternative» relationships) to a
use case. There can also be zero or more specializations
(«specialization» relationships) for a use case. Although it can be
argued that specializations are only worth the effort when there
are two or more specialization use cases, we do not want to take
freedom away from the modeler.
From now on we either use the «extend» relationship without
stereotypes or with one of the two stereotypes applicable to this
relationship from the proposed extension to the UML metamodel
(depending on whether we are modeling alternatives or
specializations).

Figure 6. The proposed extension to the UML metamodel for

modeling variability in use case diagrams.

It is important to distinguish alternatives from generalizations in
contexts of variability. In the case of alternatives the extending
use case is an alternative to the extended use case. In the case of
specializations the extending use cases are alternatives to each
other. Figure 7 shows the specialization of two alternative use
cases from the GoPhone case study: Insert Picture and Insert
Picture or Draft Text. It is possible to transform alternatives into
specializations and the other way around. Again we are not
restrictive on this since we do not want to take freedom away from
the modeler.

5. HANDLING VARIABILITY IN USE
CASE MODELING WITH REFINEMENT
Use cases can be decomposed with or without detailing their non-
stepwise textual descriptions. Without detailing those descriptions
we propose to represent the decomposition of use cases in use
case diagrams with the «include» relationship. This
decomposition suits the purpose of e.g. modeling later on an
alternative to a part of the decomposed use case or modeling a
part of the decomposed use case that is an optional part).

Figure 7. The specialization of Insert Picture and Insert Picture

or Draft Text.

We consider that refining means decomposing and simultaneously
detailing use cases. By refining use cases, the artifacts resulting
from the refinement process (the refining use cases) are situated in
lower abstraction levels comparatively to the refined use cases
(the use cases that were submitted to the refinement process). In
order to represent in the use case diagram this decrease in the
abstraction level when refining use cases, we proposed in [14] to
use the «refine» relationship (as a sort of traceability between use
cases at different levels of detail).
In this section of the paper we depict in Figure 8 use cases
according to the perspectives of detail*variability to illustrate in
abstract terms our approach to use case modeling with support for
variability. The detail perspective is intimately related to the
activity of use case refinement. In this sense use cases can be
more detailed if they are refined. The variability perspective is
associated with the modeling of variability for product line
support. The two perspectives (detail and variability) have been
converted into axes of the illustrated space: y=detail and
z=variability. Each level of the z axis corresponds to a (parallel)
plan, which means that we position use cases in variability plans.
Thus variability plans are plans that contain use cases representing
variability in the three different types that have been translated
into stereotypes to be applicable to use cases. The plan z=0
contains none of these use cases that represent variability.

Figure 8. Use cases positioned according to the perspectives of

detail*variability.

5




 

 
   
   
   

  



 
   
   

  




 

  


               

 

  

Figure 9. Non-stepwise textual descriptions from the GoPhone use case Send Message and some of its related use cases.

The figure clarifies that the «refine» relationships imply
increasing the detail level, whereas the «extend» relationships do
not imply increasing the detail level but rather changing from one
variability plan (z plan) to another. Extending use cases represent
alternative or specialization use cases, therefore they must be
situated at the same level of detail but in different variability plans
(z plans). Variabilities do not imply adding detail to the non-
stepwise textual descriptions of the use cases, like refinements do.
The figure shows the general case of the refinement of two use
cases connected through an «extend» relationship. The refinement
of a use case stereotyped as «option» is not relevant here, since it
is not the case of an «extend» relationship connecting two use
cases. The figure evidences that the refinement of two use cases
connected through an «extend» relationship originates more
detailed use cases organized in two packages that have also an
«extend» relationship connecting them. That is not always the
case. It is possible to have two use cases connected through a
«specialization» relationship, which produces «specialization»
relationships connecting more detailed individual use cases (and
not packages) in different variability plans (an example of such
case is in the next section of this paper).

6. THE VARIABILITY IN THE GoPhone
CASE STUDY
The non-stepwise textual descriptions in Figure 9 were elaborated
based on the functional requirements for the GoPhone. We rely on
non-stepwise textual descriptions of use cases (the opposite of
stepwise textual descriptions of use cases) to model variability in

use case diagrams. Stepwise textual descriptions are structured
textual descriptions in natural language that provide for a stepwise
view of the use case as a sequence of steps, alert for the decisions
that have to be made by the user and evidence the notion of use
case actions temporarily dependent on each other. Stepwise
descriptions shall be treated after modeling the use cases.
The «include» relationship involves two types of use cases: the
including use case (the use case that includes other use cases) and
the included use case (the use case that is included by other use
cases). In the context of the «include» relationship the UML
Superstructure states that the including use case depends on the
addition of the included use cases to be complete. Nevertheless in
our opinion the functionality of the included use cases shall be
described in the including use case. Since we rely on non-stepwise
textual descriptions of use cases to determine the «include»
relationships, the including use case has to contain the description
of the included use cases so that the modeler is able to define the
parts that compose the including use case in order to decompose
that use case (e.g. as can be seen from Figure 9 the functionality
of the Compose Message use case is described in the Send
Message use case).
In the context of the «extend» relationship the UML
Superstructure states that an extending use case consists of one or
more behavior fragment descriptions to be inserted into the
appropriate spots of the extended use case. This means that the
functionality of the extending use case is not described in the

6

Figure 11. An example of refinement of the specialization type of variability from the GoPhone.

extended use case. The extended use case is not aware of the
functionality described in the extending use case (e.g. as can be
seen from Figure 9 the functionality of the Automatically Archive
Message use case is not described in the Archive Message by
Request use case). As Figure 10 depicts, the use case
Automatically Archive Message is an alternative to the use case
Archive Message by Request (they are connected through a kind
of «extend» relationship, tagged with the stereotype «alternative»
in order to evidence that the use case Automatically Archive
Message is an alternative to the use case Archive Message by
Request). It must be noticed that Archive Message by Request is
an (included) use case included by the including use case Send
Message, which means that the functionality of the use case
Archive Message by Request is described in the Send Message use
case. For this reason we could have extended the Send Message
use case with the use case Automatically Archive Message, but
then we would not be evidencing to which part of the
functionality of the Send Message use case the use case
Automatically Archive Message is an alternative to. Figure 10 also
depicts that the Browse Directory of Pictures use case is a
specialization of the use case Browse Repository (they are
connected through another kind of «extend» relationship, tagged
with the stereotype «specialization» in order to evidence that the
use case Browse Directory of Pictures is a specialization of the
use case Browse Repository).

Figure 10. Some examples of variability modeled for the

GoPhone use case Send Message.

6.1 Refinement of Specializations and
Alternatives
Figure 11 shows the refinement of the specialization type of
variability. The figure shows that both the use case that has been
specialized (the Browse Repository use case) and the
specialization use cases (the Browse Directory and Browse List
use cases) were refined. Some use cases that refine the
specialization use cases are specializations of the use cases that
refine the use case that has been specialized (e.g. the View Picture
use case is a specialization of the View Object use case). The use
case Open Folder represents functionality that is not common to
both specialization use cases since it is only applicable to one of
the objects the specialization use cases refer to (the Directory of
Pictures). Having in mind that specializations are a special kind of
alternatives, specialization use cases are alternatives to each other.
Figure 11 illustrates that the use cases that refine the
specialization use cases are alternatives to each other as packages.
Figure 12 depicts that the use cases that refine two use cases
connected through an «alternative» relationship are alternatives to
each other as packages.

7. CONCLUSIONS
This paper has elaborated on the representation of variability in
use case diagrams. It began by providing an in depth analysis of
the state-of-the-art concerned with this topic. Based on our
position towards the related work we proposed an extension to the
UML metamodel to represent the three types of variability we
have synthesized: alternatives, specializations and options. We
concluded that alternatives and specializations shall be adequately
modeled with the «extend» relationship, and that options shall be
adequately modeled with a stereotype on use cases. This
conclusion was based on the UML metamodel’s semantics
associated with the relationships for connecting use cases in use
case diagrams: alternatives, specializations and options represent
supplementary functionality. Although not being the core of this
paper’s contribute, we have also introduced the functional
refinement of use cases connected through «extend» relationships
due to its pertinence in large-scale product line contexts.

7

Figure 12. An example of refinement of alternative variability from the GoPhone.

8. REFERENCES
[1] Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr,

J. and Schmid, K. GoPhone - A Software Product Line in
the Mobile Phone Domain. IESE-Report No. 025.04/E,
Fraunhofer IESE, 2004.

[2] OMG Unified Modeling Language: Superstructure -
version 2.2. Object Management Group, 2009.

[3] Bragança, A. and Machado, R. J. Extending UML 2.0
Metamodel for Complementary Usages of the «extend»
Relationship within Use Case Variability Specification. In
Proceedings of the SPLC 2006 (Baltimore, Maryland, USA,
August 21-24, 2006). IEEE Computer Society, 2006.

[4] Bragança, A. and Machado, R. J. Deriving Software Product
Line's Architectural Requirements from Use Cases: An
Experimental Approach. In Proceedings of the MOMPES
2005 (Rennes, France, June 6, 2005). TUCS General
Publications, 2005.

[5] John, I. and Muthig, D. Product Line Modeling with
Generic Use Cases. In Proceedings of the Workshop on
Techniques for Exploiting Commonality Through
Variability Management (San Diego, California, USA,
August 19, 2002). Springer-Verlag, 2002.

[6] Gomaa, H. and Shin, M. E. Multiple-View Modelling and
Meta-Modelling of Software Product Lines. Institution of
Engineering and Technology Software, 2, 2 2008), 94-122.

[7] Gomaa, H. Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures.
Addison-Wesley, Upper Saddle River, New Jersey, 2004.

[8] Halmans, G. and Pohl, K. Communicating the Variability of
a Software-Product Family to Customers. Software and
Systems Modeling, 2, 1 2003), 15-36.

[9] Maßen, T. v. d. and Lichter, H. Modeling Variability by
UML Use Case Diagrams. In Proceedings of the REPL
2002 (Essen, Germany, 2002). Avaya Labs, 2002.

[10] Machado, R. J., Fernandes, J. M., Monteiro, P. and
Rodrigues, H. Transformation of UML Models for Service-
Oriented Software Architectures. In Proceedings of the
ECBS 2005 (Greenbelt, Maryland, USA, April 4-7, 2005).
IEEE Computer Society, 2005.

[11] Atkinson, C., Bayer, J. and Muthig, D. Component-Based
Product Line Development: The KobrA Approach. In
Proceedings of the SPLC 2000 (Denver, Colorado, USA,
August 28-31, 2000). Kluwer Academic Publishers, 2000.

[12] Jacobson, I., Griss, M. and Jonsson, P. Software Reuse:
Architecture, Process and Organization for Business
Success. Addison-Wesley, Upper Saddle River, New Jersey,
1997.

[13] Greenfield, J. and Short, K. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools. Wiley, Hoboken, New Jersey, 2004.

[14] Azevedo, S., Machado, R. J., Bragança, A. and Ribeiro, H.
The UML «include» Relationship and the Functional
Refinement of Use Cases. In Proceedings of the SEAA 2010
(Lille, France, September 1-3, 2010). IEEE Computer
Society, 2010 (accepted for publication).

[15] Cherfi, S. S.-s., Akoka, J. and Comyn-Wattiau, I. Use Case
Modeling and Refinement: A Quality-Based Approach. In
Proceedings of the ER 2006 (Tucson, Arizona, USA,
November 6-9, 2006). Springer-Verlag, 2006.

[16] Azevedo, S., Machado, R. J., Bragança, A. and Ribeiro, H.
The UML «extend» Relationship as Support for Software
Variability. In Proceedings of the SPLC 2010 (Jeju Island,
South Korea, September 13-17, 2010). Springer-Verlag,
2010 (accepted for publication).

8

