
The UML «include» Relationship and the Functional Refinement of Use Cases

Sofia Azevedo, Ricardo J. Machado
Dep. de Sistemas de Informação

Universidade do Minho
Guimarães, Portugal

{sofia.azevedo,rmac}@dsi.uminho.pt

Alexandre Bragança
Dep. de Eng. Informática

ISEP
Porto, Portugal

alex@dei.isep.ipp.pt

Hugo Ribeiro
Primavera BSS
Braga, Portugal

hugo.ribeiro@primaverabss.com

Abstract—Developing software with model-driven approaches
involves dealing with diverse modeling artifacts such as use
case diagrams, component diagrams, class diagrams, activity
diagrams, sequence diagrams and others. In this paper we
focus on use cases for software development and we analyze
them from the perspective of detail. In that context we explore
the UML (Unified Modeling Language) «include» relationship.
This work allows understanding the use case modeling activity
with support for refinement and provides for specific
guidelines on how to conduct such activity.

Use case; functional refinement; functional decomposition;
detail; «include»; «refine»

I. INTRODUCTION

Use case diagrams are one of the modeling artifacts that
modelers have to deal with when developing software with a
model-driven approach. This paper envisions use cases
according to the perspective of detail (which has to do with
the abstraction level use cases may be situated at and implies
refinement as it will be exposed).

Use cases can be more or less detailed, which means that
they can be refined. The refinement of a use case results in
lower-abstraction-level use cases. The lowering of the
abstraction level shall be represented in the diagrams with a
new kind of relationship we will present ahead in this paper:
the «refine» relationship. In this paper we consider that
refinement is at the functional perspective. We explain why
we consider that the «include» relationship is not adequate to
support the refinement in use case diagrams. It shall be noted
that in our approach use cases are still use cases, representing
external functionality of the system that can be performed by
the actors (a use case still represents observable value to an
actor, despite being more or less detailed). Refining use
cases is important to incrementally introduce user
requirements in the design of the software system.

The «refine» relationship represents the refinement of use
cases. The refinement of use cases is an approach to deal
with the problem of complexity in the modeling activity.
This paper’s contribution is on the understanding of the use
case modeling activity with support for refinement,
providing specific directives on how to conduct such activity
in a systematic way. We illustrate our approach with the
Fraunhofer IESE’s GoPhone case study [1], which presents a
series of use cases for a part of a mobile phone product line
particularly concerning the interaction between the user and

the mobile phone software. We consider use cases in
different abstraction levels according to the «refine»
relationship. We also propose an extension to the UML
(Unified Modeling Language) metamodel [2] in order to
support both the concrete and abstract syntaxes of the
refinement of use cases. In this paper we focus on the
refinement support as well as on the process point of view
with regards to the use case modeling activity.

The remainder of this paper is organized as follows:
Section 2 presents the work of other authors on the
refinement of use cases; Section 3 introduces the process of
refining use cases from the detail perspective; Section 4 is
about defining the «refine» relationship, discussing the
difference between the «include» and the «refine»
relationships and how the «refine» relationship is the one
applicable to represent the refinement of use cases; Section 5
clarifies the process of modeling use cases when refinement
is involved and gives some guidelines in order to conduct
that process; Section 6 illustrates our approach to use case
modeling with support for refinement with the GoPhone case
study; and finally Section 7 provides for some concluding
remarks.

II. RELATED WORK

Refinement has been treated over the years. Paech and
Rumpe provide in [3] for a formal approach to incrementally
design types through refinement. Types represent the static
part of a system captured through software models, and
consist of attributes and operations. Our approach is not
formal and relates to the refinement of external
functionalities of software systems, which shall be taken into
account before the static part of those systems. Quartel, et al.
propose in [4] an approach for action refinement consisting
of replacing an abstract action with a concrete activity
(composition of actions) based on the application of rules to
determine the conformance of the concrete activity to the
abstract action. Again our approach relates to a perspective
that shall be taken into account before behavior. Darimont
and van Lamsweerde talk in [5] about goal refinement. In
their approach the refinement process is guided by
refinement patterns used for pointing out missing elements in
refinements. This time our approach to refinement relates to
a perspective that shall be taken into account after goals.
Schrefl and Stumptner face in [6] refinement as the
decomposition of states and activites into substates and
subactivities though inheritance. Our approach to refinement

2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4170-9/10 $26.00 © 2010 IEEE

DOI 10.1109/SEAA.2010.65

156

considers that refinement shall not be tretaed through
generalization as it will be stated further on in this paper.
Mikolajczak and Wang present in [7] an approach to vertical
conceptual modeling of concurrent systems through stepwise
refinement using Petri net morphisms. Our approach to
refinement is not formal. Batory created a model (the
AHEAD model [8]) for expressing the refinement of system
representations as equations. Despite his approach being
based on stepwise refinement he worked at a code-oriented
level. The work we are presenting in this paper allows
refining (also in a stepwise manner) software models that
shall be handled before code is handled during the software
construction phase.

Cherfi, et al. [9] (in their work on quality-based use case
modeling with refinement) describe the refinement process
as the application of a set of decomposition and restructuring
rules to the initial use case diagram. Their approach is
iterative and incremental. It consists of decomposing the
initial use case diagram into smaller and more cohesive ones
to decrease the complexity of the diagram and increase its
cohesion. In their approach a use case is a set of activities
that varies according to scenarios, which are flows of actions
belonging to those activities. In the first phase of the
refinement process a use case is decomposed into other use
cases according to one or more scenarios. The second phase
of the refinement process is about eliminating the redundant
activities that compose the use cases obtained from the first
phase, which generates «include» relationships. Their
approach allows defining the «include» relationships based
on the commonality among the system’s activities performed
for different scenarios. Our approach considers that the
«include» relationship is defined based on the non-stepwise
textual descriptions of the use cases and that stepwise
descriptions (like those considered by Cherfi, et al.) shall be
treated separately (stepwise textual descriptions are
structured textual descriptions in natural language that
provide for a stepwise view of the use case as a sequence of
steps, alert for the decisions that have to be made by the user
and evidence the notion of use case actions temporarily
dependent on each other; Cockburn presents in [10] different
forms of writing textual descriptions for use cases). Also in
the approach of Cherfi, et al. to refinement, use cases are not
actually detailed (like in ours), rather they are decomposed
without detail being added to the description of those use
cases.

Pons and Kutsche [11] present the refinement activity as
a way to trace code back to system requirements and system
requirements back to business goals, which allows verifying
whether the code meets the business goals and the system
requirements as expected in the specification of the system.
Although these authors do not formally extend the UML
metamodel to incorporate a new kind of relationship between
use cases, they use this new kind of relationship between
diagrams. But Pons and Kutsche use the relationship to
connect two use cases belonging to two different diagrams,
whereas our vision is that the refinement relationship shall be
established between one use case (a diagram) and two or
more use cases (another diagram) to distinguish the different
levels of abstraction both diagrams are situated at. Despite

that Pons and Kutsche distinguish between refinement by
decomposition and refinement by specialization, they
achieve refinement by specialization through a generalization
relationship between use cases that belong to the same
diagram. Our position towards refinement is that the
refinement relationship may be defined by decomposition but
it is established between different diagrams as the use cases
connected through the refinement relationship are situated at
different levels of abstraction. Besides this we consider that
generalization is different from refinement, which implies
that refinement cannot be represented through a
generalization relationship (e.g. the use case Borrow Book
can be specialized into Borrow Book to Student and Borrow
Book to Teacher; the use case Borrow Book can be refined
into Request Book Borrowing and Return Borrowed Book;
despite the request and the return happening in different
points in time, both are needed in order to fulfill a book
borrowing, which means that a book cannot be borrowed
without requesting it and without returning it).

Fowler made the following advice in his book “UML
Distilled” [12]: “don’t try to break down use cases into sub-
use cases and subsub-use cases using functional
decomposition. Such decomposition is a good way to waste a
lot of time”. We cannot agree with Fowler’s opinion at a
certain extent. The pertinence of functional decomposition
lies on the scale of the software system under development.
The development of large software systems benefits from
decomposing the functionality of those systems to a level
that allows delivering less complex modeling artifacts to the
teams implementing the software system. All the more large
software systems are frequently built from a series of
components developed by different teams. A single team is
not expected to develop the whole system, therefore it shall
not be delivered the modeling artifacts concerning the whole
system in order to guide the conception of the component
that is required to be developed by that team [13]. Fowler
made another suggestion in his book: “The UML includes
other relationships between use cases beyond the simple
includes, such as «extend». I strongly suggest that you ignore
them. I’ve seen too many situations in which teams can get
terribly hung up on when to use different use case
relationships, and such energy is wasted. Instead, concentrate
on the textual description of a use case; that’s where the real
value of the technique lies”. We completely agree with
Fowler when he says that the value of use case modeling lies
on the textual descriptions of use cases. The approach to use
case refinement we are presenting in this paper is based on
those descriptions. But we cannot agree when Fowler says
that the relationships besides the «include» relationship shall
be ignored when modeling use cases. The relationship we are
proposing in this paper (the «refine» relationship) cannot be
ignored. It is needed in order to formalize at an early stage
(the use case modeling) where functional decomposition
shall happen in order to decrease the complexity of the
modeling artifacts delivered to the different development
teams.

157

Figure 1. Refinement by decomposition according to criterion A and by decomposition according to criterion B.

III. USE CASE MODELING FROM THE PERSPECTIVE OF
DETAIL

Detail in the context of this approach is intimately related
to the activity of use case refinement. In this sense use cases
can be more detailed if they are refined. By refining use
cases the artifacts resulting from the refinement process (the
refining use cases) are situated in lower abstraction levels
comparatively to the refined use cases (the use cases that
were submitted to the refinement process). In order to
represent in the use case diagram this decrease in the
abstraction level when refining use cases the «refine»
relationship is used. The refinement process of use cases can
be represented by a tree-like form that in terms of detail
presents use cases hierarchically, being the more abstract
ones at the top and the more concrete ones at the bottom.

Although use case diagrams are part of the UML (which
follows the object-oriented paradigm) there is no restriction
for the applicability of our approach to the development of
software according to other software development paradigms
(e.g. the functional paradigm). For instance, data-flow
diagrams can also be refined [14].

IV. THE «INCLUDE» AND THE «REFINE» RELATIONSHIPS

The «include» relationship involves two types of use
cases: the including use case (the use case that includes other
use cases) and the included use case (the use case that is
included by other use cases). In the context of the «include»
relationship the UML Superstructure states that the including
use case depends on the addition of the included use cases to
be complete. Nevertheless in our opinion the functionality of
the included use cases shall be described in the including use
case. Since we rely on non-stepwise textual descriptions of

use cases to determine the «include» relationships, the
including use case has to contain the description of the
included use cases so that the modeler is able to define the
parts that compose the including use case (to decompose that
use case). The included use case represents functionality
common to various (including) use cases. But the «include»
relationship may be used to partition the including use case
into two or more use cases at the same level of abstraction
instead of being used to evidence functionality common to
various use cases. In that case the «include» relationship is
used to decompose the including use case without detailing
it, so the sum of the functionality represented by the non-
stepwise textual descriptions of the included use cases shall
be equal to the functionality represented by the non-stepwise
textual description of the including use case (excluding glue
logic), which implies having two or more included use cases
for a single including use case.

Refinement can be defined by decomposition according
to criterion A or by decomposition according to criterion B.
Refining a use case by decomposition according to criterion
A produces lower-abstraction-level use cases by detailing the
use case and splitting it according to the parts that compose
the object of that use case. In the example shown in Figure 1
the object (chair) is the whole and the objects top, back and
legs are the parts of that whole, therefore refining the use
case build chair equaled splitting it into the use cases build
top, build back and build legs. Refining a use case by
decomposition according to criterion B equals splitting the
use case into activities, which also results in lower-
abstraction-level use cases by detailing the use case and
splitting it according to the activities that compose the use
case being split. Figure 1 illustrates the refinement of the use
case build chair by decomposition according to criterion B

158

by splitting it into the use cases saw chair, glue chair, preach
chair, polish chair, varnish chair and cushion chair as the
activity of building includes the activities of sawing, gluing,
preaching, polishing, varnishing and cushioning. Although
the use case under refinement is split into two or more use
cases, resembling the decomposition of use cases through the
«include» relationship (or even the
(dis)aggregation/(de)composition of use cases; the
generalization of use cases can also resemble refinement),
the abstraction level decreases as the use cases that refine the
use case under refinement are more detailed than it is. This is
the distinction between the «include» relationship (and also
the aggregation/composition association and the
generalization relationship) and the refinement relationship
(«refine») that we will present ahead in this section of the
paper. The «refine» relationship implies that the result of
executing the more detailed use cases together shall be equal
to the result of executing the less detailed use case.

In the context of classes some stereotypes (which are part
of the standard UML stereotypes [2]) deal with refinement.
The stereotype «refine» (which is applicable to the
Abstraction dependency) represents a unidirectional or
bidirectional relationship between diagram elements at
different levels of abstraction (e.g. analysis and design
levels). The Abstraction dependency represents a
relationship that relates two elements representing the same
concept at different levels of abstraction or from different
viewpoints. It also represents a dependency in which there is
a mapping between the supplier and the client. A class at the
analysis level may map to more than one class at the design
level, which means that we can have a set of client elements
for a single supplier element. We do not recommend using
the Abstraction dependency to represent refinement of use
cases because it can be bidirectional (and refinement is
unidirectional).

In the UML Superstucture [2] (in the context of use
cases, particularly in the description of the semantics) the
«include» relationship is stated to be used for the purpose of
extracting the common part of the functionality of two or
more use cases to a separate use case to be included (or
reused) by those two or more use cases. It may be the case
that we want to replace (in a lower abstraction level) a use
case by two or more detailed use cases. Figure 1 depicts such
situation (1a is less detailed than 1b1 and than 1b2). In this
case we will end up with two use case diagrams, the later
more detailed than the previous one. For this argument we
consider that the use of the system represented by the use
case in Figure 1a represents the uses of the system that the
use cases in Figure 1b1 and that those in Figure 1b2
represent as well. The difference is that the use case in
Figure 1a is less detailed than the use cases in Figure 1b1
together and the use cases in Figure 1b2 together as well. We
do not recommend using the «include» relationship to
represent the lowering of use cases’ abstraction level since it
is not according to its semantics in the UML metamodel.

We propose an extension to the UML metamodel to
make available a UML relationship to be used in the context
of use cases for representing their refinement. Figure 2
illustrates a new UML metaclass (the Refine metaclass) we

have created to satisfy the need for extension of the UML
metamodel we have identified. As far as the unidirectional
association is concerned, the end named detail references the
more detailed use case (the refining use case) and the
association means that one or more Refine relationships refer
to one (more detailed) use case. Regarding the aggregation,
the end named refine references the Refine relationships
owned by the use case and the end named refinedCase
references the use case that has been detailed (the refined use
case) and owns the Refine relationship. The metamodel tells
us that two or more Refine relationships are owned by one
(refined) use case, and one (refined) use case may be detailed
and own two or more Refine relationships. Summarily a
refined use case shall be refined by more than one refining
use case and a refining use case shall refine one or more
refined use cases (more than one refined use case if the
refined use cases are connected through «include»
relationships; see Figure 3 for an OCL [15] constraint on
this). We wrote an OCL constraint (in Figure 4) for
expressing the impossibility of having two use cases
connected by both an «include» relationship and a «refine»
relationship since the first does not imply increasing the
detail level and the second does.

Figure 2. The proposed extension to the UML metamodel for representing
the refinement of use cases.

159

context UseCase inv:
let refines : Set(Refine) = self.incomingRefine in
 if refines->size() >= 2
 then let includes : Integer = refines->iterate(nextElement : Refine; accumulator : Integer = 0 |

accumulator->nextElement.refinedCase.include->size()) in
 refines->size() – 1 = includes
 endif

Figure 3. The multiple refines constraint.

context UseCase inv:
if UseCase.include->size() >= 1

 and UseCase.refine->size() >= 1
then UseCase.include->excludesAll(UseCase.refine)
endif

Figure 4. The coexistence constraint.

Figure 1 exemplifies the notation of the «refine»
relationship. It is evident by the figure that two use cases
connected through a «refine» relationship are situated at
different levels of abstraction. For instance the use cases
build top, build back and build legs (situated at the detail
level 1) are more detailed than the use case build chair
(situated at the detail level 0). A «refine» relationship is
represented the same way the «include» relationship is and
from the less detailed use case to the more detailed use case
in order to evidence the lowering of the abstraction level.
The only difference is that the arrow is labeled with the
keyword «refine».

V. THE REFINEMENT PROCESS

Figure 5 illustrates how the modeler shall go from the
initial use case diagram (5a) to the detailed use case
diagrams (5c and 5d). It is possible to consider more than
three detail levels despite we are exemplifying with three of
them. The initial use case diagram (the more abstract one or
less detailed one) must be analyzed independently for each
of its use cases for simplicity reasons. Figure 5b shows how
the partial use case diagram is elaborated from the use case 1
of the use case diagram in Figure 5a. Two «include»
relationships have been defined for that use case, which
resulted in the use cases 4 and 5. The use cases 6 and 7 are a
refinement of the use case 5. That is why the use case 5 is
connected to the use cases 6 and 7 through a «refine»
relationship. The use case 4 may be refined by use cases
situated at the same level of abstraction as those in the use
case diagram in Figure 5c but in a distinct diagram (we have
not exemplified that case due to space restrictions). The
«refine» relationship is established between elements from
two use case diagrams at different levels of detail (the partial
use case diagram, the more abstract one, and the 5c use case
diagram, the more detailed one). At this point it can be
concluded that the «refine» relationship implies lowering the
abstraction level (or increasing the detail level) as well as
when the abstraction level decreases a new use case diagram
has to be conceived. The refinement of the use case 7 (which
gave origin to the use case diagram in Figure 5d) is used to
show that not only included use cases or use cases that do not
own any «include» relationship can be refined as
exemplified in Figure 5. Including use cases can also be
refined. We haven’t exemplified that case in the figure due to

space restrictions. When refining an including use case the
included use cases are likely to be refined as well since their
functionality is represented by the including use case as we
have already explained in this paper. Figure 5 is also to
depict the impossibility of having two use cases connected
by both an «include» relationship and a «refine» relationship.

Figure 6 depicts two possible cases for the refinement of
both an including use case and an included use case
connected through an «include» relationship. The most
adequate modeling is the one in Figure 6a where the use case
3 refines two use cases (1 and 2) and is not repeated as it is
in Figure 6b. That is possible because the refined use cases
are connected through an «include» relationship, which
implies that a complete use case is repeated in two use case
diagrams at the same level of abstraction (the use case
diagram that refines the including use case and the use case
diagram that refines the included use case).

VI. THE REFINEMENT IN THE GOPHONE CASE STUDY

The non-stepwise textual descriptions in figures 7
through 12 were elaborated based on the functional
requirements from the GoPhone. As previously stated in this
paper the «include» relationships are defined based on the
non-stepwise textual descriptions of use cases. Figure 13
shows the graphical representation of the use cases textually
described in figures 7 through 12. We can see that the textual
descriptions of the included use cases are contained by the
textual descriptions of the including use cases (e.g. the
textual description of the Compose Message use case is
contained by the textual description of the Send Message use
case and the non-detailed textual description of the Insert
Object use case is contained by the textual description of the
Compose Message use case). This is an evidence of how
«include» relationships imply decomposition but no detailing
(of the including use cases’ textual descriptions). The
«refine» relationships imply that the textual descriptions of
the refining use cases are more detailed than the textual
descriptions of the refined use cases and also that for a single
refined use case we have more than one refining use case
(which means that «refine» relationships imply
decomposition besides detailing). For instance the textual
description of the Browse Directory use case is contained by
the detailed textual description of the Insert Object use case

160

Figure 5. The refinement process.

Figure 6. Possibilities for the refinement of both an including use case and an included use case.

(note that this detailed textual description is not the
description corresponding to the Insert Object use case in the
use case diagram, rather the non-detailed textual description
of the Insert Object use case is; the more detailed textual
description was only used as an intermediary/auxiliary
means to get to the descriptions of the refining use cases
Browse Directory and Display Object in Message Area).
This is an evidence that the use cases at the detail level 1 in

the figure are more detailed than the use cases at the detail
level 0 in the figure.

The sum of the functionality represented by the non-
stepwise textual descriptions of the included use cases shall
be equal to the functionality represented by the non-stepwise
textual description of the including use case. In the use case
diagram at the detail level 0 in Figure 13 although the sum of
the functionality represented by the non-stepwise

161

���������	
���������	
��������������������
���������
���������������������������������	�
������������������������
����
���� ��� ��!���� ����� ������������ ������	
��� ���� ������"�
��� �
������������ ���"���� ��� ����� ������	
��� ����
"�
��� ����������
�� �� ����� ��
�����#����"�
�
��� ���������� ������	
��� ���� ��$� ���
%���� ������� ���	
���
��� &�'(�� ����
��	
�����������
������)����
�������������
���������*���������������������	
�������������������)����������������
�
����	�
����������������������
�����*���������������	
��������������������

���+���������� ��������	����������
��
�������� ���
�����������
������������& ��������	���
������������������������
��������
��������������������
�(������
��������������������������"����������������������,�����������������������������"���������"�������������������	
���
����&���
������������������"����������$����(�
������������
%����������"����������������������"�����������	
�������
��$�����������%������������
��������������������������

Figure 7. Non-stepwise textual description of the use case Send Message.

�����������	
���������	
��������������������
���������
���������������������������������	�
��������������������
��������
���� �����!���������������������������	
�������������"�
����
���������������"������������������	
�������
"�
��� ����������
�� �� ����� ��
�����#����"�
�
��� ���������� ������	
��� ���� ��$� ���
%���� ������� ���	
���
��� &�'(�� ����
��	
�����������
������)����
�������������
���������*���������������������	
�������������������)����������������
�
����	�
����������������������
�����*���������������	
��������������������

���+���������� ��������	����������
��
�������� ���
�����������
������������& ��������	���
������������������������
��������
��������������������
�(��

Figure 8. Non-stepwise textual description of the use case Compose Message.

���������������������	
�����������
������)����
�������������
���������*��������� ������������	
���������$� ����
%��
���
�
���
����������%
����
������%��
���
���������%��������)�������	��
�������
���������������

Figure 9. Non-detailed non-stepwise textual description of the use case Insert Object.

���������������������	
������������������)������������� �
���$�����)����&�%�������$�"
���������(��"�
����������	��"���
� ��������
�����������)��������������� �
���$� ���$������
 ��$������ ������	
�������
�� ����������������������������
��
�����������	
���������$�����
%�����
�
���
����������%
����
������%��
���
���������%��������)�������	��
�������
��������
�����������%
����
���������������� ��%���������
 ��$��������
�%��
���)�������������	
��������

Figure 10. Detailed non-stepwise textual description of the use case Insert Object.

�������������������������	
������������������)������������� �
���$�����)����&�%�������$�"
���������(��"�
����������
	��"���

Figure 11. Non-stepwise textual description of the use case Browse Directory.

�����	��������� �������	
�����	��� ��������
�����������)��������������� �
���$����$������
 ��$������������	
�������
��
������������������������������
�����������	
���������$�����
%�����
�
���
����������%
����
������%��
���
���������%�������
�)�������	��
�������
�������������������%
����
���������������� ��%���������
 ��$��������
�%��
���)�������������	
���
�����

Figure 12. Non-stepwise textual description of the use case Display Object in Message Area.

textual descriptions of the use cases included by the Send
Message use case is equal to the functionality represented by
the non-stepwise textual description of the Send Message use
case, the actor Mobile User was not associated with the Send
Message use case but it could have been. We did not do that
because we wanted to explicitly evidence the actor of each
one of the included use cases in particular since there are two
actors involved in the Send Message use case (the Mobile
User and the Network). That is not what happens with the
Compose Message use case as there is only one actor
involved in the use case.

Regarding the use case diagram at the detail level 1 in
Figure 13 we can see that the refining use cases in there are
associated with an actor, which means that refining use cases
have to be utilizations of the system by themselves (all use
cases shall have an association with the exterior of the
system they belong to whether they are including, included,
refined or refining use cases, otherwise we wouldn’t be
talking about use cases).

VII. CONCLUSIONS

In this paper we have elaborated on how the UML does
not support refinement of use cases at the moment and how it
can be extended in order to support that formally. As a result
we have proposed to extend the UML metamodel with a new
kind of relationship in the context of use cases (the «refine»
relationship). The support of use case refinement is pertinent
in large software systems development in order to deliver
less complex modeling artifacts to the teams implementing
those systems. Use cases shall be delivered to the different
teams with responsibility for further designing and
implementing the different sets of functionalities (a single
team is not expected to develop the whole system).
According to what was clarified in this paper the «include»
relationship is not appropriate to model the refinement of use
cases since the refinement activity implies lowering the
abstraction level of use cases (particularly of their non-
stepwise textual descriptions). Despite this the «include»
relationship shall not be discarded and shall live along with
the «refine» relationship as this paper elucidated. With this

162

Figure 13. The use case model of the Send Message functionality from the GoPhone.

paper our approach to use case modeling with support for
refinement began to be exposed. Future work is to introduce
other perspectives into the study: functional completeness
and variability. We will expand this work on use case
modeling to the field of software product lines by means of
exploring the «extend» relationship.

REFERENCES

[1] D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, and K.
Schmid, "GoPhone - A Software Product Line in the Mobile Phone
Domain," Fraunhofer IESE, IESE-Report No. 025.04/E March 5
2004.

[2] OMG, "Unified Modeling Language: Superstructure - version 2.2,"
Object Management Group, 2009, pp. 740.

[3] B. Paech and B. Rumpe, "A New Concept of Refinement used for
Behaviour Modelling with Automata," in 2nd International
Symposium of Formal Methods Europe (FME 1994). Barcelona,
Spain: Springer-Verlag, 1994.

[4] D. A. C. Quartel, L. F. Pires, H. M. Franken, and C. A. Vissers, "An
Engineering Approach towards Action Refinement," in 5th IEEE
Workshop on Future Trends of Distributed Computing Systems
(FTDCS 1995). Chenju, Korea: IEEE Computer Society, 1995.

[5] R. Darimont and A. v. Lamsweerde, "Formal Refinement Patterns for
Goal-Driven Requirements Elaboration," in 4th Symposium on the
Foundations of Software Engineering (FSE-4). San Francisco,
California, USA: ACM, 1996.

[6] M. Schrefl and M. Stumptner, "Behavior Consistent Refinement of
Object Life Cycles," in 16th International Conference on Conceptual
Modeling (ER 1997). Los Angeles, California, USA: Springer-Verlag,
1997.

[7] B. Mikolajczak and Z. Wang, "Conceptual Modeling of Concurrent
Systems through Stepwise Abstraction and Refinement Using Petri
Net Morphisms," in 22nd International Conference on Conceptual
Modeling (ER 2003). Chicago, Illinois, USA: Springer-Verlag, 2003.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer, "Scaling Step-Wise
Refinement," IEEE Transactions on Software Engineering, vol. 30,
pp. 355-371, 2004.

[9] S. S.-s. Cherfi, J. Akoka, and I. Comyn-Wattiau, "Use Case Modeling
and Refinement: A Quality-Based Approach," in 25th International
Conference on Conceptual Modeling (ER 2006). Tucson, Arizona,
USA: Springer-Verlag, 2006.

[10] A. Cockburn, Writing Effective Use Cases. Upper Saddle River, New
Jersey: Addison-Wesley, 2000.

[11] C. Pons and R.-D. Kutsche, "Traceability Across Refinement Steps in
UML Modeling," in 3rd UML Workshop in Software Model
Engineering (WiSME 2004). Lisbon, Portugal: Springer-Verlag, 2004.

[12] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Upper Saddle River, New Jersey: Addison-
Wesley, 2004.

[13] R. J. Machado, J. M. Fernandes, P. Monteiro, and H. Rodrigues,
"Refinement of Software Architectures by Recursive Model
Transformations," in 7th International Conference on Product
Focused Software Process Improvement (PROFES 2006).
Amsterdam, The Netherlands: Springer-Verlag, 2006.

[14] J. M. Fernandes, J. Lilius, and D. Truscan, "Integration of DFDs into
a UML-Based Model-Driven Engineering Approach," Software and
Systems Modeling, vol. 5, pp. 403-428, 2006.

[15] OMG, "Object Constraint Language: Specification - version 2.2,"
Object Management Group, 2010, pp. 238.

163

