
Model-Driven Domain
Analysis and Software
Development:
Architectures and Functions

Janis Osis
Riga Technical University, Latvia

Erika Asnina
Riga Technical University, Latvia

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Lindsay Johnston
Development Editor: Joel Gamon
Typesetter: Keith Glazewski
Production Editor: Jamie Snavely
Cover Design: Lisa Tosheff

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Model-driven domain analysis and software development : architectures and
functions / Janis Osis and Erika Asnina, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book displays how to effectively map and respond to the real-
world challenges and purposes which software must solve, covering domains such
as mechatronic, embedded and high risk systems, where failure could cost human
lives"--Provided by publisher.
 ISBN 978-1-61692-874-2 (hardcover) -- ISBN 978-1-61692-876-6 (ebook) 1.
Automatic control. 2. Computer simulation. 3. Computer software--
Development. I. Osis, Janis, 1929- II. Asnina, Erika, 1978-
 TJ213.M5373 2010
 005.1--dc22
 2010043567

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

304

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch014

Chapter 14

Systematic Use of Software
Development Patterns

through a Multilevel and
Multistage Classification

Sofia Azevedo
Universidade do Minho, Portugal

Ricardo J. Machado
Universidade do Minho, Portugal

Alexandre Bragança
Instituto Superior de Engenharia do Porto, Portugal

Hugo Ribeiro
Primavera Business Software Solutions, Portugal

ABstrAct

Software patterns are reusable solutions to problems that occur often throughout the software development
process. This chapter formally states which sort of software patterns shall be used in which particular
moment of the software development process and in the context of which Software Engineering profes-
sionals, technologies and methodologies. The way to do that is to classify those patterns according to
the proposed multilevel and multistage pattern classification based on the software development process.
The classification is based on the OMG modeling infrastructure or Four-Layer Architecture and also on
the RUP (Rational Unified Process). It considers that patterns can be represented at different levels of
the OMG modeling infrastructure and that representing patterns as metamodels is a way of turning the
decisions on their application more objective. Classifying patterns according to the proposed pattern
classification allows for the preservation of the original advantages of those patterns and avoids that
the patterns from a specific category are handled by the inadequate professionals, technologies and
methodologies. The chapter illustrates the proposed approach with the classification of some patterns.

305

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

introduction

In the context of software development, patterns
are provided as reusable solutions to recurrent
problems. In other words, software patterns are
reusable solutions to problems that occur often
throughout the software development process.
Pattern classifications emerged as a way to orga-
nize the many patterns that have been synthesized.
Pattern classification is the activity of organiz-
ing patterns into groups of patterns that share a
common set of characteristics. The simple fact of
organizing patterns into classifications is a way
of building a stronger knowledge on patterns,
which allows understanding their purpose, the
relations between them and the best moments
for their adoption (Gamma, Helm, Johnson, &
Vlissides, 1995).

Despite their use within the software devel-
opment process, the use of patterns may not be
systematic. In the context of this chapter, the
systematic use of software development pat-
terns means that decisions on the application of
patterns are less subjective and more objective.
Besides that, a lot of pattern classifications were
conceived until the present day, yet none of them
formally stated which sort of patterns shall be
used in which particular moment of the software
development process. This chapter will provide
for specific directives on how to systematically
adopt patterns within a multilevel and multistage
software development process. A multilevel and
multistage classification of patterns will be the
foundation of such systematic use of patterns.

A multistage software development process
can be defined as a software development process
composed of some stages organized in a consecu-
tive temporal order. Each stage is separated from
the contiguous ones by well defined borders.
Moreover each particular stage is composed of
a flow of well defined activities. Each stage’s
activities are conducted by specific profession-
als, using specific technologies (frameworks,
languages, tools), under the directives of specific

methodologies (processes, notations and methods)
to achieve specific goals. Borders are well defined
if the shift in the professionals, technologies,
methodologies and goals that takes place when
moving from one stage to another is identified in
terms of the development process. A multilevel
software development process can be defined as
a software development process concerned with
the levels of abstraction in which the different
artifacts involved in the development of software
are handled. In the context of this chapter, those
levels are the levels of the OMG (OMG, 2009a)
modeling infrastructure or Four-Layer Architec-
ture (Atkinson & Kühne, 2003), depicted in Figure
1. The OMG modeling infrastructure comprises
a hierarchy of model levels just in compliance
with the foundations of MDD (Model-Driven
Development) (Atkinson & Kühne, 2003). Each
model in the Four-Layer Architecture (except for
the one at the highest level) is an instance of the
one at the higher level. The first level (user data)
refers to the data manipulated by software. Models
of user data are called user concepts models and
are one level above the user data level. Models
of user concepts models are language concepts
models. These are models of models and so are
called metamodels. A metamodel is a model of
a modeling language. It is also a model whose

Figure 1. The OMG modeling infrastructure or
Four-Layer Architecture

306

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

elements are types in another model. An example
of a metamodel is the UML (Unified Modeling
Language) metamodel (OMG, 2009b). It describes
the structure of the different models that are part
of it, the elements that are part of those models
and their respective properties. The language
concepts metamodels are at the highest level of
the modeling infrastructure. The objects at the
user concepts level are the model elements that
represent objects residing at the user data level.
At the user data level, data objects may be the
representation of real-world items.

Patterns are provided by pattern catalogues
such as (Adams, Koushik, Vasudeva, & Galambos,
2001; Beck, 2008; Buschmann, Meunier, Rohnert,
Sornmerlad, & Stal, 1996; Eriksson & Penker,
2000; Fowler, 1997, 2003b; Gamma, Helm, John-
son, & Vlissides, 1995; Larman, 2001; Pree, 1995).
Pattern languages are more than pattern catalogues
(collections of patterns). A pattern language is
composed of patterns for a particular (small and
well-known) domain. Those patterns must cover
the development of software systems down to
their implementation. A pattern language must
also determine the relationships between the pat-
terns the language is composed of. The language’s
patterns are its vocabulary, and the rules for their
implementation and combination are its grammar
(Buschmann, Meunier, Rohnert, Sornmerlad, &
Stal, 1996).

The adoption of a pattern (pattern adoption)
is composed by the set of activities that consist
of using the pattern somehow when producing
software artifacts. Namely those activities are:
(1) pattern interpretation; (2) pattern adaptation;
and (3) pattern application. Patterns have to be
interpreted in order to be applied. For the reason
that usually patterns are not documented by those
who apply them, they have to be interpreted prior
to their application. The interpretation of a pat-
tern is the activity that consists of reading the
pattern from the pattern catalogue and reasoning
about the solution the pattern is proposing for
that problem in that given context. Following

the interpretation activity, the adoption process
may require the patterns to be adapted somehow
(Beck, 2008; Fowler, 2003a). The adaptation of
a pattern is the activity of modifying the pattern
from the catalogue without corrupting it (corrupt-
ing the pattern includes corrupting the pattern’s
semantics and the pattern’s abstract syntax).
Finally the application of a pattern is its actual
use in the development of software, whether to
develop software products or families of software
products, or to inspire the conception of design
artifacts since some patterns are not identifiable
in the source code as they are not meant to give
origin to code directly (Soukup, 1995).

Habitually pattern catalogues represent pat-
terns at the M1-level of the OMG modeling infra-
structure or Four-Layer Architecture. We consider
that leveraging patterns to the M2-level is a way
of turning the decisions on their application more
objective as well as of reducing the misinterpreta-
tion of patterns from catalogues and the corruption
of patterns during the pattern adaptation process.
Misinterpretation and corruption of patterns can
lead to the irremediable loss of the advantages of
adopting those patterns. Considering the OMG
modeling infrastructure as a multilevel architec-
ture, multilevel instantiation (or the instantiation
of M2-level patterns at the M1-level) shall occur
during the adoption of patterns.

This chapter is an original contribution to the
improvement of the software products’ quality
given that it provides for some directives on how
to adopt software patterns in such a way that the
original advantages of the adopted pattern are
preserved. The originality of the contribution
is due to the novelty character of the pattern
classification, which relies on the fact that it is
based on the software development process. The
classification we propose represents a benefit in
terms of the process of developing software as it
allows knowing (by classifying the patterns ac-
cording to it) in which moment of the software
development process to use the patterns and in
the context of which Software Engineering pro-

307

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

fessionals, technologies and methodologies. This
chapter contributes for MDD since it addresses the
OMG modeling infrastructure through the multi-
level character of the proposed classification. The
classification considers that patterns can be rep-
resented at different levels of the OMG modeling
infrastructure, which influences their interpreta-
tion. The usefulness of a multilevel and multistage
pattern classification resides in avoiding that the
patterns from a specific category are handled by
the inadequate professionals, technologies and
methodologies. By classifying the patterns (in this
case the software development patterns) we assure
that the professionals with the right skills (who
use the technologies and methodologies adequate
to their profile) use the right pattern categories.
For instance it would be inadequate for a product
manager to use a pattern from the Gang of Four
(GoF) book (Gamma, Helm, Johnson, & Vlissides,
1995). That would not produce the desired effects
of using such kind of pattern.

This chapter is structured as follows: Section 2
affords a state-of-the-art that suits the purpose of
substantiating the strength of our approach; Sec-
tion 3 aims at clarifying the relation of patterns,
pattern classifications and the proposed pattern
classification with the theme of the book; Section
4 is devoted to exhibiting the proposed pattern
classification in abstract terms before formalizing
categories and positioning patterns at those cat-
egories; Section 5 is targeted at demonstrating the
feasibility of the solution we are going to propose
to the systematic use of software development
patterns by using some concrete examples of
patterns positioned at distinct categories of our
classification to illustrate the different types of
patterns we have formalized; finally Section 6
exposes some concluding remarks.

BAckground

Typically patterns are adopted at later phases of
the software development process. The analysis

and design phases of software development are
disregarded. Most of the times analysis and design
decisions are not documented and that originates
missing knowledge on how the transition from
previous stages to the implementation stage was
performed. Knowing design decisions without
design documentation as a helper of this activity is
only possible if those decisions can be transmitted
by the people who know them. When talking about
patterns, design decisions have to be perfectly
known so that an activity of pattern discovery
can be applied to a software solution with the
purpose of discovering the original pattern (the
pattern in the catalogue) from the implementation.
If the original pattern is successfully reengineered
from the implementation, then it means that most
likely the advantages of the original pattern are
present in that software solution. It is pertinent
to understand how patterns from catalogues,
after being interpreted, adapted and applied, can
be constrained in such a way that the advantages
enclosed in the solution each of those patterns
proposes cannot be observed. Buschmann, et al.
(Buschmann, Henney, & Schmidt, 2007b) referred
that patterns may be implemented in many dif-
ferent ways; still patterns are not vague in the
solution structure they propose. The diversity in
the instantiations of a pattern is due to the speci-
ficity of the concrete problems being addressed.
What must be assured is the “spirit of the pattern’s
message” as Buschmann, et al. called it. In the
development of software it must be assured that
not only the advantages of the original pattern are
visible (directly or indirectly) in the software solu-
tion but also that patterns are adopted throughout
all the process phases since patterns address all of
them as we will be seeing in the next section of
this chapter. Besides these two considerations it
must be noted that the development of software is
not performed exclusively based on patterns but it
is a microprocess or nanoprocess when compared
to the whole software development process as
Buschmann, et al. stated.

308

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

Pattern classifications are useful for under-
standing pattern catalogues better and providing
input for the discovery of new patterns that fit into
the already existing pattern categories (Gamma,
Helm, Johnson, & Vlissides, 1995). Patterns are
classified into categories according to different
classification criteria and are organized in pattern
catalogues according to classification schemas that
support the different classification criteria each
particular schema contemplates. Classification
schemas can be unidimensional or multidimen-
sional depending on whether they obey to a single
or more than one criterion. Throughout this chapter
(due to simplification purposes) we are going to
use the term pattern classification instead of the
complete term pattern classification schema.

The pattern classifications of (Beck, 2008;
Eriksson & Penker, 2000; Gamma, Helm, John-
son, & Vlissides, 1995; Pree, 1995; Tichy, 1997;
Zimmer, 1995) have not been explicitly defined
within a procedural referential, thus we are not
able to know beforehand which software pattern
shall be used at what moment during the process
of developing software in general as well as in the
context of which Software Engineering profes-
sionals, technologies and methodologies. These
procedural concerns include also the adoption of
a modeling infrastructure to prevent subjective
pattern application decisions, and situations of
misinterpretation and corruption of patterns from
catalogues while interpreting and adapting the
patterns respectively. At last the classifications
we are going to present next have not elaborated
on the nature of the domain to which patterns
are most adequately applicable. Considering that
nowadays families of software products are com-
monly developed with domain-specific artifacts,
taking the adequacy of patterns to particular
domain natures into account is relevant in order
to choose between the patterns that are most ap-
plicable to a domain-specific software product or
family of products.

The first pattern classification we mention
is from the GoF (Gamma, Helm, Johnson, &

Vlissides, 1995). They classified design patterns
according to two criteria: purpose and scope. The
purpose of a pattern states that pattern’s func-
tion. According to the purpose, patterns can be
creational, structural or behavioral. Creational
patterns are concerned with the creation of objects.
Structural patterns are targeted at the composition
of classes or objects. Behavioral patterns have to
do with the interaction between classes or objects
and their responsibility’s distribution. The scope of
a pattern is its applicability either to classes or to
objects. Class patterns are related to the relation-
ships between classes. Object patterns are related
to the relationships between objects. Despite the
GoF’s classification considering more than one
criterion, it is not multidimensional as the criteria
have not been combined to determine pattern cat-
egories. The GoF’s classification is concerned with
the function of the pattern (what the pattern does)
and its applicability to low level implementation
elements (how the pattern will be handled in the
software construction moment). The classification
does not refer to explicit procedural questions
on the development of software with the use of
patterns (when patterns shall be used, by whom,
with what technologies and methodologies, and at
which levels of abstraction) or to questions with
the applicability of patterns to specific domain
natures. The same is true for the classification
we are going to mention next.

A classification of patterns according to their
relationships was proposed by Zimmer (Zim-
mer, 1995). Zimmer classified the relationships
into three categories: X uses Y in its solution
(the solution of X contains the solution of Y), X
is similar to Y (both patterns address a similar
type of problem) and X can be combined with Y
(both patterns can be combined, in spite of the
solution of X not containing the solution of Y).
This classification may give hints on the selec-
tion and composition of patterns, nevertheless it
does not provide for directives on the nature of
the domain the patterns are more adequate to, on
the right moment to adopt the patterns, within

309

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

which Software Engineering discipline’s context
and on how to respect a modeling infrastructure
when adopting the patterns.

A classification of general-purpose design pat-
terns (patterns traversal to all application domains)
was proposed by Tichy in (Tichy, 1997). Tichy
proposed nine categories to organize design pat-
terns. The categories were determined based on
the problems solved by the patterns. The proposed
categories were decoupling (which has to do with
the division of a software system into independent
parts), variant management (which is associated
with the management of commonalities among
objects), state handling (which is the handling of
objects’ states) and others. Again, neither proce-
dural concerns, nor concerns with the applicability
of patterns to particular domain nature types were
evidenced by this classification that relies on the
types of problems patterns propose to solve.

The Pree’s and the Beck’s classifications we
are going to expose next do not also evidence hints
on which moments of the software development
process to adopt patterns, in the context of which
Software Engineering discipline, respecting a
modeling infrastructure and the applicability of
patterns to domain natures in particular.

Wolfgang Pree (Pree, 1995) categorized design
patterns by distinguishing between the purpose
of the design pattern approach and its notation.
Notation can be informal textual notation (plain
text description in a natural language), formal
textual notation (like a programming language) or
graphical notation (like class diagrams). Purpose
expresses the goal a design pattern is pursuing.
The Components category indicates that design
patterns are concerned with the design of compo-
nents rather than frameworks. The Frameworks
I category indicates that design patterns are con-
cerned with describing how to use a framework.
The Frameworks II category indicates that design
patterns represent reusable framework designs.
Pree’s classification scratches very superficially
the question of modeling as it distinguishes
between patterns represented with code (formal

textual notation in the Pree’s classification) and
those represented with models (graphical nota-
tion in the Pree’s classification) but it does not
elaborate on how to work respecting different
levels of abstraction throughout the process of
developing software.

Kent Beck’s (Beck, 2008) implementation pat-
terns translate good Java programming practices
whose adoption produces readable code. He claims
these are patterns because they represent repeated
decisions under repeated decision’s constraints.
Kent Beck’s implementation patterns are divided
into five categories: (1) class, with patterns de-
scribing how to create classes and how classes
encode logic; (2) state, with patterns for storing
and retrieving state; (3) behavior, with patterns
for representing logic; (4) method, with patterns
for writing methods (like method decomposi-
tion, method naming); and (5) collections, with
patterns for using collections. Kent Beck claims
his implementation patterns describe a style of
programming. These implementation patterns
address common problems of programming.
For instance Kent Beck advises to use the pat-
tern Value Object if the intention is to have an
object that acts like a mathematical value, or the
pattern Initialization for the proper initialization
of variables, or the pattern Exception to express
non-local exceptional flows appropriately, or
the pattern Method Visibility to determine the
visibility of methods while programming, or the
pattern Array as the simplest and less flexible
form of collection. Kent Beck uses Java in order
to exemplify the pattern (as a different presenta-
tion of it) instead of a model or a structured text.
Despite the programming practices having to be
considered by the software development process,
this classification does not care about the process
of adopting patterns within the whole software
development process.

Not only design patterns and implementation
patterns are used when developing software. The
classification of Eriksson and Penker (Eriksson
& Penker, 2000) addresses business-level pat-

310

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

terns like those we are going to mention just
now. The Core-Representation pattern dictates
how to model the core objects of a business (the
business objects e.g. customer, product, order)
and their representations (e.g. the representation
of a business object within the information sys-
tem may be a window or another graphical user
interface element as the representation of a debt
is an invoice and the representation of a country
may be the country code). The Document pattern
shows how to model documents (e.g. how to handle
different versions and copies of a document). The
Geographic Location pattern illustrates how to
model addresses (which is of interest to mail-order
companies, post offices, shipping companies).
The Organization and Party pattern demonstrates
how to model organizational charts. The Product
Data Management pattern indicates the way to
model the structure of the relationship between
documents and products (the structure varies from
one business to another). The Thing Information
pattern (used in e-business systems) models the
thing (resource in the business model) and the
information about the thing (the information in the
information system about that resource). The Title-
Item pattern (used by stores and retail outlets) is to
model items (e.g. a loan item) and their titles (e.g.
a book title). The Type-Object-Value pattern (used
by geographical systems) depicts how to model
the relationship between a type (e.g. country),
an object (e.g. Portugal) and a value (e.g. +351).
Eriksson and Penker classified business-level
patterns into three categories: resource and rule
patterns, goal patterns and process patterns. The
resource and rule patterns provide for guidelines
on how to model the rules (used to define the
structure of the resources and the relationships
between them) and resources (people, material/
information and products) from a business domain.
The goal patterns are intimately related to goal
modeling. The main idea is that the design and
implementation of a system depends on the goals
of the system (how it is used once built). At last
the process patterns are related to process-oriented

models (such as workflow models). Process pat-
terns prescribe ways to achieve specific goals for
a set of resources, obeying to specific rules that
express possible resource states.

The classification we are going to mention next
is elaborated on the software development phases.
Siemens’ (Buschmann, Meunier, Rohnert, Sorn-
merlad, & Stal, 1996) two-dimensional pattern
classification (from the book “Pattern-Oriented
Software Architecture” (POSA), volume 1, or
just POSA 1) was defined with two classification
criteria (pattern categories and problem catego-
ries). Every pattern is classified according to
both criteria. The pattern categories determined
were architectural patterns, design patterns and
idioms. They are related to phases and activities
in the software development process. Architec-
tural patterns are used at early stages of software
design, particularly in the structure definition of
software solutions. Design patterns are applicable
to former stages of software design, particularly to
the refinement or detailing of what Buschmann, et
al. call the fundamental architecture of a software
system. Idioms are adequate to implementation
stages, where software programs are written in
specific languages. The problem categories de-
termined were from mud to structure, distributed
systems, interactive systems, adaptable systems,
structural decomposition, organization of work,
access control, management, communication and
resource handling. As an example Structural De-
composition patterns support the decomposition
of subsystems into cooperating parts and Orga-
nization of Work patterns support the definition
of collaborations for the purpose of providing
complex services. These categories express typical
problems that arise in the development of software.
Placing some patterns in a specific category is
a useful activity since it allows eliciting related
problems in software development. However this
pattern classification does not address the analysis
phases (business modeling and requirements) of
the software development process as the multilevel
and multistage pattern classification does.

311

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

The POSA 1 (Buschmann, Meunier, Rohnert,
Sornmerlad, & Stal, 1996) and the POSA5 (Bus-
chmann, Henney, & Schmidt, 2007b) are the most
general POSA references. The POSA 2 (Schmidt,
Stal, Rohnert, & Buschmann, 2000) contains a
pattern language for concurrent and networked
software systems. The POSA 3 (Kircher & Jain,
2004) contains a pattern language for resource
management. The POSA 4 (Buschmann, Henney,
& Schmidt, 2007a) contains a pattern language for
distributed computing. As referred in the POSA
5 by its authors the classifications in the POSAs
2, 3 and 4 are intention-based, which is why they
haven’t been included in this chapter’s literature
review. This chapter is targeted at software devel-
opment patterns in general, not intention-based
software development patterns.

In the POSA 5 Buschmann, et al. reflect on
the terminology used in the pattern classifica-
tion in the POSA 1 and conclude that the pattern
classification from the POSA 1 has terminology
problems. The terms used to distinguish disjoint
categories (architectural patterns, design patterns
and idioms) actually do not refer to pretty disjoint
categories. These authors refer that architectural
activities and the application of idioms can also
be considered design activities. They also refer
that since the POSA 1 they have concluded that
the term design pattern is to designate software
development patterns in general and to distin-
guish them from patterns that have nothing to do
with software. It does not mean that they have
to do with design activities. For this reason they
conclude that the term design pattern used in the
pattern classification in the POSA 1 should have
been replaced with some other name to refer to
the GoF patterns. Concerning the architectural
patterns Buschmann, et al. conclude that all pat-
terns are architectural in nature, so there cannot
be a category called architectural patterns. To
Buschmann, et al. design is the activity of making
decisions on the structure or behavior of a software
system and architecture is about the most signifi-
cant design decisions for a system (and not all

design decisions). Therefore although all patterns
are intrinsically architectural, not all of them are
applicable to architectural activities. Concerning
the idioms, Buschmann, et al. conclude that the
term idiom has some ambiguity since sometimes
it refers to a solution for a problem specific to a
given programming language and some other times
it refers to conventions for the use of a program-
ming language. An idiom can even refer to both
situations. Buschmann, et al. also conclude that
idioms can refer to patterns used within the con-
text of a specific domain, architectural partition
or technology, thus they conclude that the term
idiom should have been programming language
idiom as a programming language is a specific
solution domain. For instance the pattern Iterator
is an idiom specific to C++ and Java, although
it differs between these two specific languages.

Since all architecture is design (Clements et
al., 2002) the consideration of Buschmann, et al.
that there cannot be a pattern category for archi-
tectural patterns makes sense (they are patterns
of design). However not all design is architecture
(Clements et al., 2002), which means that a dis-
tinction between patterns that address architecture
and patterns that address design has to be made.
Architectures do not define implementations, they
rather constrain downstream activities of design
and implementation. The architecture defines
the system structure. The software architect shall
leave the implementation details veiled. Design
patterns shall address details of implementation
(like the GoF patterns do).

The matter with idioms that Buschmann, et al.
mention in the POSA 5 has been solved by Kent
Beck in (Beck, 2008). Kent Beck’s implementa-
tion patterns express good programming practices
(or the conventions for the use of programming
languages). Kent Beck uses Java in order to ex-
emplify his implementation patterns, which shall
be applicable to other programming languages.
Kent Beck’s implementation patterns are not Java
or other language-specific patterns that are just a

312

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

different representation of design patterns (Grand,
2002; Stelting, 2002).

pAtterns And Model-driven
softwAre developMent

Atkinson and Kühne discuss the foundations of
MDD in (Atkinson & Kühne, 2003). The goal of
MDD is to raise the abstraction level at which
software programs are written by reducing the
software development effort needed to produce a
software product or set of software products. That
effort is reduced by allowing modeling artifacts
to actually deliver more to the software product
or set of software products under development
than they do when used just for documentation
purposes. Automated code generation from visual
models is one of the main characteristics of MDD
and the ultimate goal of the model transformation
cycle. The other main characteristic of MDD is
the reduction of models’ sensitivity to change by
(1) making them accessible and useful (therefore
understandable in the first place) by all stakehold-
ers; (2) changing models while the systems that
rely on them are running; (3) storing the models in
formats that other tools can use; and (4) automating
the process of translating platform-independent
models to platform-specific models and the former
to code. Point 1 is achieved through notation, point
2 through dynamic language extension (through
the runtime extension of the set of types available
for modeling, which are the language concepts
previously mentioned in this chapter), point 3
through interoperability and point 4 through user-
definable mappings. An MDD infrastructure must
provide for visual modeling and the means for
defining visual modeling languages, which are
abstract syntax, concrete syntax, well-formedness
rules (constraints on the abstract syntax) and
semantics. Such infrastructure must also provide
for the use of OO (Object-Oriented) languages
that allow extending the set of types available by
those languages’ APIs (Application Programming

Interfaces) despite in a static way (not at runtime as
MDD actually requires). Describing the previously
mentioned concepts from the language concepts
metamodel level, the concepts from the language
concepts level and the also previously mentioned
user concepts in a metalevel way (e.g. with the
OMG modeling infrastructure) allows adding
new language concepts dynamically at runtime.
Finally an MDD infrastructure must provide for
the means to define model transformations by
the user in order to translate models ultimately
into code of a specific implementation platform.
A means to define model transformations is to
use the model transformation languages QVT
(Query/View/Transformation) (OMG, 2008) or
ATL (ATLAS Transformation Language) (The
Eclipse Foundation, 2010).

MDD relies on models that can be used as input
to automated transformations (Swithinbank et al.,
2005). In (Ruben & Vjeran, 2009) it is stated that
the transformation of models into code can be fa-
cilitated by using software development patterns.
The means to obtain that is to pack patterns as
reusable assets with encapsulated implementation.
We consider that a packed pattern can contain
either the (pattern’s) model and the code or just
the model since not all patterns are to be directly
converted into programming code. Depending
on the type of pattern, it can be translated into
code that can be directly included in the software
solution under development in the programming
environment for further manipulation or it can be
imported in the modeling environment to be used
in the modeling of the software solution by cus-
tomizing the pattern’s model elements and relating
them with the remaining model elements. If the
packed pattern contains the model and the code,
then both the inclusion of the code in the software
solution in the programming environment and
the import of the model in the modeling environ-
ment can be performed. These ways patterns can
be involved in the visual modeling of software
systems and/or the automated code generation
from visual models used in the development of

313

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

those software systems just like MDD requires.
According to (Greenfield & Short, 2004) a code
template can be attached to the pattern to gener-
ate code from the model to which the pattern has
been applied. Finally we consider that there is no
point in using implementation patterns as packed
patterns that can be imported in the programming
environment as most of the times they depend on
modeled elements parameters to be instantiated.
In fact some of those patterns are already avail-
able in the programming environment through
context menus of source code elements generated
from models.

The models used to develop a software product
or family of products evolve along the software
development lifecycle and according to MDD
end up in code. Pattern classifications help the
actors involved in MDD software development
processes to choose the most convenient patterns
(in the form of models) to be incorporated into
the models that are later transformed into code.
By dividing patterns into categories all pattern
classifications contribute to the use of patterns to
develop software according to the MDD directives
as the effort to select patterns without them would
be higher, which would not contribute to the goal
of MDD (raising the abstraction level at which
software programs are written by reducing the
software development effort). Patterns in the form
of models also help raising the abstraction level at
which software programs are written. Those that
are not represented as models because they are to be
only in code contribute to MDD by being consid-
ered in the process of automating code generation
from visual models, during which the structure
of code is thoroughly defined for the code that is
generated from the visual models. For instance
if the model from which we are to generate code
incorporates the Getter/Setter pattern, we have to
consider the implementation patterns like those
in (Beck, 2008) applicable to the target platform
in order to generate source code for the getters/
setters (operations) (Swithinbank et al., 2005).

Especially the pattern classifications that reveal
some kind of software development procedural no-
tion contribute to MDD given that it is more likely
that the most adequate patterns are selected. That
is because those classifications avoid the wrong
patterns to be handled by the wrong profession-
als, technologies and methodologies that make
more sense in the context of a specific process’
phase(s). Specific professionals, technologies and
methodologies are more skilled to handle specific
kinds of models that address specific kinds of
problems in specific moments of MDD software
development processes. This means that specific
professionals, technologies and methodologies
are more skilled to handle specific kinds of pat-
terns (in the form of models) to be applied to the
specific kinds of models they handle as input to
the automatic generation of code. Those patterns
address specific kinds of problems, which can be
better understood by those professionals due to
their skills and profile. The pattern classification
we propose in this chapter is particularly based
on a software development process, which is the
RUP (Rational Unified Process) (Kruchten, 2000).
The proposed pattern classification is also related
to the OMG modeling infrastructure in the sense
that it demands for the patterns to be classified
according to the abstraction level at which they are
represented (the OMG modeling infrastructure’s
levels M2, M1 or M0) for the reasons we will
expose further on in this chapter.

the Multilevel And
MultistAge clAssificAtion

Our multilevel and multistage pattern classifica-
tion has three dimensions: the level (from the
OMG modeling infrastructure), the Software
Engineering discipline (based on the RUP) and
the stage of the software development process
(also based on the RUP). The classification adopts
also an attribute, besides the three dimensions: the
nature of the domain.

314

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

the classification explained

Domains can be of horizontal nature or of vertical
nature. The vertical domains represent particular
business domains and correspond to activity sec-
tors (e.g. banking, insurance, trading, industry).
The horizontal domains are traversal to the vertical
domains, which means that they represent areas
of knowledge common to every business domain
(e.g. accounting, human resources, stock, project
management). This does not mean that business
applications (banking applications for example)
shall contemplate all horizontal domains but it
means that horizontal applications (for instance
accounting applications) shall be usable by all the
businesses possible, although there is a part of
each horizontal domain that is only applicable to
each business domain (e.g. there are accounting
rules specific to the banking sector).

The multilevel character of our classification
lies on the different levels of the OMG modeling
infrastructure, which provides for a multilevel,
four-layer modeling architecture. The classifica-
tion’s RUP-based Software Engineering discipline
dimension provides for clear hints on the profes-
sionals who shall handle specific types of patterns,
with particular technologies and methodologies.
At last the classification’s multistage character
is given by the dimension associated with the
RUP-based phases of the software development
process. Our hypothesis is that the development of
software can take more advantage of patterns and
their proposed solutions if their adoption occurs
at the right moment of the process of develop-
ing a software solution and within the context
of the right Software Engineering profession-
als, technologies and methodologies, respecting
the levels patterns shall follow throughout the
adoption process, which involves dealing with
models at different levels of abstraction as well.
We consider that the positioning of patterns at the
wrong category of any process-based classification
leads to a misinterpretation of those same patterns,
resulting in an unsuccessful adoption. By unsuc-

cessful adoption we mean a constriction of the
original patterns’ advantages. Although our effort
is towards minimizing the effects of pattern mis-
interpretation, pattern adaptation can still and will
most likely occur over the pattern models we are
going to expose in this chapter. Our classification
(especially due to its multilevel character) reduces
the chances of pattern misinterpretation since it
reaches the metamodeling level (M2-level from
the OMG modeling infrastructure). Unsuccessful
pattern adoptions can lead to software solutions
where the adopted patterns are unrecognizable.

Patterns vary in their abstraction level. Actually
the same pattern may be positioned at different
abstraction levels according to its representation.
Normally the interpretation of a pattern is per-
formed directly from the catalogue to the particular
context of the product or the family of products.
This way both the representation of the pattern in
the catalogue and the interpretation of that same
pattern are situated at the M1-level, which may
not be adequate if the goal is to systematically
use patterns and reduce the unsuccessful pattern
adoptions during software production. Thinking
about software families the matter with software
product lines and software patterns may lie on the
instantiation of M2 artifacts at the M1 layer, which
again indicates the relevance of the abstraction
level concerning the adoption of software patterns.

We are adopting the geometrical terminology to
represent the pattern classification. Patterns can be
positioned at the pattern positioning geometrical
space placed in the first octant of the orthonormal
referential like Figure 2 (on the left) shows. Ac-
tually that space may be partitioned into cubes.
As patterns can be classified with three possible
values according to two of the three axes of the
referential and with four possible values accord-
ing to the other axis, the pattern positioning geo-
metrical space can be divided into 3×3×4 cubes
as can also be seen from Figure 2 (on the left).
The fourth criterion is the domain nature and in
the case of the pattern positioned at the pattern
positioning geometrical space in the figure it takes

315

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

the value vertical (V). That is why the grey cube
representing the pattern is tagged with a V (the
domain nature is not a dimension, it is an attribute
so it does not correspond to an axis). Figure 2 (on
the right) presents the projections of the pattern’s
positioning represented in a three-dimensional
space on the left of the figure, this time in a two-
dimensional area. The possible values of each
dimension are attached to the axes. They will be
detailed further on in this section of the chapter.

As we have already argued, leveraging patterns
to the M2-level is a way of turning the decisions
on the application of patterns more objective as
well as of reducing the misinterpretation of pat-
terns at the M1-level with all the disadvantages
that subjective decisions and misinterpretation
bring into the software development process and
the quality of the software product itself. Multi-
level instantiation shall occur during the adoption
of patterns in order to systematize their use. Pat-
terns are positioned at the pattern positioning
geometrical space (according to the axes repre-
senting the Software Engineering disciplines and
the OMG modeling infrastructure levels) with

regards to their representations: the M2 model
(pattern M2), the M1 model (pattern M1) and the
M1 code. As we will see later on in this chapter,
the pattern in the M1 representation is an instance
of the pattern in the M2 representation, whereas
the code is a transformation of the pattern’s M1
model into a specific programming language code.
The abstraction level decreases when moving
from models at the M2-level to the code. Pattern
catalogues represent patterns with M1 models and
M1 code (source code). They do not propose pat-
terns using their M2 representation (or metamod-
els). That is not our approach as it will be detailed
in the next section of this chapter. The course of
the artifacts inside the pattern positioning geo-
metrical space as well as the course’s projection
on the discipline×level plan indicates that a small
process within the whole software development
process must occur when systematically dealing
with patterns, which includes multilevel instan-
tiation and transformation of models into code.

The reason for representing patterns in cata-
logues in their M1 representation is due to the
willing of not compromising the applicability of

Figure 2. Orthonormal referential with the dimensions of the multilevel and multistage classification
on the axes plus the pattern categorization three-dimensional space (on the left). The projections of a
pattern’s positioning in a two-dimensional area (on the right)

316

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

patterns to a broader domain coverage. This is
the risk of rising the abstraction level from M1
to M2. Naturally every risk has some potential
for success and the risk of rising the abstraction
level carries with it the advantage of turning the
pattern adoptable by more domains. In order to
adapt a pattern from a catalogue to a different
domain than the one considered for represent-
ing the pattern in the catalogue it is necessary to
know in which areas to change it and for that the
pattern’s structure has to be known as well. To
know the structure of the pattern, the pattern has
to be represented at the M2-level.

Although the pattern may assume several rep-
resentations according to the level it is positioned
at, we are talking about the same pattern since the
diverse representations of the pattern answer to the
same problem, within the same context, with the
same solution, driven by the same recurrent and
predictable forces (Beck, 2008; Gamma, Helm,
Johnson, & Vlissides, 1995; Meszaros & Doble,
1997). Having various representations for the
same pattern implies that the M2 representation
of a pattern covers more functionality, therefore
reaching higher levels of functional completeness
than the M1 representation.

the classification’s
dimensions and Attribute

Next each criterion (the dimensions and the at-
tribute) of the multilevel and multistage classifica-
tion are described. As we have already stated the
multilevel and multistage classification considers
the moment of the software development process
during which specific kinds of patterns, what we
call pattern types (see section 3.3 for more infor-
mation on the multilevel and multistage pattern
types), shall be used. The Discipline dimension
represents these different moments in the pro-
cess of developing software. The multilevel and
multistage classification considers as well the
context in which patterns shall be used in terms of
Software Engineering professionals, technologies

and methodologies. Stages of software develop-
ment are defined by different profiles of Software
Engineering professionals who work with different
kinds of technologies and methodologies tailored
to their profiles. The Stage dimension represents
these different stage-related professionals, tech-
nologies and methodologies in the process of
developing software. Our classification takes also
in a modeling infrastructure that has been adopted
to avoid subjective decisions on the application
of patterns, and situations of misinterpretation
and corruption of patterns from catalogues while
interpreting and adapting them respectively. The
modeling infrastructure that has been considered
is the OMG modeling infrastructure. The Level di-
mension represents the different levels of the OMG
modeling infrastructure. Finally the multilevel and
multistage classification takes into account that
domain-specific artifacts for the development of
families of software products are common these
days, which means that the applicability of pat-
terns to particular domain natures allows to choose
between the patterns that are most adequate to a
domain of a software product or family of prod-
ucts. The Domain Nature attribute represents the
different (both) domain natures to which patterns
are most applicable (or the applicability of patterns
to both domain natures).

As the subtitles indicate, the Discipline di-
mension can take the values {business modeling,
requirements, analysis & design, implementation}
and the Stage dimension can take the values {in-
ception, elaboration, construction}. The Level
dimension corresponds to the levels of the OMG
modeling infrastructure {M1, M2}. For now M3
is not being considered. We are not representing
M3 in the figures because M3 can be represented
with (UML) models and we haven’t yet worked
our classification at that level. Despite that, M0 is
represented in the figures to remember the reader
that after M1 code (compile-time code) we have
M0 code (runtime code) but runtime code is not
relevant to our classification. The Domain Nature
attribute which has already been explained earlier

317

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

in this section of the chapter can take the values
{vertical, horizontal, agnostic}.

In order to use this classification do the follow-
ing: (1) analyze the pattern you want to classify
according to the dimensions Discipline and Stage,
and give a value to each of those dimensions for
that pattern you are classifying; (2) conclude on
the pattern type (see section 3.3 for more infor-
mation on the multilevel and multistage pattern
types and how the dimensions Discipline and
Stage determine the pattern type); (3) determine
the pattern’s level, which corresponds to giving a
value to the Level dimension; (4) if the pattern is
not represented in its M2 representation, draw an
M2 model of the pattern; (5) by looking at the M2
representation of the pattern describe its semantics
in textual form; and finally (6) by looking at the
pattern’s M2-level textual description and at the
pattern’s description in the catalogue classify the
pattern in what its domain nature is concerned,
which is equivalent to tagging the pattern with
one of the three possible values for the Domain
Nature attribute.

The assignment of patterns to particular chunks
of the classification is dependent on the pattern
type, therefore on the RUP’s textual descriptions
of its disciplines and phases (to conduct step 1). In
order to determine the pattern’s level the classifier
(the subject who classifies) must be familiarized
with the Four-Layer Architecture since he has to
understand if the concepts the pattern presents
are situated at the M2 or at the M1 levels. The
classifier has to know the notion of multilevel
instantiation. The classification process is de-
pendent on the subject who conducts the process.
Determining the pattern type is subjective as it
implies looking at the textual descriptions of the
RUP’s disciplines and phases. Analyzing textual
descriptions is subjective (at least in this approach).
Determining the pattern’s level is also subjective
(at least in this approach) because it depends on
the classifier’s knowledge.

The Discipline Dimension

The RUP’s Business Modeling Software Engi-
neering Discipline
The RUP’s Business Modeling discipline shall
comprise activities of derivation of the software
requirements the system to be developed must
support in order to be adequate to the target or-
ganization and of analyzing how that system fits
into the organization. The goal of the Business
Modeling discipline is to model an organizational
context for the system.

The RUP’s Requirements Software Engineer-
ing Discipline
The RUP’s Requirements discipline shall comprise
activities of stakeholder request elicitation and of
transformation of those requests into requirements
on the system to be developed. Those requirements
shall span the complete scope of the system. The
requirements on what the system shall do have
to be agreed with the stakeholders (customer and
others). The goal of the Requirements discipline is
to provide developers with a better understanding
of the requirements the system must fulfill based
on the customer’s (or other stakeholder’s) requests.
It is also the goal of this discipline to delimit the
boundaries of the system to be developed.

The RUP’s Analysis & Design Software Engi-
neering Discipline
The RUP’s Analysis & Design discipline shall
comprise activities of transformation of the re-
quirements elicited with the stakeholders into a
design of the system to be deployed. The design
of the system shall contemplate an architecture
for the system. The goal of this discipline is to
specify the design of the system to be developed.

The RUP’s Implementation Software Engineer-
ing Discipline
The RUP’s Implementation discipline shall com-
prise activities of development, unit testing of
the developed components and integration of the

318

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

software components that will allow the system
requested by the stakeholders to be deployed
based on the design specifications elaborated in
the context of the Analysis & Design discipline.
When developing the system, the organization of
the code shall be defined according to the layers
of the subsystems to implement. Developing the
system through components implies that all the
components produced by different teams are inte-
grated into an executable system. The goal of this
discipline is to translate the design elements that
came up in the context of the Analysis & Design
discipline into implementation elements (source
files, binaries, executable programs and others).

The Stage Dimension

The RUP’s Inception Software Development
Stage
The RUP’s Inception stage shall comprise activi-
ties of discrimination of the critical use cases of the
system and the primary operation scenarios vital
to the design tradeoffs that will have to be made
further on during the process. At least one candi-
date architecture shall be exhibited (and maybe
demonstrated) and shall support the primary sce-
narios (or at least some of them) in order for the
stakeholders to agree upon the fulfillment of the
requests they exposed to the Software Engineers
responsible for the requirements elicitation. The
goal of this stage is to ensure that the software
development project is both worth doing and
possible to execute.

The RUP’s Elaboration Software Develop-
ment Stage
The RUP’s Elaboration stage shall comprise
activities of architecture handling like conceiv-
ing a baseline architecture of the system, thus
providing a stable basis for the further design
and implementation work which will take place
during the Construction stage. This architecture
shall contemplate and reflect the most significant
requirements for the architecture of the system.

Architectural prototypes shall be used to evaluate
the stability of the architecture. The goal of this
stage is to elaborate an architectural foundation
for the upcoming detailed design and implemen-
tation efforts.

The RUP’s Construction Software Develop-
ment Stage
The RUP’s Construction stage shall comprise
activities of development of deployable software
products from the baseline architecture of the sys-
tem elaborated during the prior stage. The design,
development and testing of all the requested func-
tionality for the system shall be completed during
this stage. The construction of the software system
shall be conducted in an iterative and incremental
way. It is during the construction of that software
system that remaining use cases and other require-
ments are described, others are further detailed, the
design built during the previous stage is enlivened
and the implemented software is tested. The goal
of this stage is to develop a complete software
product ready to transition to the users.

The Level Dimension

The Level dimension of the classification cor-
responds to the levels of abstraction of the Four-
Layer Architecture. Each model in the Four-Layer
Architecture except for the one at the highest
level is an instance of the one at the higher level.
The M0-level refers to the data manipulated by
software. The M1-level refers to models of user
concepts. The M2-level refers to UML concepts
models. These are models of models and so are
called metamodels. A metamodel is a model whose
elements are types in another model (an example
of a metamodel is the UML metamodel). It de-
scribes the structure of the models, the elements
that are part of those models and their respective
properties. The meta-metamodels are at the high-
est level of the modeling infrastructure, the MOF
(Meta-Object Facility) (OMG, 2006) or M3-level.

319

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

The Domain Nature Attribute

The Domain Nature attribute indicates whether
the pattern is more adequate to vertical domains
(industry, commerce, services and others) or to
horizontal domains (accounting, stock, project
management and others). Some patterns as it will
be evidenced later in this chapter are domain nature
agnostic, which means that they are applicable
both to vertical and to horizontal domains.

the pAttern types

Following are the pattern types from the multilevel
and multistage classification. A pattern type rep-
resents a kind of pattern that has been classified
with the same Discipline dimension’s value and
the same Stage dimension’s value. A description
is provided for each of the pattern types as well as
the classification according to the Discipline and
Stage dimensions. The classification of pattern
types according to the Level dimension does not
make sense as it depends on the representation of
the pattern and has no influence on the definition
of the pattern types themselves. The pattern types
are: business patterns, analysis patterns, enterprise
patterns, architectural patterns, design patterns and
implementation patterns. These names have been
chosen because they are the most common pattern
names in the literature and make the most sense
in our definitions of the pattern types.

This section will expose some examples of
patterns that were classified with different pattern
types. The patterns in this section suit the purpose
of demonstrating how we have applied the mul-
tilevel and multistage classification of patterns.
We provide for a representation of the patterns as
M2-level (meta)models and as M1-level models
(when applicable).

Be aware that some of the patterns we are going
to analyze in this section have not been classified
with the same pattern type name we have classified
them with using our classification. For instance the

Posting pattern has been classified as a business
pattern by Pavel Hruby in (Hruby, 2006) but we
classify it as an analysis pattern.

the Business patterns

The term business pattern was inspired on IBM’s
definition of business pattern (Adams, Koushik,
Vasudeva, & Galambos, 2001).

Business patterns are more pertinent in the
context of vertical domains. They make the most
sense to be handled during the Inception stage by
professionals, technologies and methodologies
from the Business Modeling and Requirements
disciplines.

Business patterns are used to describe a solution
to accomplishing a business objective. They shall
address the users of the solution, the organization’s
software systems the users interact with (or the
organization itself) and the organization’s infor-
mation (available through those systems or the
organization itself). Business patterns may refer to
e-business solutions that convey an organizational
framing, validity and conformance of the solution
to the business problem the solution is trying to
solve. Software solutions shall be sustained by the
business and this is achieved with the adoption
of business patterns.

We can see examples of business patterns in
(Adams, Koushik, Vasudeva, & Galambos, 2001)
and also in (Eriksson & Penker, 2000).

Figure 3 (on the left) illustrates the positioning
of business patterns according to the Stage and
the Discipline dimensions.

The Domain Model Pattern

The Domain Model pattern’s goal is to produce
an object model of the domain or business area.
A domain model must distinguish between the
data the business involves and the business rules
(or the rules used by the business). The behavior
expressed by these business rules shall be placed
in the business object that really needs it. Figure 3

320

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

(on the right) shows a model with an example of
the Domain Model pattern in the M1 representation
as well as the M2 representation of the pattern.
The Domain Model pattern is composed of two
types of concepts: business objects (or domain
objects) and business rules. This is evidenced
by the Domain Model M2 model in Figure 3 (on
the right).

The Domain Model pattern suits the modeling
of every business domain possible as every busi-
ness domain has business objects and business
rules on those objects. Even though the pattern
is applicable to all business domains it is not ap-
propriate to the modeling of a horizontal domain
or to the modeling of structural business domain
commonalities, which makes of it applicable to
domains of vertical nature.

The Domain Model pattern does not show
how to model objects or rules for a specific
business domain but the types of concepts the
pattern handles are business-related and shall be
instantiated in order to model business domains.
Besides and more important than that, the Domain
Model pattern allows to model objects and rules
that shall be handled by the solution to the busi-
ness problem the solution is trying to solve. The
Domain Model pattern is a very atomic pattern as
it does not address the users of the solution or the

organization’s software systems the users interact
with (or the organization itself); nonetheless it is
adequate to reach the business domain model from
the candidate architecture that shall be exhibited
to the stakeholders. For all of these reasons we
consider that the Domain Model pattern shall be
classified as a business pattern.

By looking at the RUP’s textual descriptions
of its disciplines and phases, we concluded that
the Domain Model pattern shall be used during
the Inception software development stage and
in the context of the Business Modeling and Re-
quirements Software Engineering disciplines as
seen in the previous section of this chapter. Dur-
ing the Inception stage a domain model must be
built from a candidate architecture that translates
the critical use cases and the primary operation
scenarios. That domain model may be achieved
with the application of the Domain Model pattern.
The pattern shall help translating the requirements
elicited with the stakeholders. Those requirements
have to be adequate to the target organization,
which is a concern of the Requirements discipline.

the Analysis patterns

The term analysis pattern was inspired on Fowler’s
definition of analysis pattern (Fowler, 1997).

Figure 3. The business patterns’ positioning according to the Stage and the Discipline dimensions (on
the left). The Domain Model pattern modeled at both the M2 and the M1 levels of the OMG modeling
infrastructure (on the right)

321

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

Analysis patterns are more applicable to
horizontal domains. They shall be used during
the Inception stage by professionals, technologies
and methodologies from the Business Modeling
and Requirements disciplines. In spite of being
called analysis patterns it does not make sense to
use them in the context of the Analysis & Design
discipline. They have been called so because
analysis pattern is a terminology spread out
through the literature and also because Fowler’s
definition of analysis pattern inspired ours. In an
older informal terminology the development of
software was composed of three phases: analysis,
design and implementation. With RUP formalizing
the dimension of business modeling in the process
of software development, analysis was divided
into business modeling and requirements. The
former design discipline corresponds to RUP’s
Analysis & Design.

Analysis patterns are solutions to recurrent
problems in many (business) domains. They are
composed of concepts that represent structural
commonalities when modeling many different
business domains.

We can see examples of analysis patterns in
(Fowler, 1997).

Figure 4 (on the left) shows the positioning of
analysis patterns according to the Stage and the
Discipline dimensions.

Business patterns and analysis patterns are
dual patterns since they coexist in the context of
the Inception stage and of both the Business
Modeling and the Requirements disciplines. Busi-
ness patterns are not necessarily about software
but they have to give input on how the software
requirements of a business domain are adequate
to an organization. Analysis patterns have to
consider its adequacy to the target organization.
They both have to be used during the earliest
period of the software solution’s development,
when requirements are elicited and agreed with
the stakeholders.

The Posting Pattern

Previously in (Hruby, 2006) the Posting pattern
has been classified as a business pattern by Pavel
Hruby. According to the multilevel and multistage
classification the Posting pattern is classified as
an analysis pattern. It is applicable to horizontal
domains.

The point of the Posting pattern is to keep
the history of economic events (commitments,

Figure 4. The analysis patterns’ positioning according to the Stage and the Discipline dimensions (on
the left). The Posting pattern modeled at both the M2 and the M1 levels of the OMG modeling infra-
structure (on the right)

322

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

contracts or claims) or in other words the history
of interactions between economic agents for the
exchange of economic resources like the purchase
of products, the sale of services, invoices and
corresponding payments, among others. Some
examples of posting types are inventory posting,
finance posting, man-hours posting and distance
posting. Figure 4 (on the right) exposes a model
with an example of the Posting pattern in the M1
representation as well as the M2 representation
of the pattern. The Posting pattern contemplates
two types of concepts: dimensions and entries. A
posting dimension is either an economic agent or
an economic resource. The purpose of the dimen-
sion is to provide additional information about
the economic event or in other words provide
descriptive information about the posting entries.
A posting entry is an entry of a commitment, a
contract or a claim. The purpose of the entry is to
keep track of the history of economic events. In
Figure 4 (on the right) we can see that Customer
and Check are two posting dimensions of the post-
ing entry Receipt. Most probably the Customer
class represents the economic agent involved in
the economic event represented by the entry class
Receipt whereas the Check class represents the
economic resource.

The Posting pattern is constituted by concepts
belonging to a horizontal domain (the accounting
domain). Nevertheless the Posting pattern has
only the concept of posting entry in common with
the Accounting pattern (in the Accounting pattern
the concept of posting entry corresponds to the
concept of agreement).

The arguments for classifying the Posting
pattern as an analysis pattern as well as for its
adequacy to the Inception software development
stage and the Business Modeling and Requirements
Software Engineering disciplines are the same we
described beforehand for the Accounting pattern.

the enterprise patterns

The term enterprise pattern was inspired on
Fowler’s considerations about enterprise patterns
and enterprise software in (Fowler, 2009).

Enterprise patterns are most adequate to
vertical domains. They are more relevant in the
context of the Elaboration stage by professionals,
technologies and methodologies from the Analysis
& Designdiscipline.

Enterprise patterns are used in the develop-
ment of software systems on which various busi-
nesses rely on and run (the so called enterprise
software systems). Normally the architecture of
such systems is a layered architecture. Concep-
tion decisions on layered architectures are design
decisions that have to be taken inside a logical
layer or between different logical layers. Often
single enterprise applications need to interact so
enterprise patterns have also to propose solutions to
the integration of enterprise applications problem.
Validations, calculations and business rules on the
data an information system manipulates vary ac-
cording to the domain and change as the business
conditions change. Enterprise applications must
respond to ever changing business requirements.

Enterprise patterns address architectural con-
cerns as well as the architecture patterns we will
be talking next but whereas enterprise patterns are
mainly concerned with topological architecture,
architectural patterns are mainly concerned with
logical architecture.

This chapter does not consider the notion
of enterprise as the RUP does not consider it.
The RUP is a Software Engineering process
framework. IBM has delivered a RUP plug-in
called RUP SE (RUP for Systems Engineering)
(Cantor, 2003). The RUP SE has enlarged the
RUP with the consideration that the development
of large-scale systems must be concerned with
software, hardware, workers and information.
The RUP SE considers different perspectives on

323

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

the system (logical, physical, informational, and
others). The RUP SE is shortly a framework for
addressing the overall system’s issues. The RUP
SE addresses behavioral requirements (the way
the system shall behave in order to fulfill its role
in the enterprise). The RUP does not express such
concern with the enterprise in which the system
will play its role. In fact this kind of concern is
more from the field of Systems Engineering than
from the field of Software Engineering. When we
talk about system requirements in the context of
Software Engineering we are specifically talking
about software system requirements. The system
requirements are derived from an understanding
of the enterprise, its services and the role that
the system (software-based or not) plays in the
enterprise. For instance the RUP SE suggests that
the enterprise shall be partitioned into the system
and its actors in order to derive the system require-
ments. In the RUP SE an enterprise is faced as

a set of collaborating systems that collaborate to
realize enterprise services, mission and others. The
system attributes are obtained from an analysis of
the enterprise needs. As this chapter talks about
software system development patterns in the con-
text of RUP (not RUP SE), this chapter is related
to Software Engineering, not to Systems Engineer-
ing, which means that this chapter’s enterprise
patterns have nothing to do with the concept of
enterprise from the Systems Engineering field.
The term enterprise pattern comes from the term
enterprise application architectural pattern from
Folwer’s book “Patterns of Enterprise Application
Architecture” (Fowler, 2003b).

We can see examples of enterprise patterns in
(Fowler, 2003b).

Figure 5 (on the left) depicts the positioning
of enterprise patterns according to the Stage and
the Discipline dimensions.

Figure 5. The enterprise patterns’ positioning according to the Stage and the Discipline dimensions (on
the left). The Service Layer pattern modeled at both the M2 and the M1 levels of the OMG modeling
infrastructure (on the right)

324

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

The Service Layer Pattern

In (Fowler, 2003b) Fowler classified the Service
Layer pattern as an enterprise application archi-
tectural pattern. According to the multilevel and
multistage classification the Service Layer pattern
is classified as an enterprise pattern.

The purpose of the Service Layer pattern is
to provide for operations to access the enterprise
application’s stored data and business logic. The
Service Layer pattern can be implemented with a
set of facades over a domain model. The classes
implementing the facades do not implement any
business logic, which is implemented by the busi-
ness object’s rules from the domain model. The
facades gather the operations the application has
available for interaction with client layers. The Ser-
vice Layer can also be implemented with classes
directly implementing the application logic and
delegating on business object classes for domain
logic processing. Application logic is grouped into
classes of related application logic. These classes
are application service classes. Figure 5 (on the
right) depicts an example of this second strategy
for implementing the Service Layer pattern at the
modeling level. The figure shows a model with an
example of the Service Layer pattern in the M1
representation as well as the M2 representation of
the pattern. As we may conclude from the figure
the Service Layer pattern is composed of two
types of concepts: application services and domain
services. Business objects are also represented in
the models as the domain services rely on them
for business logic. The domain services act as
intermediates between the application services
and the business objects since they provide for
calls to application logic in application services
and for calls to business logic residing on busi-
ness objects. These last calls are made inside the
service operations the domain services provide
for, which correspond to the use cases the actors
want to perform with the application.

As the main focus of the Service Layer is the
domain service acting as a bridge between the

application logic and the business logic, and not
implementing any business domain logic (just ac-
cessing it) we have tagged this particular enterprise
pattern as domain nature agnostic.

The Service Layer pattern has been classified
in this chapter as an enterprise pattern because it
is used to develop enterprise software systems
for specific business domains. When developing
enterprise applications, logical layers are essential
and the concern of the Service Layer pattern (to
separate application logic from business logic)
proves that we talking about an enterprise pattern.

By looking at the RUP’s textual descriptions
of its disciplines and phases we concluded that
the Service Layer pattern shall be used during the
Elaboration software development stage and in
the context of the Analysis & Design Software
Engineering discipline. Since splitting application
logic from business logic is an architectural deci-
sion with impacts at the level of the baseline soft-
ware system architecture it makes sense to adopt
the Service Layer pattern during the Elaboration
stage and by the professionals, technologies and
methodologies responsible for the software design.

the Architectural patterns

The term architectural pattern was inspired
on Buschmann, et al. and Zdun (Buschmann,
Meunier, Rohnert, Sornmerlad, & Stal, 1996;
Zdun & Avgeriou, 2005).

Architectural patterns are more appropriate to
horizontal domains. They shall be picked up from
catalogues for usage during the Elaboration stage
by professionals, technologies and methodologies
from the Analysis & Design discipline.

Architectural patterns are used in the defini-
tion of the structure of software solutions. The
architecture of a system is the design artifact that
represents the functionality-based structure of that
system and shall address quality or non-functional
attributes wished-for the system. Architectural
patterns shall help improving both the functional
and the quality attributes of software systems.

325

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

We can see examples of architectural patterns
in (Buschmann, Meunier, Rohnert, Sornmerlad,
& Stal, 1996).

Figure 6 (on the left) shows the positioning of
architectural patterns according to the Stage and
the Discipline dimensions.

Enterprise patterns and architectural patterns
are dual patterns since they coexist in the context
of the Elaboration stage and of the Analysis &
Design discipline.

The Model-View-Controller Pattern

Originally in (Buschmann, Meunier, Rohnert,
Sornmerlad, & Stal, 1996) the MVC (Model-
View-Controller) pattern has been classified by
Buschmann, et al. as an architectural pattern.
According to the multilevel and multistage
classification the MVC pattern is classified as
an architectural pattern. It is adequate to both
horizontal and vertical domains, so it is agnostic
relatively to the domain nature.

The purpose of the MVC pattern is to ensure
the consistency between the user interface and the
business information of a software system. The

separation of the user interface from the business
information of a software system provides for user
interface flexibility. Figure 6 (on the right) depicts
an example of a model of the MVC pattern in the
M1-level and also the MVC pattern represented
in the M2-level. The MVC pattern is composed
of three types of classes: a model, a view and a
controller. The model contains the business in-
formation that is to be presented to the user. The
view obtains the information from the model and
displays it to the user. The controller is responsible
for requesting the business information updating
on the model upon user action (event) on the
graphical interface (view). It takes the business
information from the view and requests for the
model’s updating with that information.

Although the model component contains busi-
ness information the MVC pattern is adequate
to both horizontal and vertical domains, which
makes of it agnostic in what its domain nature is
concerned. The pattern can either be adopted if
the business information is relative to horizontal
business objects or to vertical business objects.

The MVC pattern is classified as an archi-
tectural pattern according to the multilevel and

Figure 6. The architectural patterns’ positioning according to the Stage and the Discipline dimensions
(on the left). The MVC pattern modeled at both the M2 and the M1 levels of the OMG modeling infra-
structure (on the right)

326

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

multistage classification since it is used to define
the structure of the software system, namely the
structure of the client-side of the system. The
pattern allows for the software system to be
flexible concerning its user interface, which is a
quality attribute wished-for that system. Mainly
the MVC pattern is responsible for the structure
of the client-side of the software system in order
for it to be able to update business information
upon events triggered by the user on the user
interface (which allows the system to provide for
the update functionality to the user).

By looking at the RUP’s textual descriptions
of its disciplines and phases we concluded that the
MVC pattern shall be used during the Elaboration
software development stage and in the context
of the Analysis & Design Software Engineering
discipline. As the MVC pattern is used to define
the structure of the client-side of the system, ad-
dressing both the update functionality and the
user interface flexibility (non-functional require-
ment), it shall be part of the system’s architecture,
which shall be part of the system’s design speci-
fication. The system’s baseline architecture shall
contemplate the most significant architectural
requirements, and the MVC pattern addresses
the consistency between the user interface and
the business information of the software system
(which is a requirement vital to interactive soft-
ware systems).

the design patterns

The term design pattern was inspired on the GoF’s
patterns (Gamma, Helm, Johnson, & Vlissides,
1995).

Design patterns are domain nature agnostic,
which means that they are both applicable to
vertical and to horizontal domains. They shall
be manipulated during the Construction stage by
professionals, technologies and methodologies
from the Analysis & Design discipline.

Although the GoF described design patterns as
OO software patterns we consider design patterns

are those that are applicable to the refinement or
detailing of the software system architecture. For
instance Larman’s GRAS (General Responsibility
Assignment Software) (Larman, 2001) patterns
are design patterns since they have to do with
behavioral aspects that only come up during a
mechanistic design phase of the software solu-
tion’s development (by mechanistic we mean
structural or behavioral mechanisms more refined
than components from logical architectures) (Lar-
man, 2001).

The presence of code in design patterns is only
to give examples. Design patterns are independent
of the languag, as we can see from the GoF cata-
logue (Gamma, Helm, Johnson, & Vlissides, 1995)
(they only talk about OO concepts, not language
features). The sample code section provides for
code to illustrate the example given in the motiva-
tion section, where the reader is given a scenario
to illustrate a design problem in order for him to
better understand the more abstract description
of the pattern that follows the motivation section.
Again the code is an illustration of the pattern’s
applicability.

Figure 7 (on the top left) depicts the position-
ing of design patterns according to the Stage and
the Discipline dimensions.

Figure 7 (on the bottom left) illustrates the
difference between our definition of design pattern
and GoF’s. The lighter grey area corresponds to
the pattern positioning space of the GoF catalogue.
The darker grey area corresponds to the pattern
categorization area of our classification where we
position our design patterns. These areas have
been drawn taking only the Discipline and the
Stage dimensions into consideration as the Level
dimension does not allow demonstrating the dif-
ference between both definitions. We consider
that design patterns shall only be used during the
Construction stage of the software development
process as the Software Engineering profession-
als, technologies and methodologies of the
Analysis & Design are the most adequate to
handle these patterns due to their professional

327

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

profile and adequacy to the Construction stage’s
activities and goals. We also consider that if design
patterns are handled throughout the whole software
development stages and by the people and tools
(technologies and methodologies) of every Soft-
ware Engineering discipline, the advantages
predicted in pattern catalogues of the adopted
design patterns are not going to be preserved and
that the design patterns in the catalogues are not
going to be used in their full potential by the
people most skilled to handle them.

The Adapter Pattern

In the past in (Gamma, Helm, Johnson, & Vlis-
sides, 1995) the Adapter pattern has been classified
as a design pattern by the GoF but in the sense of
OO software pattern. According to the multilevel
and multistage classification the Adapter pattern
is classified as a design pattern. It is applicable to

both horizontal and vertical domains, which makes
of it a domain nature agnostic pattern.

The Adapter pattern (also known as Wrapper)
has to do with a class converting the interface of
one class to be what another class expects. Figure
7 (on the right) shows a model exemplifying the
Adapter pattern in its M1 representation as well
as the M2 representation of the pattern. This is
what the Adapter’s implementation described at
the M2-level should look like: “The Adapter must
have an input parameter of the Adapted’s type
in its constructor and extend the Required and
call the Adapted’s appropriate operation inside
the operation required by the Receptacle”. The
Adapter’s description at the M2-level in terms
of semantics is the following: “The Receptacle
requires the Adapted to be adapted to the Required
through the Adapter (the process is called adap-
tation). The goal is for the Receptacle to be able

Figure 7. The design patterns’ positioning according to the Stage and the Discipline dimensions (on
the top left). The difference between our design patterns and the GoF’s according to the Stage and the
Discipline dimensions (on the bottom left). The Adapter pattern modeled at both the M2 and the M1
levels of the OMG modeling infrastructure (on the right)

328

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

to call the Required’s operation from an instance
of the Adapted”.

The Adapter pattern is independent from any
domain (or domain nature agnostic) because the
adapter, the adapted, the required and the recep-
tacle objects can belong to every domain possible.
As long as the semantics or business logic (at the
M1-level) specific of a certain domain complies
to the M2 semantics we described in the previous
paragraph the Adapter pattern is applicable to that
domain no matter what the business is.

The Adapter pattern deals with classes and
their operations that implement the interface
operations those classes are expected to imple-
ment. Essentially the contents of those operations
that are of relevance to the Adapter pattern are
calls to other operations. As we can see we are
not arguing about business logic implemented by
the class’ operations but rather about the structure
of the classes targeted by the adaptation, which
means we are discussing structural aspects rather
than behavioral. Nevertheless and once again the
Adapter pattern shall be applied during the mecha-
nistic design phase of the system’s development
when classes shall be derived from architectural
components. The Adapter pattern in its semantics
shall be used to detail the baseline software system
architecture and be part of a design specification
containing the interface design of the classes in-
volved in the adaptation process. For all of these
reasons we have classified the Adapter pattern as
a design pattern.

By looking at the RUP’s textual descriptions
of its disciplines and phases we concluded that
the Adapter pattern shall be used during the
Construction software development stage and in
the context of the Analysis & Design Software
Engineering discipline as already argued in this
chapter. The adequacy of such stage and discipline
to the Adapter pattern is intimately related to the
reasons we have just exposed for classifying the
Adapter pattern as a design pattern.

the implementation patterns

The term implementation pattern was inspired
on Beck’s definition of implementation pattern
(Beck, 2008).

Implementation patterns are domain nature
agnostic. They shall be considered during the
Construction stage by professionals, technolo-
gies and methodologies from the Implementation
discipline.

Implementation patterns are in fact the patterns
in Kent Beck’s catalogue (Beck, 2008) for instance
and not Java or other language-specific patterns.
The difference between design patterns and imple-
mentation patterns is that as Kent Beck claimed
(Beck, 2008) design patterns are applicable a
few times in the day of a programmer whereas
his implementation patterns are applicable every
few seconds in the day of a programmer. He also
claimed that his implementation patterns teach
readers how to use certain OO language constructs
regardless of the language (despite him using a
trivial subset of Java to exemplify the patterns).
Java patterns or other language-specific patterns
are just a different representation of design patterns
(Grand, 2002; Stelting, 2002) (e.g. in (Stelting,
2002) Java is applied to the GoF patterns and other
patterns). A different representation changes the
pattern’s level in the classification (e.g. in the case
of the patterns from (Stelting, 2002) they had to be
situated at the M1 (code) level in order for them
to be called Java patterns). Kent Beck refers his
patterns are applicable when all domain-specific
questions are solved and developers are left with
solely technical issues.

Figure 8 illustrates the positioning of imple-
mentation patterns according to the stage and the
discipline dimensions.

The Value Object Pattern

In (Beck, 2008) the Value Object pattern has been
classified as a class pattern. In the context of the
multilevel and multistage classification the Value

329

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

Object pattern is classified as an implementation
pattern. It is adequate to both horizontal and
vertical domains, which means that it is domain
nature agnostic.

The purpose of the Value Object pattern is to
create objects that once created cannot have the
values of the variables they handle changed. The
solution is to set the value of those variables when
the object is created through its constructor. No
other assignments shall be made to those variables
elsewhere in the object’s class. Operations on the
object shall always return new objects that shall be
stored by the requester of the operation. Shortly
value objects are objects representing mathemati-
cal values, which are values that do not change
over time (have no state). For instance a transac-
tion (value object) shall not change over time,
rather an account changes over time (a transaction
implies a change of state in the account). It does
not make sense to model implementation patterns
as they are only to exist in code, not in models,
which implies that they are always represented at
the M1-level (compile-time code).

The Value Object pattern shall be involved in
the coding of both horizontal and vertical domain
software systems since it is about the construction
of objects that shall not change over time, the as-

signment of values to those objects’ variables and
the operations on those (value) objects.

The Value Object pattern has been classified as
an implementation pattern because it is about the
technical details of using classes (an OO language
construct), in this case to create objects that shall
have no state (whose variables’ values shall not
change over time).

By looking at the RUP’s textual descriptions
of its disciplines and phases we concluded that
the Value Object pattern shall be used during
the Implementation software development stage
and in the context of the Construction Software
Engineering discipline as previously mentioned
in this chapter. The Value Object is related to the
development of software systems, particularly
to the development of implementation elements
(source code).

future reseArch directions

Future work concerning the software patterns in
the context of the software development process
involves studying how patterns evolve over the
time of that process. This evolution demands for
the comprehension of the relationships between
software patterns (especially those positioned
at consecutive stages). It also demands for the
analysis of how time implies that software patterns
are associated with each other in a chain. The gap
between patterns used at different stages shall be
bridged in order to have a complete multistage
software development process that contemplates
different artifacts (software patterns and other
artifacts like use case models, component models
and others). In fact software patterns used at dif-
ferent stages solve the same problem at different
levels of abstraction.

Software patterns may be used to detail logical
software system architectures (expressed through
component models). As software patterns are
normally presented in class models, the detailing
of those architectures requires knowing how to

Figure 8. The implementation patterns’ position-
ing according to the stage and the discipline
dimensions

330

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

apply the concept of class to the concept of (logi-
cal) component.

The consideration of software patterns within
the context of the software development process
claims for the specialization of the actors who
intervene in that process with specific roles dur-
ing the adoption of those patterns. It is relevant to
study the impacts of other software development
processes (besides the RUP) in the proposed pat-
tern classification.

Developing software product lines with
software patterns (and other artifacts) may have
some particular implications. Some variability
mechanisms may have to be taken into account in
software patterns. The use of those mechanisms
may be constrained to a specific level of the OMG
modeling infrastructure (the M2-level) and to spe-
cific pattern types. It may be necessary to define
all the possible M2-level concepts (e.g. classes,
attributes, operations) and/or the values of those
concepts (e.g. class names, class attributes, class
operations) as well as the application of all of
them to all or some of the product line’s members.
The whole matter with software product lines and
software patterns may mainly lie on the instantia-
tion of M2-level artifacts at the M1-level.

Finally it is important to determine which
software patterns may and shall be made available
in modeling infrastructures (either through librar-
ies of software pattern metamodels or models, or
through domain-specific languages).

conclusion

Some lessons have been learned on the appli-
cation of the multilevel and multistage pattern
classification to some patterns from the literature.
After looking at the RUP’s textual descriptions
of its disciplines and phases some patterns were
not classified with the pattern type we expected
they would be classified with. This means that a
procedural referential such as the RUP is important
to classify patterns, mainly because it gives the

classification a notion of software development
process. It also means that the awareness of the
adequacy of a pattern in a catalogue to a specific
discipline and stage changed after the multilevel
and multistage pattern classification has been
elaborated. Initially before an in depth analysis
of the RUP’s textual descriptions and the defini-
tions of the various pattern types we expected
that (1) analysis patterns did not make sense
in the context of the RUP’s Business Modeling
discipline; (2) design patterns made sense in the
context of both the RUP’s disciplines of Analysis
& Design and Implementation, and of both the
RUP’s Elaboration and Construction stages; and
(3) patterns that could be contextualized in the
RUP’s Implementation discipline and in the RUP’s
Construction phase were language-specific pat-
terns. After analyzing RUP’s textual descriptions
and the pattern type definitions we concluded that
(1) analysis patterns do make sense in the context
of the RUP’s Business Modeling discipline; (2)
design patterns make only sense in the context
of the RUP’s Analysis & Design discipline and
the RUP’s Construction stage; and (3) language-
specific patterns are a translation of design patterns
into some language, not implementation patterns.

One of the reasons that was in the genesis of
the creation of the multilevel and multistage clas-
sification was to provide for some guidance on
the adoption of software development patterns in
order to avoid loosing the original advantages of
the pattern throughout the adoption process. For
this reason we have considered that the pattern
classification had to rely on the software develop-
ment process. The benefits of such an approach to
pattern classification are: (1) the knowledge of the
moment from the software development process
in which to use specific kinds of patterns; and (2)
the knowledge of who the Software Engineering
professionals most skilled to handle those specific
kinds of patterns in each stage of the software
development process are, considering their instru-
ments (technologies and methodologies).

331

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

The systematic character of the multilevel and
multistage classification is based on the objective-
ness of the decisions on the application of software
development patterns, which may be assured
with the adoption of a modeling infrastructure. A
systematic use of software development patterns
is likely to also prevent the misinterpretation
and corruption of patterns from catalogues when
interpreting and adapting them respectively.

Besides being concerned with the stages and
the Software Engineering professional’s skills and
the instruments they handle to conduct Software
Engineering activities, and besides translating
concerns with the systematic use of software de-
velopment patterns the multilevel and multistage
classification is also concerned with the nature of
the domain, which is one of the criteria that com-
pose the classification. Therefore the multilevel
and multistage classification is focused on domain-
based software development. The classification
also focuses on model-driven software develop-
ment since it incorporates through its multilevel
character the OMG modeling infrastructure by
considering that patterns can be represented at
different levels of that infrastructure, which influ-
ences their interpretation.

The multilevel and multistage pattern classi-
fication is innovative in some ways relatively to
the existing literature. Most pattern classifications
do not classify patterns based on the software
development process. The only classification that
does, disregarded the analysis phases (business
modeling and requirements) of the software de-
velopment process. The multilevel and multistage
classification though addresses business modeling
and requirements.

references

Adams, J., Koushik, S., Vasudeva, G., & Galam-
bos, G. (2001). Patterns for e-Business: A Strategy
for Reuse. Indianapolis, Indiana: IBM Press.

Atkinson, C., & Kühne, T. (2003). Model-Driven
Development: A Metamodeling Foundation.
IEEE Software, 20(5), 36–41. doi:10.1109/
MS.2003.1231149

Beck, K. (2008). Implementation Patterns. Upper
Saddle River, NJ: Addison-Wesley.

Buschmann, F., Henney, K., & Schmidt, D. C.
(2007a). Pattern-Oriented Software Architecture:
A Pattern Language for Distributed Computing.
Hoboken, NJ: Wiley.

Buschmann, F., Henney, K., & Schmidt, D. C.
(2007b). Pattern-Oriented Software Architecture:
On Patterns and Pattern Languages. Hoboken,
NJ: Wiley.

Buschmann, F., Meunier, R., Rohnert, H., Sorn-
merlad, P., & Stal, M. (1996). Pattern-Oriented
Software Architecture: A System of Patterns.
Hoboken, NJ: Wiley.

Cantor, M. (2003). Rational Unified Process for
Systems Engineering - Part III: Requirements
Analysis and Design. The Rational Edge, from
http://www.ibm.com/developerworks/rational/
rationaledge

Clements, P., Bachmann, F., Bass, L., Garlan,
D., Ivers, J., & Little, R. (2002). Documenting
Software Architectures: Views and Beyond. Upper
Saddle River, NJ: Addison-Wesley.

Eriksson, H.-E., & Penker, M. (2000). Business
Modeling With UML: Business Patterns at Work.
Hoboken, NJ: Wiley.

Fowler, M. (1997). Analysis Patterns: Reusable
Object Models. Upper Saddle River, NJ: Addison-
Wesley.

Fowler, M. (2003a). Patterns. IEEE Software,
20(2), 56–57. doi:10.1109/MS.2003.1184168

Fowler, M. (2003b). Patterns of Enterprise Ap-
plication Architecture. Upper Saddle River, NJ:
Addison-Wesley.

332

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

Fowler, M. (2009). Patterns in Enterprise Soft-
ware from http://martinfowler.com/articles/
enterprisePatterns.html

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Upper Saddle River,
NJ: Addison-Wesley.

Grand, M. (2002). Patterns in Java: A Catalog of
Reusable Design Patterns Illustrated with UML.
Hoboken, NJ: Wiley.

Greenfield, J., & Short, K. (2004). Software Fac-
tories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Hoboken, NJ:
Wiley.

Hruby, P. (2006). Model-Driven Design Using
Business Patterns. Berlin: Springer-Verlag.

Kircher, M., & Jain, P. (2004). Pattern-Oriented
Software Architecture: Patterns for Resource
Management. Hoboken, NJ: Wiley.

Kruchten, P. (2000). The Rational Unified Pro-
cess: An Introduction. Upper Saddle River, NJ:
Addison-Wesley.

Larman, C. (2001). Applying UML and Patterns:
An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Upper Saddle
River, NJ: Prentice Hall.

Meszaros, G., & Doble, J. (1997). A Pattern Lan-
guage for Pattern Writing. In Martin, R. C., Riehle,
D., & Buschmann, F. (Eds.), Pattern Languages of
Program Design 3 (pp. 529–574). Upper Saddle
River, NJ: Addison-Wesley.

OMG. (2006). Meta-Object Facility: Core Speci-
fication - version 2.0 from http://www.omg.org

OMG. (2008). Meta Object Facility 2.0 Query/
View/Transformation: Specification - version 1.0
from http://www.omg.org

OMG. (2009a). Object Management Group from
http://www.omg.org

OMG. (2009b). Unified Modeling Language: Su-
perstructure - version 2.2 from http://www.omg.org

Pree, W. (1995). Design Patterns for Object-
Oriented Software Development. Upper Saddle
River, NJ: Addison-Wesley.

Ruben, P., & Vjeran, S. (2009). Framework for
Using Patterns in Model-Driven Development. In
Papadopoulos, G. A., Wojtkowski, G., Wojtkowski,
W., Wrycza, S., & Zupančič, J. (Eds.), Information
Systems Development: Towards a Service Provi-
sion Society (pp. 309–317). Berlin, Heidelberg:
Springer-Verlag.

Schmidt, D., Stal, M., Rohnert, H., & Buschmann,
F. (2000). Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects.
Hoboken, NJ: Wiley.

Soukup, J. (1995). Implementing Patterns. In
Coplien, J. O., & Schmidt, D. C. (Eds.), Pattern
Languages of Program Design (pp. 395–412).
Upper Saddle River, NJ: Addison-Wesley.

Stelting, S. (2002). Applied Java Patterns. Upper
Saddle River, NJ: Prentice Hall.

Swithinbank, P., Chessell, M., Gardner, T., Griffin,
C., Man, J., & Wylie, H. (2005). Patterns: Model-
Driven Development Using IBM Rational Software
Architect. Indianapolis, Indiana: IBM Press.

The Eclipse Foundation. (2010). ATL Project from
http://www.eclipse.org/m2m/atl

Tichy, W. F. (1997). A Catalogue of General-
Purpose Software Design Patterns. Paper presented
at the 23rd Technology of Object-Oriented Lan-
guages and Systems (TOOLS-23), Santa Barbara,
California, USA.

Zdun, U., & Avgeriou, P. (2005). Modeling Archi-
tectural Patterns Using Architectural Primitives.
Paper presented at the 20th Annual ACM SIGPLAN
International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications
(OOPSLA 2005), San Diego, California, USA.

333

Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification

Zimmer, W. (1995). Relationships between
Design Patterns. In Coplien, J. O., & Schmidt,
D. C. (Eds.), Pattern Languages of Program
Design (pp. 345–364). Upper Saddle River, NJ:
Addison-Wesley.

key terMs And definitions

Software pattern: reusable solution to a
problem that occurs often throughout the software
development process.

Pattern Classification: Activity of organiz-
ing patterns into groups of patterns that share a
common set of characteristics.

Multilevel Software Development Process:
Software development process concerned with
the levels of abstraction in which the different
artifacts involved in the development of software
are handled.

Multistage Software Development Process:
Software development process composed of some
stages organized in a consecutive temporal order.

Pattern Adoption: Set of activities that consist
of using the pattern somehow when producing
software artifacts.

Pattern Interpretation: Activity that consists
of reading the pattern from the pattern catalogue
and reasoning about the solution the pattern is
proposing for that problem in that given context.

Pattern Adaptation: Activity of modifying
the pattern from the catalogue without corrupt-
ing it (corrupting the pattern includes corrupting
the pattern’s semantics and the pattern’s abstract
syntax).

Pattern Application: Actual use of a pattern in
the development of software, whether to develop
software applications or families of software ap-
plications, or to inspire the conception of design
artifacts.

Multilevel Instantiation: Instantiation of M2-
level patterns at the M1-level during the adoption
of patterns.

Multilevel and Multistage Pattern Classifi-
cation: Pattern classification concerned with the
levels of abstraction in which the different soft-
ware patterns are handled and composed of some
stages organized in a consecutive temporal order.

