
Tailoring RUP to Small Software Development
Teams

Pedro Borges
CIICESI, Escola Superior de Tecnologia e Gestão de

Felgueiras do Instituto Politécnico do Porto
Porto, Portugal

pmb@estgf.ipp.pt

Paula Monteiro and Ricardo J. Machado
Dept. Sistemas de Informação

Universidade do Minho
Guimarães, Portugal

pmonteiro@dsi.uminho.pt, rmac@dsi.uminho.pt

Abstract— In the last decades we have been witnessing a
significant increase in the complexity inherent to software
development projects, due not only to a higher degree of
sophistication in the contexts they aim to serve, but also to the
natural evolution of the features implemented by the available
software systems and applications. However, the reduced
dimension of many software corporations imposes a significant
constraint to the group of individuals that might be involved in
each project, with obvious consequences to their efficiency and
effectiveness. This paper describes how to accomplish a
configuration of the Rational Unified Process (RUP) in order to
obtain one set of RUP roles that, without neglecting any critical
role of the software development process, may easily be adopted
by a small or medium software development team during the
project execution period.

Keywords: RUP, small software teams, SME, RUP tailoring.

I. INTRODUCTION
Now more than ever, the software development industry is

being put to the test, as a joint result of several stress factors.
First, we have been witnessing a significant increase in the
complexity inherent to software development projects, due not
only to a higher degree of sophistication in the contexts they
aim to serve, but also to the natural evolution of the out-of-the-
box features offered by the myriad of available technologies
and software systems. On the other hand, the ever growing
importance of reducing time-to-market decreases the error
margins, boosting the pressure applied on the teams to deliver
better software in less time. Finally, the rise of strong
international players based on developing countries (like India,
China, Pakistan, etc) boosted competitiveness, given their
technological maturity (attaining the highest levels of the
CMM – Capability Maturity Model [1] scale) and cost
advantages (due to the considerably lower wages).

Since, SMEs (Small and Medium Enterprises) [2] urge for
methodologies with the potential to help them cope with the
challenges faced, arouse from the low level of process
standardization, RUP (Rational Unified Process) [3] presents
itself as a useful reference, given the wide set of roles proposed
to structure software development teams. However, in spite of
its alleged easy customization process, there’s a lack of RUP
configurations suited for micro (employing less than 10 people)
and small companies (employing less than 50 people) [2].
Thus, this paper aims to help small scale organizations by

providing them a RUP configuration that, without neglecting
any critical function of the software development process, may
easily be adopted during a project’s execution period. In order
to do so, the roles proposed by RUP were thoroughly reviewed
in order to select a much smaller subset of key participants that
will inherit the duties of the suppressed roles.

The following sections are organized as: section 2 provides
an overview of RUP tailoring approaches. Section 3 presents a
RUP tailoring to SMEs and Section 4 presents a role mapping
to the model presented. Section 5 presents the conclusions and
future work.

II. RELATED WORK
The Rational Unified Process (RUP) [3] is a well known

software process development framework which extends the
Unified Process [4] which in turn resulted from the integration
and evolution of older processes such as Rational Approach [5]
and Objectory Process [6].

RUP is presented as a disciplined approach for assigning
tasks and responsibilities within an organization, with the aim
of ensuring the production of high quality software that meets
the needs of their users and in strict compliance with a
predictable timetable and budget. Currently, this framework
comprises more than eighty artifacts, one hundred and fifty
activities and about forty roles.

Although RUP is widely used its structure lacks flexibility,
and small enterprises that adopt it have to face a very long
development cycle, and an "overload" of documentation when
using it mechanically [7]. To overcome the excess of
documentation and the high cost of a long development cycle
while, at same time, maintaining (or at least not reducing it too
much) quality, the software process must be tailored. This
means that the software process must be modified by adding,
merging and/or deleting activities, roles, artifacts and other
elements.

The need of tailoring a software process based on RUP to
decide what process elements best suit the company or project
gave origin to a metamodel for process tailoring compliant
with RUP. This metamodel extends the RUP model by adding
a set of elements and relationships, and a set of well-formed
rules used to guide the process tailoring activities [8].

The work presented in [9] conveys a very pragmatic view
about how RUP can be configured to "speed up" its adoption
(of course without missing any procedural component

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.55

317

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.55

317

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.55

306

considered essential) and thus prove the possibility of its
successful adoption in SME contexts. In this way, the path
followed was to perform a significant simplification of the list
of artifacts to produce, followed a cost/benefit analysis of each
of the artifacts provided by the methodology.

Following a completely different approach, [10] presents
one RUP configuration primarily oriented to organizations that
develop software in a process-oriented way, which may be
appropriate for small entities that do not justify the existence of
a functional structure. This paper also highlights a possible
need for internal restructuration in organizations that adopt the
RUP in order to overcome their difficulties in the composition
of the set of roles involved.

According to [11], RUP is much too complex and
sophisticated to be capable of being implemented as a
successful practice. It is alleged that RUP does not frame in the
best way the existing roles and that does not adequately involve
the users during the transition phase. In [12, 13] another
alternative approach is quantitatively compared with RUP
regarding the underlying concepts of both approaches as
evidenced in their meta-models. Also according to this article,
RUP is considered negligent on the most appropriate way to
manage the human resources involved in their use.

Other studies discuss the integration of RUP and Agile
Methods [14, 15]. They explain how RUP and Agile Methods
can be used in conjunction. Some studies show how Agile
Methods can help organizations to accomplish CMM and
CMMI goals [16, 17]. RUP, CMMI and Agile Methods can
also be used together: in [18], a requirements engineering
process based on CMMI, on RUP and on a set of agile
principles and practices is presented.

III. TAILORING RUP FOR CONSTRUCTING THE BASE MODEL
Any company, regardless of its size, has an organic

structure (more or less formal) that identifies the roles of each
employee, defines its areas of intervention and establishes the
responsibilities they have to assume, in order to achieve the
organization’s objectives. Thus, it is common to define
organizational charts and assigning specific positions to its
employees.

RUP features nearly forty roles relevant to the software
development process, assigning to each one a particular set of
specific responsibilities. However, after a brief analysis of the
applicability of this set of roles in the context of an SME in the
software development sector we can conclude that the
overwhelming majority of the cases they do not have a number
of employees as high as the number of participants expected.
Therefore, even considering that in the context of a given
project, a person can be appointed to several roles, an excessive
accumulation of responsibilities may become too complex or
demanding.

To be applicable in a simpler context, a software
development process must be based in the involvement of a
lower number of players with different responsibilities.
However, a linear process to adapt the set of roles defined by
RUP to the specific players existing in a particular organization
may find some difficulties resulting from the characteristics of

each role. In order to be more efficiently, this process should
take place in three separate stages:

1. Reduce the number of relevant roles in the process of
software development, in order to make it easier to understand
and therefore to apply. Each of the roles proposed by RUP
should be examined in order to assess whether they are
essential (and should be kept in its essence) or not (and its
tasks/responsibilities should be assigned to the remaining
essential roles);

2. Identify some restrictions to the accumulation of
tasks/responsibilities by the same person taking on the roles
obtained in the previous step;

3. Propose one mapping between the previously identified
essential RUP roles and some of the canonical roles that one
can usually find in an SME of the software development sector.
This mapping should not be considered a dogma; it should be
reviewed in the context of each SME that wishes to adopt it,
according to its specific characteristics.

Next, we will describe the Base Model which corresponds
to a RUP role simplification tailored to medium-sized
companies, which essentially seek a software process that helps
to design and implement solutions with high levels of quality
(perceived by the customer) and to deal with the complexity
inherent in projects of medium/high scale.

However, it should be recalled that the reduction in the
number of people involved in the process of software
development inevitably results in a higher criticality of
individual performances, since it is necessary that each one
assumes a much larger range of responsibilities, usually
without possessing more time or resources to perform them.
This increases not only the stress of each team member, as well
as the probability of committing an error (or omission) than if
there were a greater number of people involved in the process.
Furthermore, it is not always easy to find the necessary skills in
the people who are available to perform the activities
previously assigned to the suppressed roles.

To achieve the proposed goals, we conducted a detailed
analysis of the RUP roles in order to identify the roles
considered to be essential, by satisfying at least one of the
following conditions:

• C1: If the role is suppressed the project will
definitively fail;

• C2: The role demands a set of unique skills completely
different from those skills demanded by other roles;

• C3: The role imposes potential conflicts of interest
when merged with another role.

Taking into account the previous conditions, we suggest
that the following roles are considered essential and thus
integrate our Base Model:

• System Analyst (C1, C2);
• User-Interface Designer (C2);
• Database Designer (C2);
• Implementer (C1);
• Integrator (C1, C2);
• Software Architect (C1, C2);
• Process Engineer (C1, C2, C3);

318318307

Mappings of Base Model

• Project Manager (C1, C2);
• Project Reviewer (C3);
• Test Manager (C1, C3);
• System Tester (C1, C3);
• Course Developer (C2);

• System Administrator (C1, C2).
As an example we will present the justification of why a

given role should be considered essential. Looking into the
Process Engineer we can see that this role is essential because
it satisfies the three conditions C1, C2, C3. It is considered
essential the existence of a person mainly concerned with the
management of the development process, with the process
adaptation to the organizational context and with the
monitoring implementation of the process, in order to identify
and implement possible process improvements. This role
requires a detailed knowledge of the adopted development
process (in this case RUP). Finally, it is important to promote
the independence of this role regarding the other roles, to
ensure the legitimacy required to make adjustments and
corrections when needed.

IV. MAPPING RUP ROLES INTO BASE MODEL ROLES
Rather than the 39 original roles proposed by RUP, as we

can see by the stated in the previous section, it is feasible to
reduce to 13 the number of the essential roles to implement a
software process (that we call the Base Model) in the context of
small development teams.

However, the fact that any of the remaining 26 roles have
not been regarded as essential to the process does not mean that
we may discard their responsibilities or that they are not
considered important for the effective and efficient
implementation of the process. Instead, we propose a mapping
of the remaining roles into each one of roles previously
considered essential, according to the following guidelines:

• the appropriate profiles for performing both roles
should be easily compatible;

• the responsibilities of both roles should, whenever
possible, find themselves framed in the same (sub-)
area of expertise;

• if the responsibilities of both roles are framed in
distinct (sub-) areas of knowledge, their accumulation

319319308

by the same person will result in positive synergies; if
the elected recipient of a specific mapping is not in the
best position to accumulate it (either because it is
already responsible for too many roles or because the
involved roles require a strong commitment), another
mapping should be tried; although not being the first
choice, it will gather better conditions to ensure its
effective execution.

In figure 1, we present the Base Model roles and the
mappings between RUP roles and roles considered essential in
the Base Model. Considering figure 1, we can identify the
following mappings:

• Business-Process Analyst, Requirements Specifier,
Change Control Manager, Deployment Manager, Test
Analyst and Review Coordinator maps into Project
Manager;

• Capsule Designer, Code Reviewer. Designer and
Integration Tester maps into Integrator;

• Business Reviewer, Requirements Reviewer and
Management Reviewer maps into Project Reviewer;

• Business Designer, Use Case Specifier, Use Case
Engineer maps into System Analyst;

• Architecture Reviewer and Tool Specialist maps into
Process Engineer;

• Component Engineer maps into Implementer;
• Design Reviewer maps into Software Architect;
• Configuration Manager maps into System

Administrator;
• Test Designer maps into Test Manager;
• Graphic Artist maps into User-Interface Designer;
• Technical Writer maps into Course Developer.
As an example, we can justify the why the Architecture

Reviewer and the Tool Specialist are mapped into the Process
Engineer:

(1) The process engineer is a role that supports the project
methodology and is responsible for monitoring its
implementation and making the necessary adjustments to
optimize its effectiveness.

(2) The architecture reviewer is explicitly a technical role,
since he formally reviews the architecture designed by the
software architect, in order to validate the design choices. It is
important that the architecture reviewer has the necessary
legitimacy to point out mistakes or omissions. Apart from the
obvious technical skills, it is important to have good
communication skills, enabling to manage any conflicts with
the required sensitivity and delicacy. The process engineer is
the person in better conditions to accumulate the architecture
reviewer responsibilities, because, by the nature of his function,
he has the necessary legitimacy to evaluate the performance of
everyone involved in the software development, on which he
should have extensive experience.

(3) In what concerns the tool specialist (which includes the
identification of stakeholders needs regarding the tools to
assist/facilitate their work and the selecting the most
appropriate applications to meet their needs) we have decided
to map his responsibilities into the process engineer role.

V. CONCLUSIONS
The Rational Unified Process is a comprehensive software

development process, which aims to help organizations to

efficiently use resources at their disposal to ensure the effective
implementation of the goals they want to achieve. However,
the lack of an appropriate RUP configuration for SMEs (small
and medium sized companies) that develop software has
justified our effort to propose a reduced set of roles involved in
the implementation of the RUP methodology. As a result, we
have suggested the Base Model, which is a tailoring approach
of RUP composed by 13 roles. The other 26 RUP roles not
considered in the Base Model have been mapped into the Base
Model roles according a set of presented guidelines.

As future work, we will develop a Reduced Model that will
simplify further the RUP role set. This Reduced Model will be
suitable for micro companies.

REFERENCES
[1] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis, The capability

maturity model: guidelines for improving the software process:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] E. Commission. (2005, 2011-02-24). Small and Medium-sized
Enterprises Definition. http://ec.europa.eu/enterprise/policies/sme/facts-
figures-analysis/sme-definition/index_en.htm

[3] P. Kruchten, The Rational Unified Process: An Introduction, 3 ed.
Boston: Addison-Wesley, 2003.

[4] I. Jacobson, G. Booch, and J. Rumbaugh, "The unified software
development process," ed: Addison-Wesley, 1999.

[5] G. Booch, et al., Object-oriented analysis and design with applications,
third edition: Addison-Wesley Professional 2007.

[6] I. Jacobsen, Object Oriented Software Engineering: A Use Case Driven
Approach: Addison-Wesley Professional, 1992.

[7] L. Jieshan and M. Mingzhi, "A Case Study on Tailoring Software
Process for Characteristics Based on RUP," in CiSE 2009, pp. 1-5.

[8] E. B. Pereira, R. M. Bastos, and T. C. Oliveira, "A Systematic
Approach to Process Tailoring," in ICSEM '07, 2007, pp. 71-78.

[9] M. Hirsch, "Making RUP agile," presented at the OOPSLA 2002
Practitioners Reports, Seattle, Washington, 2002.

[10] J. M. Fernandes and F. J. Duarte, "A reference framework for process-
oriented software development organizations," Software and Systems
Modeling, vol. 4, pp. 94-105, 2005.

[11] W. Hesse, "Dinosaur meets Archaeopteryx? or: Is there an alternative
for Rational’s Unified Process?," Software and Systems Modeling, vol.
2, pp. 240-247, 2003.

[12] B. Henderson-Sellers, G. Collins, R. Dué, and I. Graham, "A qualitative
comparison of two processes for object-oriented software
development," Information and Software Technology, vol. 43, pp. 705-
724, 2001.

[13] B. Henderson-Sellers, R. Due, I. Graham, and G. Collins, "Third
generation OO processes: a critique of RUP and OPEN from a project
management perspective," in APSEC 2000, 2000, pp. 428-435.

[14] S. Ambler, Agile Modeling: Effective Practices for Extreme
Programming and the Unified Process. New York: John Wiley & Sons,
Inc., 2002.

[15] P. Kruchten, "Agility with the RUP," Cutter IT Journal, vol. 14, pp. 27-
33, 2001.

[16] D. J. Reifer, "XP and the CMM," Software, IEEE, vol. 20, pp. 14-15,
2003.

[17] M. C. Paulk, "Extreme programming from a CMM perspective,"
Software, IEEE, vol. 18, pp. 19-26, 2001.

[18] C. C. Cintra and R. T. Price, "Experimenting a Requirements
Engineering Process Based on Rational Unified Process (RUP)
Reaching Capability Maturity Model Integration (CMMI) Maturity
Level 3 and Considering the Use of Agile Methods Practices,"
presented at the Workshop em Engenharia de Requisitos, Rio de
Janeiro, 2006.

320320309

