
An Approach to Software Process
Design and Implementation Using Transition Rules

Andre L. Ferreira and Ricardo J. Machado
Dept. de Sistemas de Informação

Universidade do Minho, Guimarães, Portugal
{andre.ferreira,rmac}@dsi.uminho.pt

Mark C. Paulk
Institute for Software Research

Carnegie Mellon University, PA 15213 USA
mcp@cs.cmu.edu

Abstract— When software organizations adopt several best
practices models into one single environment the number of
activities and processes tends to increase. Managing effectively a
large and complex system of processes requires process modeling
capabilities at higher levels of abstraction. This paper presents a
modeling approach for software process design and
implementation to deal with the increasing size and complexity of
large systems of processes. A model based on an extension of
UML 2.0 Component Diagrams is used to develop a process
architecture. A transition mechanism using Little-JIL process
programming language is also proposed to support the
refinement of a process architecture to a process implementation.

Software Process Modeling; Software Process Architecture;
Multi-model Environemtns; Little-JIL

I. INTRODUCTION
To improve competitiveness software organizations are

adopting several best practices models simultaneous with the
objective of obtaining the cumulative added value each model
[1]. Each model adopted imposes new requirements leading to
an increase in the number of activities performed. e.g., if one
considers a full implementation of CMMI or ISO12207
combined with Information Technology Infrastructure Library
the number of expected activities is overwhelming.

With the high number of activities, the number of
dependencies between activities tends to increase, e.g., outputs
from certain activities become inputs to a set of related
activities. These dependencies, if not managed properly, can
lead to process inefficiencies when new practices are adopted
and can greatly limit analysis and improvement efforts by
process improvement groups. Being able to model precisely
these activities and related dependencies becomes a necessity
to deal with aforementioned limitations.

A process model provides a representation of activities to
be performed by the organization. It delivers process guidance
and supports enforcing and partial automation of the software
development process. Developing a process model should
consider development phases of process design and process
implementation. Process implementation involves the
specification of low-level process details to allow a process to
be enacted. Process design involves developing a process
architecture with the necessary process abstractions to allow,
consistently relating and incorporating process elements,
supporting reuse enhancement and tailoring of processes [2].

Each of these phases deals with process modeling at different
levels of abstraction.

Developing a process model requires the use of a Process
Modeling Language. In the past, complexity and inflexibility of
these languages limited their successful adoption [3]. More
recent proposals have gained interest not only by the research
community but also by industry. SPEM (Software and Systems
Process Engineering Meta-model), a UML based modeling
language defines process basic constructs, like activities, tasks
and roles among others to support process implementation.
Little-JIL [4] is a non-UML process modeling language subject
of increasing research that focuses on agent coordination that
also targets process implementation. Concerning the process
design phase, research has focused on defining process
abstractions to support the definitions of process architectures.
Recently, the concept of software process lines has been
introduced. The goal is to define relevant process structures to
support process design where reuse and process variability are
considered at an abstraction level where low-level process
detail is absent.

In this scenario, requirements for modeling processes at
higher levels of abstraction (design phase) differ from
modeling at a lower level (implementation phase) thus, is likely
that each requires different modeling languages. This paper
proposes a model to support the design phase and a set of
transition rules to make a transition from design to
implementation phase. For the design phase we defined a
model based on an extension of UML 2.0 Component
Diagrams and considered Little-JIL process programing
language for the implementation phase. The transition rules
guide a systematic mapping of UML components to Little-JIL
process coordination constructs. This approach is aimed
primarily to process engineers responsible for development and
maintenance of process systems that tend to have a large
number of activities and dependencies.

This paper is organized as follows: the next section presents
relevant research in the area of process modeling, focusing on
approaches that deal with modeling of processes at higher
levels of abstraction. Section 3 introduces a model to support
process design based on UML components diagrams to define
processes at higher levels of abstraction. It is described how it
can be linked with Little-JIL process constructs to support the
transition between design and implementation phases. Section
4 describes a small example of applying the transition rules

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.57

330

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.57

330

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.57

330

introduced in section 3. Section 5 concludes and outlines future
work.

II. SOFTWARE PROCESS MODELING
The first perspectives on the subject of software process

modeling have been set by Osterweil [5] and Humphrey [6].
They relate development of software processes to Software and
Systems Engineering. Osterweil argues that process
development should include phases of requirements
specification, architecture and design, and then process
implementations providing ready to execute work instructions
to software developers. Albeit a theoretical analogy to systems
and software engineering was set, the bulk of research in the
field of software process engineering has focused on process
implementation phase and a clear insight of what process
design should consider is a recent research subject.

Several authors have developed approaches to support
software process modeling at higher levels of abstraction.
Basically, structuring concepts that organize process related
abstractions are proposed to support process implementation.
Zhao et al. [7] argue the application of agent-based technology
to support software process modeling. They consider a
software processes as a collaboration of groups of process
agents, which are responsible for managing software
development activities. The concept of Process Landscape is
described by Gruhn and Woolen and focuses on modeling
complex processes at high levels of abstraction [8]. The
underlying context is organizations carrying out parts of a
process with different levels of autonomy and distributed
among different locations. A process landscape considers
process clusters as an abstraction to group processes at the
same level of detail. The landscape predominant view is of
logical dependencies between clusters of processes and
interfacing is defined as a first class modeling entity.

A recent trend in software process modeling are Software
Process Lines which are motivated by the need to have
processes more aligned with distinct development needs. It
targets highly heterogeneous project environments where
development contexts may demand different development
practices. In software process lines modeling process
commonalities and variability assumes center relevance to
support process reuse and adaptation. The concept is
comparable to the well-established concept of software product
lines. Work related to process lines is described by Barreto et
al. [9] and Munch et al. [10]. The emphasis of the work is on
describing how to create a set of processes by comparing
alternative (variability) workflow elements to core process
elements (commonalities). Alternative workflows are mapped
to features diagrams that help development of project-specific
processes.

The common line of thought in high level process modeling
approaches is that process abstractions are used to manage
coherent sets of concerns, ignoring low level modeling details.
Higher order process elements like process architectures and
process components are defined to be used along with basic or
primary process modeling elements. Recently, expressing
process commonality and variability is considered relevant to
align process implementation with development needs. Several
approaches document approaches to express variability at the

implementation level [11, 12] and few deal with it at higher
levels of abstraction.

This paper presents an approach to make a transition from a
process architecture specification to a process implementation.
A conceptual model is proposed to support the creation of a
process architecture. Little-JIL process programming language
is used to specify process implementation and also support the
transition from design to implementation phases. Interfaces
declared between architectural elements are translated to Little-
JIL language constructs using a set of transition rules.

III. SOFTWARE PROCESS DESIGN AND IMPLEMENTATION
According to Humphrey, a process architecture should

provide a supporting infrastructure relating process abstractions
to support the activity of process engineering. It should
facilitate consistently relating and incorporating process
elements, supports reuse, enhancement and tailoring of
processes. In this paper the perspective in defining a process
architecture is to focus on the narrow aspect of high level
components interfacing and abstract away the details of lower
level process definitions. Component types and connector types
are defined to support the creation of a process architecture. A
process architecture should also allow an explicit transition to
low level process implementations. With these goals in mind
we:

- Define a process design model as an extension of UML 2.0
meta-model Component Diagrams to guide the definition of
process architectures based on reusable process
architectural components.

- Describe how Little-JIL is used to specify low-level process
definitions and detail how Little-JIL semantic constructs
can be used in the refinement of process architectural
components by applying a set of transition rules.

A. Process Design Model
Fig. 1 depicts the class diagram for the process design model
as an extension (classes in grey) of the UML 2.0 Component
diagrams.

Fig. 1. Process Design Model

331331331

A Module Library provides a repository of
The goal is to support management of textu
methods applied in software development by
modules. We adopt the perspective of SPEM
software processes should be defined, mostly
combining existing methods from a method r

A Process Architecture is compo
Components. A distinction is made betwee
and HardComponent. Soft components are
architectural components with no semant
required functionality is yet to be defined to
process needs (e.g., satisfy an expected qualit
or its implementation is assured by exte
outsourced functionally. A hard component
defined by combining existing process modu
library. Next, we describe how these pro
building blocks have their semantics imple
Little-JIL language constructs.

B. Transition rules from Design to Implemen
using Little-JIL

Little-JIL [4] is defined as an agent co

based, with a formal graphical syntax proc
language. It implements sharp separation
separating internal specification of how age
work and their coordination. The basic sem
Little-JIL is the Step (see Fig. 2). A step re
work and contains the specification of the
needed to perform the task associated with t
connected to each other with badges that repr
and artifact flow. A Little-JIL process pro
work breakdown structure where the coordin
of the agents is external and is limited t
behavior of each agent. It does not specify
parameters and resources or provides inform
carry out basic units of work called Leaf Step

Fig. 2. Little-JIL Step

Three Little-JIL semantic constructs are
in supporting the transition from process arc
process implementations, namely: messag
reactions. A Little-JIL Message is sent duri
Little-JIL program to signal occurrence of ev
be associated to the need of performing a
outside of the scope of a specific practice.
used to declare events and are associa
Reactions. Reactions provide a mechanism
arrival of messages to Little-JIL steps. Of

Process Modules.
ual descriptions of
y defining process

M specification that
y, but not only, by
repository.

osed of process
en SoftComponent
e used to declare
tics defined e.g.,
o satisfy identified
ty practice or goal)

ernal parties, e.g.,
t has its semantics
ules from a module
ocess architectural
emented by using

ntation phases

oordination, visual
cess programming

n of concerns by
nts carry out their

mantic construct of
epresents a unit of

type of an agent
that step. Steps are
resent both control
gram resembles a

nation specification
to the observable

y a data model for
mation on how to

ps.

particularly useful
chitecture to actual
ges, channels and
ing execution of a

vents. An event can
a set of practices
 Messages can be

ated to Little-JIL
to respond to the

ften, performing a

specific set of practices outsi
executed is required. Reactio
combine pairs of process modu
a second process module to any
a first module. Reactions alon
precise identification of what
two separate process modu
communication mechanism
structure of Little-JIL process
synchronization and support
parallel or independent threads
process constructs a set of tran
the transition from an architec
implementation.

Transition rule 1 - a proc
defining a Little-JIL process t
connected through an interface
origin and target steps of both p

Transition rule 2 – A reac
parent step of the requiring step
root step of the connecting proc

Transition rule 3 - A
associated with the expected
modules. The message is declar
on the arc that links the step
collaboration and in the reaction

 Transition rule 4 - A ch
step of the originating step to
parameters between proces
communicated are identified a
arcs of communicating steps by
Little-JIL. Based on these tran
described next, where a pro
architecture is implemented usi

IV. PROC
This section describes an exam
rules introduced. A process c
process modules from a modul
how a portion of a process arc
process implementation usin
transition rules. Fig. 3. d
composed of 4 process mod
component includes 3 process
Configuration Management of
modules are connected by
information is flowing between
Code Review process module
report_channel indicating that
between modules. The conne
service to fulfill that requiremen

Applying rule 1, each process m
a Little-Jill process tree and t
process trees are identified. Fi
tree for Code Review that inc
associated sub-steps and the
General Documents with the C

de the scope of what is being
ons provide a mechanism to

ules by attaching the root step of
y step in the hierarchy of steps of
ng with messages allow a very
and when is occurring between

ules. A Channel provides a
not tied to the hierarchical
programs. It allows data-centric
communication of potentially

s of execution. Based on these
nsition rules are defined to help
ctural specification to a process

cess module is implemented de
tree. When a process module is
e to another process module the
process trees are identified.

ction arc is declared between the
p of the first process tree and the
cess tree.

message identifies the event
collaboration between process

red on the process step (actually
to its parent) that requests the

n arc linking both process trees.

hannel is declared in the parent
o allow the communication of
s trees. Parameters to be
and the flow is declared in the
y binding operations available in
nsition rules a small example is
ocess component from process
ng Little-JIL.

CESS DESIGN
mple of applying the transition
component built by combining
le library is used to demonstrate
chitecture can be translated to a
ng Little-JIL constructs and
depicts two HardComponents,
dules. The Static Verification
modules. The Code Review and

of General Documents process
an interface indicating that

n both modules. In this case the
has a requiring interface named
t some information must flow
ecting module is to provide a
nt.

module is to be implemented by
the connecting steps from both
ig. 4 depicts partially a process
ludes the Preparation step and
Configuration Managements of

CM root step and associated sub-

332332332

steps. Only a portion of the trees is depicted,
the steps where the interface will be impleme

Fig. 3. Process Component Diagram

Applying transition rule 2 a reaction
between the parent step (Preparation) of th
(Fill Review Report) and the target step (CM
signaled by the lightning badge in the parent

Applying rule 3, a message is declared
originating step (report_msg: StepFinishedEv
which event should trigger the execution of
to the reaction arc. The message (report_ms
in the reaction arc indicating it should be
reception of the message.

Applying transition rule 4, the report_ch
implemented by declaring a channel (repor
parent step (Preparation) of the origin s
Report). Intervenient parameters are writ
►report_channel) and read (report_done ◄
from the channel. Bindings are declared in
The parameter document of the connectin
bound with report_done from the originating

Fig. 4. Interface report_channel for Static Verificati
implemented using Little-JIL

V. CONCLUSION AND FUTURE

When software organizations adopt mul
models into one single environment, a high
requirements and goals are expected to be sa
leads to an increase in the number of activi
performed by the organizations, leading to l
systems of processes that become hard to an
effectively. This paper presents a conceptual
the definition of process architectures as an

the emphasis is on
ented.

m

n arc is declared
he originating step
M). The reaction is
step.

in the arc of the
vent �), indicating
the tree associated

sg) is also declared
e triggered by the

hannel in Fig. 3 is
rt_channel) in the
step (Fill Review
tten (report_done
◄ report_channel)
n the reaction arc.
ng process tree is

tree.

ion HardComponent

E WORK
ltiple best practice
number of quality

atisfied. This often
ities and processes
large and complex
nalyze and manage
l model to support
n approach to deal

with increasing size and compl
it describes how a process ar
process implementation using
language along with a set of
given based on a small softw
future research we aim to evol
deal with process variability at
concept of software process
tailoring at higher level of abst
process implementation in
environments. A process archit
structure and form the basis fo
process development life cycles

REFER

[1] J. Siviy, P. Kirwan, L. Mar
Harmonizing Multiple Impro

[2] R. Conradi and M. Jaccheri,
Software Process: Principle
vol. 1500, J.-C. Derniame, B
Springer US, 1999.

[3] R. Bendraou, Je, x, ze, J. M.
"A Comparison of Six UM
Process Modeling," Softwar
on, vol. 36, 2010.

[4] A. Wise, "Liittle-JIL 1.5 L
Computer Science, Universi
2006.

[5] L. Osterweil, "Software pro
at the Proceedings of the
Software Engineering, Monte

[6] W. S. Humphrey and M
modeling: principles of entit
Proceedings of the 11th int
engineering, Pittsburgh, Penn

[7] X. Zhao, K. Chan, and M.
software process modeling
engineering environment," p
2005 ACM symposium on A
Mexico, 2005.

[8] V. Gruhn and U. Wellen
processes byProcess land
Technology. vol. 1780, ed: Sp

[9] A. Barreto, E. Duarte, A. R.
the Definition of Softw
Organizations via Softw
International Conference on
Communications Technology

[10] J. Münch, M. Vierimaa, and
Process Line Architectures
Focused Software Process Im
Berlin / Heidelberg, 2006.

[11] R. Lee, T. Martínez-Ruiz, F.
SPEM v2.0 Extension to
Mechanisms," in Software E
and Applications. vol. 150,
2008.

[12] R. Martinho, J. Varajao,
Approach for Modelling Fle
23rd IEEE/ACM Internati
Software Engineering , 2008

lexity of these systems. Further,
rchitecture can be refined to a
Little-JIL process programming
transition rules. An example is
ware development scenario. In
lve the process design model to
t the design phase, exploring the

lines. Process adaptation or
traction is helpful in facilitating
highly heterogeneous project
ecture should provide a reusable
or developing different types of
s.

RENCES

rino, and J. Morley, "The Value of
ovement Technologies," SEI, 2008.

"Process Modelling Languages," in
es, Methodology, and Technology.
B. Kaba, and D. Wastell, Eds., ed:

. quel, M. P. Gervais, and X. Blanc,
ML-Based Languages for Software
re Engineering, IEEE Transactions

Language Report," Department of
ity of Massachusetts, Amherst, MA

cesses are software too," presented
e 9th international conference on
erey, California, USA, 1987.

M. I. Kellner, "Software process
ty process models," presented at the
ternational conference on Software
nsylvania, United States, 1989.
Li, "Applying agent technology to

g and process-centered software
presented at the Proceedings of the
Applied computing, Santa Fe, New

n, "Structuring complex software
dscaping”, in Software Process
pringer Berlin / Heidelberg, 2000.
. Rocha, and L. Murta, "Supporting
ware Processes at Consulting

ware Process Lines," Seventh
n the Quality of Information and
y (QUATIC), 2010.
d H. Washizaki, "Building Software
s from Bottom Up," in Product-
mprovement. vol. 4034, ed: Springer

García, and M. Piattini, "Towards a
Define Process Lines Variability

Engineering Research, Management
ed: Springer Berlin / Heidelberg,

and D. Domingos, "A Two-Step
exibility in Software Processes," in
ional Conference on, Automated
.

333333333

