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Abstract— When software organizations adopt several best 
practices models into one single environment the number of 
activities and processes tends to increase. Managing effectively a 
large and complex system of processes requires process modeling 
capabilities at higher levels of abstraction. This paper presents a 
modeling approach for software process design and 
implementation to deal with the increasing size and complexity of 
large systems of processes. A model based on an extension of 
UML 2.0 Component Diagrams is used to develop a process 
architecture. A transition mechanism using Little-JIL process 
programming language is also proposed to support the 
refinement of a process architecture to a process implementation.  

Software Process Modeling; Software Process Architecture; 
Multi-model Environemtns; Little-JIL 

I.  INTRODUCTION 
To improve competitiveness software organizations are 

adopting several best practices models simultaneous with the 
objective of obtaining the cumulative added value each model 
[1].  Each model adopted imposes new requirements leading to 
an increase in the number of activities performed. e.g., if one 
considers a full implementation of CMMI or ISO12207 
combined with Information Technology Infrastructure Library 
the number of expected activities is overwhelming. 

With the high number of activities, the number of 
dependencies between activities tends to increase, e.g., outputs 
from certain activities become inputs to a set of related 
activities. These dependencies, if not managed properly, can 
lead to process inefficiencies when new practices are adopted 
and can greatly limit analysis and improvement efforts by 
process improvement groups. Being able to model precisely 
these activities and related dependencies becomes a necessity 
to deal with aforementioned limitations. 

A process model provides a representation of activities to 
be performed by the organization. It delivers process guidance 
and supports enforcing and partial automation of the software 
development process. Developing a process model should 
consider development phases of process design and process 
implementation. Process implementation involves the 
specification of low-level process details to allow a process to 
be enacted. Process design involves developing a process 
architecture with the necessary process abstractions to allow, 
consistently relating and incorporating process elements, 
supporting reuse enhancement and tailoring of processes [2]. 

Each of these phases deals with process modeling at different 
levels of abstraction. 

Developing a process model requires the use of a Process 
Modeling Language. In the past, complexity and inflexibility of 
these languages limited their successful adoption [3]. More 
recent proposals have gained interest not only by the research 
community but also by industry. SPEM (Software and Systems 
Process Engineering Meta-model), a UML based modeling 
language defines process basic constructs, like activities, tasks 
and roles among others to support process implementation. 
Little-JIL [4] is a non-UML process modeling language subject 
of increasing research that focuses on agent coordination that 
also targets  process implementation.  Concerning the process 
design phase, research has focused on defining process 
abstractions to support the definitions of process architectures. 
Recently, the concept of software process lines has been 
introduced. The goal is to define relevant process structures to 
support process design where reuse and process variability are 
considered at an abstraction level where low-level process 
detail is absent. 

In this scenario, requirements for modeling processes at 
higher levels of abstraction (design phase) differ from 
modeling at a lower level (implementation phase) thus, is likely 
that each requires different modeling languages. This paper 
proposes a model to support the design phase and a set of 
transition rules to make a transition from design to 
implementation phase. For the design phase we defined a 
model based on an extension of UML 2.0 Component 
Diagrams and considered Little-JIL process programing 
language for the implementation phase. The transition rules 
guide a systematic mapping of UML components to Little-JIL 
process coordination constructs.  This approach is aimed 
primarily to process engineers responsible for development and 
maintenance of process systems that tend to have a large 
number of activities and dependencies. 

This paper is organized as follows: the next section presents 
relevant research in the area of process modeling, focusing on 
approaches that deal with modeling of processes at higher 
levels of abstraction. Section 3 introduces a model to support 
process design based on UML components diagrams to define 
processes at higher levels of abstraction.  It is described how it 
can be linked with Little-JIL process constructs to support the 
transition between design and implementation phases. Section 
4 describes a small example of applying the transition rules 
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introduced in section 3. Section 5 concludes and outlines future 
work. 

II. SOFTWARE PROCESS MODELING 
The first perspectives on the subject of software process 

modeling have been set by Osterweil [5] and Humphrey [6]. 
They relate development of software processes to Software and 
Systems Engineering. Osterweil argues that process 
development should include phases of requirements 
specification, architecture and design, and then process 
implementations providing ready to execute work instructions 
to software developers. Albeit a theoretical analogy to systems 
and software engineering was set, the bulk of research in the 
field of software process engineering has focused on process 
implementation phase and a clear insight of what process 
design should consider is a recent research subject.  

Several authors have developed approaches to support 
software process modeling at higher levels of abstraction. 
Basically, structuring concepts that organize process related 
abstractions are proposed to support process implementation. 
Zhao et al. [7] argue the application of agent-based technology 
to support software process modeling. They consider a 
software processes as a collaboration of groups of process 
agents, which are responsible for managing software 
development activities. The concept of Process Landscape is 
described by Gruhn and Woolen and focuses on modeling 
complex processes at high levels of abstraction [8]. The 
underlying context is organizations carrying out parts of a 
process with different levels of autonomy and distributed 
among different locations. A process landscape considers 
process clusters as an abstraction to group processes at the 
same level of detail. The landscape predominant view is of 
logical dependencies between clusters of processes and 
interfacing is defined as a first class modeling entity.  

A recent trend in software process modeling are Software 
Process Lines which are motivated by the need to have 
processes more aligned with distinct development needs. It 
targets highly heterogeneous project environments where 
development contexts may demand different development 
practices. In software process lines modeling process 
commonalities and variability assumes center relevance to 
support process reuse and adaptation. The concept is 
comparable to the well-established concept of software product 
lines. Work related to process lines  is described by Barreto et 
al. [9] and Munch et al. [10]. The emphasis of the work is on 
describing how to create a set of processes by comparing 
alternative (variability) workflow elements to core process 
elements (commonalities). Alternative workflows are mapped 
to features diagrams that help development of project-specific 
processes. 

The common line of thought in high level process modeling 
approaches is that process abstractions are used to manage 
coherent sets of concerns, ignoring low level modeling details. 
Higher order process elements like process architectures and 
process components are defined to be used along with basic or 
primary process modeling elements. Recently, expressing 
process commonality and variability is considered relevant to 
align process implementation with development needs. Several 
approaches document approaches to express variability at the 

implementation level [11, 12] and few deal with it at higher 
levels of abstraction.  

This paper presents an approach to make a transition from a 
process architecture specification to a process implementation. 
A conceptual model is proposed to support the creation of a 
process architecture. Little-JIL process programming language 
is used to specify process implementation and also support the 
transition from design to implementation phases. Interfaces 
declared between architectural elements are translated to Little-
JIL language constructs using a set of transition rules. 

III. SOFTWARE PROCESS DESIGN AND IMPLEMENTATION 
According to Humphrey, a process architecture should 

provide a supporting infrastructure relating process abstractions 
to support the activity of process engineering. It should 
facilitate consistently relating and incorporating process 
elements, supports reuse, enhancement and tailoring of 
processes. In this paper the perspective in defining a process 
architecture is to focus on the narrow aspect of high level 
components interfacing and abstract away the details of lower 
level process definitions. Component types and connector types 
are defined to support the creation of a process architecture. A 
process architecture should also allow an explicit transition to 
low level process implementations. With these goals in mind 
we:   

- Define a process design model as an extension of UML 2.0 
meta-model Component Diagrams to guide the definition of 
process architectures based on reusable process 
architectural components.  

- Describe how Little-JIL is used to specify low-level process 
definitions and detail how Little-JIL semantic constructs 
can be used in the refinement of process architectural 
components by applying a set of transition rules.  

A. Process Design Model 
Fig. 1 depicts the class diagram for the process design model 
as an extension (classes in grey) of the UML 2.0 Component 
diagrams.  

 
 

Fig. 1.  Process Design Model 
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A Module Library provides a repository of 
The goal is to support management of textu
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required functionality is yet to be defined to
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or its implementation is assured by exte
outsourced functionally. A hard component 
defined by combining existing process modu
library. Next, we describe how these pro
building blocks have their semantics imple
Little-JIL language constructs.  

B. Transition rules from Design to Implemen
using Little-JIL 

 
Little-JIL [4]  is defined as an agent co

based, with a formal graphical syntax proc
language. It implements sharp separation
separating internal specification of how age
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Little-JIL is the Step (see Fig. 2). A step re
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Fig. 2. Little-JIL Step  
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steps. Only a portion of the trees is depicted, 
the steps where the interface will be impleme

Fig. 3. Process Component Diagram

Applying transition rule 2 a reaction
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