
A Reduced Set of RUP Roles to Small Software Development Teams

Paula Monteiro
Centro ALGORITMI, Escola de

Engenharia
Universidade do Minho
Guimarães, Portugal

pmonteiro@dsi.uminho.pt

Pedro Borges
Escola Superior de Tecnologia e

Gestão de Felgueiras
Instituto Politécnico do Porto

Porto, Portugal
pmb@estgf.ipp.pt

Ricardo J. Machado and Pedro Ribeiro
Centro ALGORITMI, Escola de

Engenharia
Universidade do Minho
Guimarães, Portugal

{rmac, pmgar}@dsi.uminho.pt

Abstract—Software projects are always increasing their
complexity. The complexity of projects arises due to the
increased sophistication of software applications and of their
implemented features. However, most of the projects are
developed by small organizations. Since these companies have
a reduced dimension, the number of individuals that constitute
each software development teams will also be significantly
reduced. This paper describes a Rational Unified Process
(RUP) configuration composed by a reduced set of RUP roles.
This configuration may easily be adopted by a small software
development team during the project execution period.
Additionally, we have characterized each role in this reduced
model by identifying the corresponding activities in charge and
by creating individual sheets detailing their responsibilities. An
initial assessment of the effectiveness of this RUP configuration
was performed using CMMI-DEV maturity level 2 (ML2) as a
reference model.

Keywords-RUP; small teams; SME; RUP tailoring

I. INTRODUCTION

In the last decades we have been witnessing a significant
increase in the complexity inherent to software development
projects. This complexity is due to the natural evolution of
the features offered by the innumerous available
technologies and software systems and due to the higher
degree of sophistication of the project. The constantly
growing need of reducing time-to-market decreases the error
margins, increasing the pressure applied on the teams to
deliver better software in less time. The rise of strong
international organizations from developing countries (like
India, China, Pakistan, etc) increased competitiveness, due to
their technological maturity (most of them achieved the
highest levels of the CMM – Capability Maturity Model [1]
scale) and due to the cost advantages (because of the
considerably lower wages).

To react to this scenery and tip the playing field on their
behalf, eastern corporations have responded by establishing
partnerships with software factories based on developing
countries and, in some cases, by creating their own off-shore
software development centers. These might be a good
solution for large scale corporations and projects. However,
they are inappropriate for some SMEs (Small and Medium
Enterprises) [2], given the usually short-term nature of their

projects and the considerably time-consuming specification
requirements.

As a consequence of the above issues, SMEs urge for
methodologies with the potential to help them cope with the
challenges faced. Those challenges arouse from the low level
of process standardization that SMEs usually uses. RUP
(Rational Unified Process) [3] presents itself as a useful
reference, given the wide set of roles proposed to structure
software development teams. Despite its alleged easy
customization process, RUP lacks of configurations suited
for micro (employing less than 10 people) and SME
(employing less than 50 people [2]). So, with this paper we
aim to help these small scale organizations by providing
them a RUP configuration that, without neglecting any
critical function of the software development process, may
easily be adopted during a project’s execution period. In
order to do so, we will simplify the configuration of RUP
roles described in [4, 5].

In [4, 5], we described the base model, which is a
tailoring approach of RUP composed by 13 roles (essential
roles). We conducted a detailed analysis of the RUP roles in
order to identify the roles considered to be essential. The
remaining 26 “non-essential” roles does not mean that we
may discard their responsibilities or that they are not
considered important for the effective and efficient
implementation of the process. Instead, we proposed a
mapping of the remaining roles responsibilities into one
“essential” role, according to a set of defined guidelines. All
essential roles and mappings between the non-essential roles
and the essential are presented in [5]. In Fig. 1, we can see
the base model roles and the non-essential roles mapped to
each essential role.

In this paper, the base model roles will be thoroughly
reviewed in order to select a much smaller subset of key
participants in a small software development team, by
considering some of the previous essential roles as
non-essential. The remaining essential roles will inherit the
duties of the suppressed roles. This new model will be
evaluated by analyzing the CMMI ML2 accomplishment
when we use our RUP configuration.

The following sections are organized as: Section 2
provides an overview of RUP tailoring approaches. Section 3
describes and justifies our approach to get a RUP
configuration to SMEs (that we call reduced model); Section
4 presents a complete description of the responsibilities of

978-1-4673-2352-9/12/$31.00 c© 2012 IEEE ICSSP 2012, Zurich, Switzerland190

two roles; in Section 5 we briefly describe the case study we
have developed to initially assess the effectiveness of this
RUP configuration using CMMI-DEV ML2 as a reference
model. Section 6 presents the conclusions and future work.

II. RELATED WORK

In the last years several software process development
frameworks have been presented and implemented. One of
the most well-known frameworks is the Rational Unified
Process (RUP) [3]. This is an iterative software development
process which assigns tasks and responsibilities within an
organization, to ensure the production of high quality
software (meeting the needs of their users in strict
compliance with a predictable timetable and budget). RUP
framework defines three basic elements: activities, roles and
artifacts. A set of activities, roles and artifacts need to be
selected according to the software project. Each project is
performed by a group of actors having one or more roles
assigned. Each role participates in one or more activities and
as result of each activity one or more artifact is produced.
This software development process is composed by more
than eighty artifacts, one hundred and fifty activities and
about forty roles.

Despite RUP being widely used its structure lacks
flexibility, and small enterprises that adopt it have to face a
very long development cycle, and an "overload" of
documentation when using it mechanically [6, 7]. Tailoring
the software process was a way to overcome the “overload”
of documentation and the high cost of a long of development
cycle while the quality is maintained or slightly reduced.
This means that the software process must be modified by
adding, merging and/or deleting activities, roles, artifacts or
other elements.

The conclusions of a study presented in [8] gave origin to
set of research efforts described in [9-11]. In these studies it
is considered that leaving the responsibility of tailoring RUP
to each project context will cost too much time and
resources. To overcome this issue the teams should use an
already adapted version of RUP before they start each
software project.

A metamodel [12] for process tailoring compliant with
RUP arose from the need of tailoring a software process
based on RUP to decide what process elements best suit the
company or project. This metamodel extends the RUP model
by adding a set of elements and relationships, and a set of
well-formed rules used to guide the process tailoring
activities.

The work presented in [13] presents how RUP can be
configured to "speed up" its adoption, without missing any
procedural component considered essential, and thus prove
the possibility of its successful adoption in SME contexts.
The author starts to perform a significant simplification of
the list of artifacts to produce, followed by a cost/benefit
analysis of each of the artifacts provided by the
methodology.

In [14], RUP is considered highly complex and
sophisticated to be capable of being implemented as a
successful practice. It is alleged that RUP does not frame in

the best way the existing roles and that does not adequately
involve the users during the transition phase. In [15, 16]
another alternative approach is quantitatively compared with
RUP regarding the underlying concepts of both approaches
as evidenced in their meta-models. Also according to this
work, RUP is considered negligent on the most appropriate
way to manage the human resources involved in their use.

Some studies [17-21] present extensions to RUP in order
to make it compliant with CMM and CMMI, in particular
with ML2 and ML3. To extend RUP, these works analyze
the gaps between RUP and CMM or CMMI and then
propose activities and artifacts that will complement RUP to
allow the compliance with the other models.

Agile Methods (AM) are attempting to offer once again
an answer to the impatient business community asking for
lighter weight and at same time faster software development
processes [22]. There are several examples of AM: Crystal
[23], Agile Modeling [24], Scrum [25] and Extreme
Programming [26]. Some of the agile practices are used to
change the team roles, like for instance, cross-functional and
self-organizing teams [22, 27]. In the cross-functional teams
approach project team is divided into several small groups
with the necessary know-how to perform a set of roles. In the
self-organizing team approach, followed for instance by
Scrum, the team is organized by itself instead of being
organized by the project manager.

The integration of RUP and AM are studied in [24, 28-
30]. In those works it is explained how RUP and AM can be
used in conjunction. According to the author it is relatively
easy to the RUP users to adopt AM practices. Since RUP
could be tailored by the users to meet their needs, the merge
between RUP and AM practices is easy to make.

RUP, CMMI and AM can also be used together [31]. In
this study the authors present a requirements engineering
process based on CMMI, on RUP and on a set of agile
principles and practices. They describe the components of
this requirements engineering process and the process
compliance with CMMI. Regarding the AM, the authors give
some orientations on the usage of agile practices in their
requirements engineering process.

Several of the research efforts discussed in this section
propose the simplification or extension of RUP, by adopting
tailoring techniques. However, none of them consider the
organizational context existent in SMEs, namely from the
roles point of view. In this paper we address this perspective.

III. REDUCED MODEL

Despite the effort already carried out to get a mapped
sub-set of the original RUP roles [4, 5], the resulting base
model is still difficult to be directly adopted by SMEs.
Therefore, we have considered to be appropriate the seeking
for a model involving a smaller number of roles, giving up of
some specializations and promoting versatility. However, to
achieve this smaller set of roles, it is not adequate to remove
some roles and randomly distribute their responsibilities by
the remaining ones. In doing so, the balance achieved with
the base model would be deprecated in the resulting reduced
model, implying the failure of its execution due to the

191

inability of one or more individual in perform their
responsibilities. Instead, it is proposed to carry on the
simplification process according to the following guidelines:
(1) identifying which roles previously considered “essential”
may have lesser prominence when compared with the others;
(2) identifying the role in better conditions to assume the
responsibilities of each excluded participant, considering his
profile; (3) validating if the proposed mappings will not
unduly increase the intervention area of the destination roles,
to ensure that they have real conditions to responsibly
assume the responsibilities of the various tasks to be
performed.

In the base model some of the recommended mappings
were between suppressed roles into one role that in the
reduced model described in this paper will be eliminated as
an autonomous role. Therefore, it is crucial to define new
mappings. In addition, it is required not only to validate if the
new mappings do not overload too much any remaining role,
but also to ensure that they do not jeopardize the
independence that should exist between some role holders. In
cases in which this occurs, a new mapping should be
proposed in order to balance the responsibilities and
workload of each essential role.

However, it is necessary to be conscious that the possible
easiness of applying the reduced model when compared with

the base model is usually achieved with a quality reduction
in the artifacts produced and/or a higher production cost (due
to the less experience/specialization of the people involved).
Nevertheless, these disadvantages can be regarded as a minor
evil in organizational contexts, in which the only alternative
would be the use of a much more ad-hoc process without
roles and responsibilities formalization which often results in
a greater waste of resources and inconsistency of actions.

In Fig. 1, we present a comparative table between the
base model (from [4, 5]) and the reduced model (proposed in
this paper). In this table it is visible the level of
simplification performed in the reduced model when
compared with the base model. By analyzing the table, we
can see the elimination (as autonomous roles) of the
following essential roles: system analyst, software architect,
user-interface designer, course developer and database
designer. The responsibilities of those roles were mapped
into the remaining roles. Next, we will present the proposed
mappings and the respective justification.

A. System Analyst, Business Designer and Use Case
Specifier Maps into Project Manager

According to RUP, one of the system analyst
responsibilities is to coordinate the requirements elicitation
process in order to delimitate the project scope.

Figure 1. Comparative table between the base model and the reduced model

192

However, his intervention should be monitored and
coordinated by the project manager, since he is the person
closest to the client and that needs to be constantly informed
about the work in progress. Furthermore, in SMEs is
common to assign the project manager role to a person with
Software Engineering background (or even with
Requirements Engineering background). Therefore, we
believe that we can eliminate the system analyst and at same
time impose a greater involvement of project manager in the
requirements elicitation process. In some cases, however, the
system analyst can optionally be maintained in coexistence
with the project manager.

The business designer intervention intends to improve
the work of the business-process analyst, in order to
characterize properly and thoroughly a part of the client
organization. Therefore it can be considered a supporting
role to the business-process analyst activities. So, we
consider acceptable to map this role into the project
manager, extending in a natural way its intervention since he
is also responsible for the business-process analyst tasks.

The use case specifier role interacts closely with the end
users and work together with the system analyst in the
description of the use cases that embody the identified
requirements. Since this role is not defined as having their
own specific tasks but only acts as an assistant, he should
follow the system analyst and be merged with the project
manager.

B. Software Architect, Database Designer, Course
Developer and Designer Reviewer Maps into Integrator

Although cyclical, the involvement of the software
architect role in the development process is meaningful in its
beginning, namely in the draft and detail phases. Therefore,
in smaller organizations, it is difficult for these professionals
to claim their value since it is hard to make their work
profitable in the subsequent project phases. Usually the
project size and/or complexity of such organizations do not
justify the need for the software architect role. Frequently it
is not possible to provide to these professionals the resources
required (time for research, training, infrastructure, etc.) to
follow efficiently the emergence of relevant technological
developments. So, maintaining this role will be artificial,
resulting inevitably in its neglect during the methodology
operationalization. Thereby, we propose the mapping of
software architect into the integrator whenever necessary,
because he shares the permanent need for technological
updating, and because the person chosen to assume this role
will be the most technically experienced inside the
organization. However, there are disadvantages associated to
this simplification: possible loss of coherence in software
architecture activities, conducted either in separate projects
or by different integrators within the same project, due to the
absence of an external intervener to the project team that will
act as a reference and help each integrator to find the best
solution to the technological issues; possible decrease in the
capacity of organizational learning and consequently of the
innovative potential of the organization. These pros and

cons, justify that the software architect role can optionally be
maintained in coexistence with the project manager.

The majority of the undergraduate degrees address
technical training (more or less advanced) on modeling and
design of database models. Although some more advanced
concepts (like triggers, stored procedures, etc.) are only
addressed in the context of a specific database engine/
technology. Nevertheless, academic training usually does not
cover more advanced topics (such as administration, backup
strategies and data recovery, and optimization of the
database engine/ technology). Thus, organizations seeking to
have this particular knowledge need to apply for specialized
training and usually associated to a specific database engine.
However, the majority of professionals in this area of
knowledge possess the minimum know-now required to
perform this task. Therefore, we consider that, under the
ongoing simplification effort, the database designer could be
mapped into the integrator or the implementer. However, the
fact that the integrator has a broader view of the project
compared to the implementer can provide him the necessary
capability to design a data model that includes not only all
the current needs but also the improvements probably
requested in a near future. Thus, we propose the mapping of
the database designer into the integrator.

The quality of the support material to the user training is
extremely important for the adoption of a new software
application. In SMEs it is not necessary to maintain the
course developer as an essential role, since, although
probably not have training in the educational and training
area, the integrator shall have all the conditions to produce
support material to clarify the end-users about the use and
operation of the new software application. The support
material produced shall be evaluated and approved by
another person in order to identify and correct possible gaps
before its delivery to the end-users.
In the base model the design reviewer was mapped into the
software architect. However, in the reduced model the
software architect can optionally be considered a
“non-essential” role. Thereby, it is necessary to identify
another role capable of assuming the design reviewer
responsibilities. The most reasonable solution is to map this
role into the integrator, likewise to what was proposed to the
software architect.

C. User-Interface Designer, Designer, Graphics Artist and
Technical Writer Maps into Implementer

Although undoubtedly very important to the success of a
project, the attractiveness and usability of the implemented
user interfaces are issues that present lower priority when
compared with others (like time management and risk
management). This is why the user-interface designer is a
natural candidate to be mapped into other role. Therefore, it
is proposed that each implementer will also assume this role,
because they usually are involved in the implementation of
user-interfaces, even if those interfaces were not designed by
them. So, it is normal that within his responsibilities and
from the interaction with the user-interface designers, the
implementers will learn the most important principles to

193

observe, and consequently replace the user-interface
designers.

In the base model, the designer role was mapped into the
integrator; assigning the designer reviewer role to the
integrator results in a mismatch of responsibilities.
Obviously, this situation is highly undesirable, since it will
concentrate on the same person the system design
responsibility and the evaluation of its correctness,
destroying the process independence. On the other hand, the
reduced model maps several additional roles to the
integrator, which means that there is a tendency to the
degradation of operational effectiveness, as a result of its
huge range of responsibilities. For the above reasons, in
order to minimize these problems, we propose to map the
designer into the implementer, which will enable him to
actively participate in the system design.

The performance of the graphic artist benefits from an
accurate aesthetic sensibility and some experience in the use
of image manipulation applications. However, since it is
common that these characteristics are also presented in the
user-interface designer, this role can also be the responsible
for meeting the project needs of image and graphic
communications. However, since the user-interface designer
was mapped into the implementer, the graphic artist should
also be mapped into this role.

By suppressing the course developer as an essential role,
the technical writer can no longer delegate to this role the
production of support material and user manuals, with the
aim to release the implementers for development activities.
However, in small size teams, it is essential to enhance the
knowledge of all participants. Therefore, since the contents
to be produced by the technical writer emanates mainly from
the implementation details controlled by the implementers, it
is recommended to map the technical writer into this role.

D. Use Case Engineer Maps into Test Manager

In the base model, the use case engineer was mapped
into the system analyst role. As we have already discussed, in
the reduced model the system analyst role can optionally be
mapped into the project manager role. Following the same
rationale used to propose the system analyst mapping, the use
case engineer should be mapped into the project manager
role. However, we propose the mapping of the use case
engineer role into the test manager, basing our decision on
the following reasons:

 the test manager gathers all the technical conditions
required for the proper performance of this role;

 as a result of the simplification process implicit in
the reduced model, the project manager will be
responsible for ten different roles, combined with the
fact that he is the major responsible for the project,
resulting in a huge load of responsibilities. So, it is
more realistic to consider the test manager in better
conditions to perform this role successfully;

 this mapping will increase the exhaustive knowledge
of the requirements by the test manager which will
allow an easily test plan preparation, and help the
project manager to monitor the implementation.

IV. CHARACTERIZATION OF SOME ESSENTIAL ROLES

In the previous section, we carried out the exercise of
reducing the number of RUP roles existent in the base model
to make plausible the process application in the context of an
SME. For this, we propose the mapping of roles established
for the base model into a more limited set of eight distinct
roles.

However, the operationalization of this synthesized set of
roles lacks a detailed definition of their responsibilities in
order to delimit the area of intervention of each participant.
The characterization of the essential roles allows an easier
selection of the person with the most suitable profile for each
role and also describes to each individual what is expected
from his intervention. However, since some of the
organizations that are interested in adopting this set of roles
may not be familiarized with RUP, we will present them
independently of RUP terminology.

Accordingly, in order to contextualize the interactions
that take place between the individuals, Fig. 2 identifies the
most common communication flows. The diagram reveals
that, within the same project, several lines of development
may evolve concurrently.

However, it is not possible to implement any project
without the existence of a significant interaction between the
provider entity (in this case, a small software development
company) and the client entity, consolidating multiple
communications flows. Nonetheless, the existence of several
contingent communications among the several internal and
external stakeholders, the main link between the inside and
outside of the organization should be the project manager,
since only in this way can be ensured the effective control
over the project execution.

Next, we present two examples of role descriptions
detailing their responsibilities. Since we are presenting the
reduced model, the role descriptions will describe the
responsibilities of each role taking into account this model.
These individual sheets do not intend to define the tasks of
each role but to help their owners in their daily work, making
it easier to remember what they have to do in each moment.
So, it is natural that some small duties do not appear in these
sheets, mainly if it is not translated into a concrete task that
has to be performed at a given time. Despite presenting only
two examples of role descriptions, we have all the individual
sheets to the reduced model roles. These sheets were all used
in the case study. In this paper, we have decided to include
the descriptions of the roles integrator and implementer due
to the fact that they form a pair of roles that work together
and because they present a set of diverse responsibilities
interesting to be presented here.

A. Integrator

This is certainly one of the most important roles of the
proposed models. He is responsible to coordinate the
production activities of the artifacts needed to achieve the
objectives established by the project manager for a given
system.

194

Figure 2. Communication Flow (Internal and External)

Thus, he must not only to assign tasks to the
implementers, but also to monitor periodically their
implementation in order to detect (as early as possible) any
delays or problems, which should be solved in cooperation
with the project manager. Additionally, he should cooperate
with the test manager in order to provide all the necessary
assistance to the evaluation of the artifacts available within
his developments scope. His intervention is crucial to
address two other aspects: the integrator should be able to
overcome, by virtue of his experience, the eventual
inexistence of technical knowledge from the project
manager to efficiently guide the activities of the
implementers allocated to the project; the high number of
implementers involved in the implementation of large
projects would make virtually impossible for one person
(specifically the project manager) to coordinate and control
their work. It is possible to overcome this problem by
distributing the implementers by several lines of
development, each one coordinated by a different integrator.
The activity of this role is primarily focused within the
organization, although it may need to interact directly with
the outside world, mainly in projects where the external
entities have a quality control team. The integrators play an
important role in the operationalization of the reusing
strategy of the organization source code, since they are
responsible to ensure the reuse of the maximum number of
existent components and to promote the creation of new
components for general purposes with potential relevance for
future projects.

1) Responsible for: R1: Ensuring compliance with all
the defined objectives within his developments scope.
R2: Coordinating, as efficiently and effectively as possible,
the implementers work, assigning them tasks best suited to
their profile and avoiding situations of idle dependencies. In

this sense, he should plan (as early as possible) the activities
to develop throughout each iteration, defining timely and
unequivocally the responsibility for implementing each task.
R3: Proposing to the project manager the number and
duration of the iterations to perform, their content and their
artifacts, along with the technical characteristics of each.
R4: Planning and execute the integration of the components
implemented within his developments scope, in order to
produce the required version in each iteration.
R5: Planning and performing the appropriated integration
tests for each produced version, to ensure that the
components included in the same version work properly
together.
R6: Proposing to the process engineer the content, format
and location of the internal documentation to be produced
during the project.
R7: Ensuring timely production and publication of internal
documentation considered necessary.
R8: Classifying each request of change received as simple
(can be embedded in the current iteration without prejudice
the other features) or complex (involves reduction of
quality/functionality or increase of time or cost).
R9: Alerting (as early as possible) the project manager to
situations where it is not possible to achieve all the iteration
objectives within the time scope.
R10: Proposing to the process engineer the list of
components to reuse and non-existent that can be created
within his developments scope.
R11: Keeping, in collaboration with the project manager, a
record of most meaningful events related to the project
development (for instance, external entities delays, artifacts
acceptance, etc.).
R12: Managing the communication between the project
manager and the implementers that he coordinates.

195

R13: Evaluating, jointly with the process engineer, the
performance of the implementers that he coordinates.
R14: Identifying and reporting to the project manager the
project infrastructure needs (for the several environments to
be established).
R15: Executing certification/production requests and
ensuring the creation of supporting documentation.
R16: Ensuring the project availability in the development
environment.
R17: Getting aware about the implementation details within
his developments scope and be capable to discuss with other
stakeholders (internal or external).
R18: Periodically inspect the source code generated by the
implementers that he coordinates and assess their quality and
compliance with the defined policies for the project.
R19: Standardizing, in accordance with the process
engineer, the working methods of his team, in particular
regarding to: tools (planning, coordination, document
management, development, modeling, logging, unit testing
and bug tracking) to be used; development methodologies
and standards; package/components names; version control
system location; code review process; integration build
usage; error codes; log file formats and categories to be used;
configuration settings (file, database, etc.) of each
component within his developments scope.
R20: Ensuring that the implementers that he coordinates
adopt the best practices of software development, namely: do
not use hard-coded values, opting instead by its inclusion in
the component/application configuration; implementation of
unit testing in the components developed by them; frequently
update (periods less than one week), in the control version
system, the source code of the components in which he is
involved with.
R21: Following the execution of the internal (and possibly
external) audit quality plan on the artifacts produced within
his developments scope.
R22: Periodically check the holidays calendar of the
implementers that he coordinates.
R23: Ensuring the production, delivery and preservation of
the required documentation to support the
certification/production execution process related to his
development scope.
R24: Notifying the project manager whenever he intends to
make a holidays change.
R25: Evaluating the implementers’ proposal for the
interfaces of the main components of the system.
R26: Proposing to the process engineer the major technical
decisions, namely: list of tools, application servers and
database engines to be used; UML deployment diagram that
describes how the system is interconnected with all the other
relevant systems; UML component diagram describing the
main components available in his development scope and
identifying the relationships between them.
R27: Identifying, estimating and reporting to the project
manager and process engineer the project technical risks
resulting from the adopted architectural decisions.
R28: Preparing the indexes, views, constraints, triggers and
stored procedures required to optimize the use of the data

models supported by the database engines for which he is
responsible.
R29: Identifying, in cooperation with the project manager,
the content, format and location of the supporting
documentation to be produced during the project within his
developments scope.
R30: Designing the data model needed within his
developments scope.

2) Cardinality: This role presents a mandatory nature
and can even be performed simultaneously by several
individuals in the same project, making each one
responsible for a different line of development which,
although possibly related to the other, has its own objectives
and evolves independently of the others.

3) His Performance is Critical to: Ensure the goals
achievement for each iteration.
Ensure the motivation of the implementers that he
coordinates.
Protect the implementers he coordinates from internal and/or
external pressures that may constrain their performance.
Detect non-feasible requirements or insufficiently described.

4) He Should Avoid to: Influence the commercial
decisions of the project manager.
Oppose and/or reject to cooperate with the software
architect.
Antagonize the test manager and/or not provide all the
requested information.

5) At the Beginning of the Project He Should: Perform
the followings responsibilities: R1, R6, R14, R19, R22,
R25, R26, R27, R29 and R30.
Check if his holidays calendar is updated and if not, report it
to the project manager.
Post, in a place defined by the organization, the following
information: number and duration of the iterations to be
performed (and its content) in agreement with the project
manager; content, format and location of the internal
documentation in agreement with the process engineer;
definition of working procedures in agreement with the
process engineer; reference to the data models used within
his developments scope; identification of all external
stakeholders connected with the project, their
characterization and known contacts.

6) At the Beginning of Each Iteration He Should:
Perform the followings responsibilities: R4, R10, R18 and
R21.
Assign tasks to the implementers that he coordinates.
Monitor the execution of the moving on to
certification/production of the previous iteration produced
artifacts.

7) During Each Iteration He Should: Perform the
following responsibilities: R1, R2, R8, R9, R11, R12, R15,
R16, R17, R20 and R28.
Promote weekly current status meetings (max. 30 min.) with
the implementers that he coordinates.
Validate the feasibility of the established requirements for
the system under his responsibility and, if this does not

196

happen, help to find an alternative considered viable and
acceptable by the external entities.
Detect any new requirements arising from the
implementation of the project which, after being properly
documented, should be provided to the project manager (and
if exists to the system analyst).
Detect the established requirements that are not sufficiently
described and reporting them to the project manager (and if
exists to the system analyst).
Detect possible requirements which have not been made
explicit by external entities, and may be within their
expectations or if they represent a business opportunity that
could be exploited and inform the project manager (and if
exists the system analyst).
Whenever justified, notify the project manager and the
process engineer about the need to change the architecture
within his developments scope and/or technical risks
identified and update the documentation affected by it.
Prepare the required contents to execute the training plan
offered to end users and to the several support teams
(whether they are internal or external).

8) At the End of Each Iteration He Should: Perform the
following responsibilities: R5, R13, R22 and R23.
Perform the integration of the components implemented
within his developments scope, in order to produce the
required versions in each iteration, ensuring the availability
to moving on to certification/production.
Ensure that all developed components are updated in the
version control system.
Ensure that the database designer and implementers under
his coordination have fulfilled their activities for closing the
iteration.
Review if the project infrastructure requirements are
maintained in the next iteration, and if not, notify the project
manager about the necessary changes.
Evaluate, together with the process engineer, if the
implementers under his coordination in the previous iteration
are suitable and enough to his development scope in the next
iteration.
Ensure that the existing data about the allocation of his
working time are updated and available.
Review, with the project manager, the list of artifacts to
produce in the next iteration, along with the technical
characteristics of each, which shall include: applications:
new features (described in free text, documents or diagrams),
availability (online, outdoor installation, DVD, etc.),
communication and image requirements (graphical
interfaces, etc.); documents: languages, addressed topics,
format (Word, Excel, PDF, etc.), communication and image
requirements (using templates, etc.).
Check and notify the project manager about the need to
make changes on holydays dates that match with the next
iteration.
Ensure the availability of the necessary training and support
material.

9) At the End of the Project He Should: Ensure that the
database designer and the implementers under its
coordination have fulfilled their project closing activities.

Communicate to the process engineer the assessment of the
technical and behavioral skills of the implementers that he
coordinated throughout the project.
Communicate to the process engineer the assessment of the
components reused within his developments scope,
identifying any correction or change to accomplish.
Collaborate, coordinated by the project manager, on the
execution of a backup (at least in duplicate) of all relevant
information (source code, artifacts, etc.) associated with his
developments scope.
Communicate to the process engineer the assessment of the
software development process used in the project, suggesting
possible amendments or evolutions.

B. Implementer

The tasks associated to this role are generic by their
definition, because they vary according to the requirements
established for the components/systems to be developed.
However, in general terms, it can be said that the
commitment and professional pride that should guide the
intervention of implementers will be prevalent for the
fulfillment of the external commitments assumed by the
organization and to obtain the desired quality levels for the
artifacts implementers help to produce.

1) Responsible for: R1: Adopting best practices of
software development.
R2: Performing with the utmost commitment and
professional pride, the tasks assigned by the integrator that
coordinates his work.
R3: Notifying the integrator if he wants to make a change in
the holydays dates.
R4: Alerting as soon as possible his integrator when it is not
possible to finish a task within the deadline.
R5: Reporting weekly to his integrator the time needed to
complete his tasks.

2) Cardinality: This role has a mandatory nature and
can be performed simultaneously by several individuals in
the same project and divided by several lines of
development.

3) His Performance is Critical to: Enable a possible
corrective action, as early as possible, in situations of
potential non-compliance with the objectives.
Create artifacts (applicational or not) with the quality level
desired by the organization.

4) He Should Avoid: Not notify the respective integrator
whenever he considers: not possessing the adequate
knowledge to perform a task assigned to him; the deadline
that was established to perform a given task is not enough.

5) At the Beginning of the Project He Should: Check if
his holidays’ calendar is updated and if not, report it to his
integrator.
Post, in a place defined by the organization, the identification
of all external stakeholders involved with the project, their
characterization and contacts. (This is a generic task, for
several roles, to ensure that everyone shares the information
about the stakeholders with whom they have contact in the
project).

197

6) At the Beginning of Each Iteration He Should:
Request to the integrator the tasks allocation.

7) During Each Iteration He Should: Perform the
following responsibilities: R1, R2, R3 and R4.

8) At the End of Each Iteration He Should: Ensure if the
components source code that he is involved with is updated
in the version control system.
Check and notify the integrator the need to make changes on
the holydays dates that matches with the next iteration.
Ensure if the existing data about the allocation of his
working time is updated and available.

9) At the End of the Project he Should: Communicate to
the integrator the assessment of the components reused,
identifying any correction or change to accomplish.
Communicate to the process engineer the assessment of the
software development process used in the project, suggesting
possible amendments or evolutions.

V. CASE STUDY

A case study was developed to assess the reduced model.
It involved seven development software teams. The software
project developed by the teams was requested by a real
customer that provided all the information about the
organization and interacted directly with the teams.

The teams were constituted by second year students of
the course 8604N5 Software System Development (SSD)
from the undergraduate degree in Information Systems and
Technology in University of Minho (the first University to
offer in Portugal DEng, MSc and PhD degrees in
Computing). The teams had between 13 and 17 people (1
team with 13, 3 teams with 14, 2 teams with 16 and 1 with
17). Each team receives an sequential identification number
(Team 1, Team 2, .., Team 7) and the description of the
customer problem. Two teams were randomly chosen to not
adopting the RUP reduced model (we call these two teams
the "Control Teams"), while the other five teams followed
the guidelines established by the RUP reduced model,
executing the phases of inception, elaboration and
construction. The project lasted 3 months. The control teams
did not follow any kind of guidelines for organizing
themselves in term of roles/responsibilities/team
organization.

The teams following RUP used the 8 roles proposed by
the reduced model. Due to the complexity of the system, we
have decided to instantiate two of the optional sub-roles

referred in the Fig. 2: system analyst (that corresponds to a
part of the responsibilities of the project manager) and
software architect (that corresponds to a part of the
responsibilities of the integrator). Team organization was as
follows: 1 project manager, 1 or 2 system analysts, 1 or 2
integrators, 1 software architect, 1 project reviewer, 1
process engineer, 4 to 6 implementers (programmers), 1
system administrator, 1 test manager and 1 system tester.

The assessment of the reduced model was conducted by
adopting the CMMI-DEV v1.2 ML2 reference model. With
the exception of SAM (Supplier Agreement Management),
all the other process areas had been assessed.

The diagnostic performed [32] within each of the teams
adopted the following 5 steps: (1) a survey with 125
questions was developed based on generic and specific
practices of CMMI-DEV v1.2 ML2; (2) the developed
survey was assessed by 2 experts in SCAMPI model. The
resulting suggestions were incorporated into the final version
of the survey; (3) survey was answered by each of the project
managers of the 7 teams; (4) each team element was
characterize by mean of an online survey to collect
information about age, sex, RUP role performed (except for
the control teams), and the number of working hours. The
survey response was 100%; (5) the RUP work products
generated by each team were assessed in terms of their
existence. This has allowed the validation of the data
obtained from step 3 by each one of the project managers.

Table 1 shows the results obtained after the assessment:
we present the percentage of accomplishment of specific
practices for each process area. Although there is a
significant difference between the various teams, the
obtained results show that when the teams use the reduced
model they are able to accomplish CMMI ML2 adequately.

The team average of the control teams is about 50%,
while the average of the team averages of the teams that
adopted the RUP reduced model is about 80% (two of these
teams obtained averages in the scale of 90%). Interpreting
these results we can conclude that the adoption of the
reduced model allows an easier accomplishment of CMMI
ML2.

VI. CONCLUSION

Throughout this work, we have shown that it is possible
to configure the set of RUP roles in order to significantly
reduce its size and thus maximize its use by an SME.

TABLE I. CASE STUDY RESULTS

198

Consequently, we performed a reduction of the
complexity embodied in the gathering of several RUP roles
around a set of individuals who should be considered
essential. As a consequence, we have described two models:
(1) the base model presented in previous publications [4, 5];
and (2) the reduced model, a more pragmatic model,
composed by eight distinct roles, that aims to allow an SME
to effectively control the progress of their projects and avoid
overlap and/or uncertainty of each individual scope of
intervention.

Participants’ performance in the software development
process carried out in an SME is highly influenced by the
limited range of human resources that usually accumulate a
new role with other responsibilities in an ongoing project or
in previous projects. So, we decided to describe the
responsibilities of each role, to help each individual to know
what is expected from him (by the exhaustive enumeration of
his responsibilities) and also to identify the appropriate time
to perform them (associating each of his tasks to a phase in
the project). Additionally, we tried to reduce the margin of
error, naming a specific individual to verify/approve the
completion of an action item performed by another
participant.

We have assessed the effectiveness of the reduced model,
by using CMMI-DEV v1.2 ML2 to compare the maturity of
teams that adopted the reduced model with the maturity of
other teams that did not.

As future work, we will compare the maturity of teams
that will adopt the reduced model with the maturity of other
teams that will follow one agile methods approach, when
considering CMMI-DEV v1.2 ML3 specific practices.

ACKNOWLEDGMENT

This work has been supported by FEDER through
Programa Operacional Fatores de Competitividade –
COMPETE and by Fundos Nacionais through FCT –
Fundação para a Ciência e Tecnologia in the scope of the
project: FCOMP-01-0124-FEDER-022674.

REFERENCES
[1] M. C. Paulk, et al., The capability maturity model: guidelines for

improving the software process: Addison-Wesley, 1995.

[2] E. Commission. (2005, 2012-03-12). Small and Medium-sized
Enterprises Definition,
http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/sme-
definition/index_en.htm

[3] P. Kruchten, The Rational Unified Process: An Introduction, 3 ed.:
Addison-Wesley, 2003.

[4] P. Borges, et al., "Tailoring RUP to Small Software Development
Teams," in SEAA 2011, pp. 306-309.

[5] P. Borges, et al., "Mapping RUP Roles to Small Software
Development Teams," in SWQD 2012, pp. 59-70.

[6] C. E. de Barros Paes and C. M. Hirata, "RUP Extension for the
Development of Secure Systems," in ITNG 2007, pp. 643-652.

[7] L. Jieshan and M. Mingzhi, "A Case Study on Tailoring Software
Process for Characteristics Based on RUP," in CiSE 2009, pp. 1-5.

[8] G. K. Hanssen, et al., "Using Rational Unified Process in an SME – A
Case Study," in EuroSPI 2005, pp. 142-150.

[9] G. K. Hanssen, et al., "Tailoring RUP to a Defined Project Type: A
Case Study," in PROFES 2005, pp. 209-228.

[10] H. Westerheim and G. K. Hanssen, "The introduction and use of a
tailored unified process - a case study," in SEAA 2005, pp. 196-203.

[11] G. K. Hanssen, et al., "Tailoring and Introduction of the Rational
Unified Process," in EuroSPI 2007, pp. 7-18.

[12] E. B. Pereira, et al., "A Systematic Approach to Process Tailoring," in
ICSEM, 2007, pp. 71-78.

[13] M. Hirsch, "Making RUP agile," in OOPSLA 2002 Practitioners
Reports.

[14] W. Hesse, "Dinosaur meets Archaeopteryx? or: Is there an alternative
for Rational’s Unified Process?," in SoSyM, vol. 2, pp. 240-247,
2003.

[15] B. Henderson-Sellers, et al., "A qualitative comparison of two
processes for object-oriented software development," Information and
Software Technology, vol. 43, pp. 705-724, 2001.

[16] B. Henderson-Sellers, et al., "Third generation OO processes: a
critique of RUP and OPEN from a project management perspective,"
in APSEC 2000, pp. 428-435.

[17] L. V. Manzoni and R. T. Price, "Identifying extensions required by
RUP to comply with CMM levels 2 and 3," in IEEE TSE, vol. 29, pp.
181-192, 2003.

[18] G. Chang, "Modifying RUP to comply with CMM levels 2 and 3," in
ICISE 2010, pp. 1-5.

[19] J. Smith. (2000, 2012-03-12). Reaching CMM Levels 2 and 3 with
the Rational Unified Process,
http://www.uml.org.cn/SoftWareProcess/pdf/rupcmm.pdf

[20] B. Gallagher and L. Brownsword. (2001, 2011-02-10). The Rational
Unified Process and the Capability Maturity Model – Integrated
Systems/Software Engineering,
http://www.sei.cmu.edu/library/assets/rup.pdf

[21] V. F. Del Maschi, et al., "Practical Experience in Customization of a
Software Development Process for Small Companies Based on RUP
Processes and MSF," in Management of Engineering and
Technology, Portland International Center for, 2007, pp. 2440-2457.

[22] P. Abrahamsson, et al., "Agile Software Development Methods:
Review and Analysis," Technical Research Centre of Finland, 2002.

[23] C. Alistair, Crystal clear a human-powered methodology for small
teams: Addison-Wesley Professional, 2004.

[24] S. Ambler, Agile Modeling: Effective Practices for Extreme
Programming and the Unified Process. John Wiley & Sons, 2002.

[25] S. Ken, Agile Project Management With Scrum, Microsoft Press,
2004.

[26] B. Kent, Extreme programming explained: embrace change, Addison-
Wesley, 2000.

[27] C. M. Ana Sofia, et al., "Mapping CMMI Project Management
Process Areas to SCRUM Practices," in SEW 2007, pp. 13-22.

[28] S. W. Ambler. (2001, 2011-11-15). Agile Modeling and the Rational
Unified Process (RUP).
http://www.agilemodeling.com/essays/agileModelingRUP.htm

[29] P. Kruchten, "Agility with the RUP," Cutter IT Journal, vol. 14, pp.
27-33, 2001.

[30] R. S. Corporation. (2012-03-12). Roadmap: Agile Practices in RUP,
http://sce.uhcl.edu/helm/RationalUnifiedProcess/tour/rm_xp2rup.htm.

[31] C. C. Cintra and R. T. Price, "Experimenting a Requirements
Engineering Process Based on Rational Unified Process (RUP)
Reaching Capability Maturity Model Integration (CMMI) Maturity
Level 3 and Considering the Use of Agile Methods Practices," in
WER 2006, pp. 153-159.

[32] F. Mandjam, "Avaliação do impacto das práticas do CMMI no
desempenho de equipas de desenvolvimento de software no ensino,"
Master Degree in Information Systems, University of Minho, 2011.

199

