
Innovations Syst Softw Eng (2012) 8:51–64
DOI 10.1007/s11334-011-0177-9

SI: MOMPES 2010

On the refinement of use case models with variability support

Sofia Azevedo · Ricardo J. Machado ·
Alexandre Bragança · Hugo Ribeiro

Received: 13 January 2011 / Accepted: 3 November 2011 / Published online: 11 December 2011
© Springer-Verlag London Limited 2011

Abstract Modeling software product lines shall imply
modeling from different perspectives with different model-
ing artifacts such as use case diagrams, component diagrams,
class diagrams, activity diagrams, sequence diagrams and
others. In this paper, we elaborate on use cases for model-
ing product lines and we explore them from the perspective
of variability by working with the unified modeling language
(UML) «extend» relationship. We also explore them from the
perspective of detail by (functionally) refining use cases with
«extend» relationships between them. This paper’s intent is
to provide for comprehension about use case modeling with
functional refinement when variability is present.

Keywords Use case · Software product line · Refinement ·
Variability · «extend» · Alternative · Option · Specialization

1 Introduction

Use case diagrams are one of the modeling artifacts modelers
have to deal with when developing product lines with model-
driven approaches. A software product line can be faced as

S. Azevedo (B) · R. J. Machado
Universidade do Minho, Guimarães, Portugal
e-mail: sofia.azevedo@dsi.uminho.pt

R. J. Machado
e-mail: rmac@dsi.uminho.pt

A. Bragança
Instituto Superior de Engenharia do Porto, Porto, Portugal
e-mail: alex@dei.isep.ipp.pt

H. Ribeiro
Primavera Business Software Solutions, Braga, Portugal
e-mail: hugo.ribeiro@primaverabss.com

a family of software products that have been developed with
explicit concern about variability (and consequently com-
monality) during the development process (see [1] for basic
references on variability). This paper envisions use cases
according to the perspectives of detail and variability. The
«extend» relationship plays a vital role in variability model-
ing in the context of use cases and allows for the use case
modeling activity to be applicable to the product line soft-
ware development approach. This is possible by determining
the locations in use case diagrams where variation will occur
when instantiating the product line. This paper’s contribu-
tion is on the formalization and understanding of the use case
modeling activity with support for variability and functional
refinement when variability is present. We will illustrate our
approach with the Fraunhofer IESE’s GoPhone case study
[2], which presents a series of use cases for a part of a mobile
phone product line particularly concerning the interaction
between the user and the mobile phone software. We pro-
pose an extension to the unified modeling language (UML)
metamodel [3] to formally provide for both the concrete and
abstract syntaxes to represent different types of variability in
use case diagrams. Throughout the paper, we refer to six dif-
ferent relationships. Some are from the UML, which explic-
itly uses the terminology «relationship »: the UML «extend»
relationship, the UML «include» relationship and the UML
generalization relationship. Some were introduced by us to
the UML metamodel by extending it according to an exten-
sive related work analysis: the (UML) «refine» relationship,
the (UML) «alternative» relationship and the (UML) «spe-
cialization» relationship. We consider use cases in different
abstraction levels to elaborate on the functional refinement of
use cases with «extend»relationships between them. In this
paper, we focus on the variability support as well as on the
process point of view with regard to the use case modeling
activity.

123



52 S. Azevedo et al.

Fig. 1 The use case variability types

Modeling variability in use cases with the resources the
UML makes available is a benefit of our approach because the
UML is extensively used in the community (both academic
and industrial) and is a widely recognized standard. We have
systematized variability modeling for use cases according
to a model with explicit decisions modelers may follow to
apply our approach (Fig. 1). We have considered the refine-
ment of use cases connected through «extend» relationships,
which is pertinent in the context of large-scale product lines
(see Sect. 6). Both the variability modeling in use cases and
the functional decomposition of use cases are required at the
requirements modeling stage to prepare the modeling arti-
facts for further handling in the product line development
process (see Sect. 2). The complexity of the use case model
in Fig. 10 may be considered as a limitation of the proposed
approach but we present in Sect. 6 some ways of decreasing
that complexity.

We define the functional decomposition of a use case as
the decomposition of an initial use case diagram into smaller
and more cohesive ones. Its goal is to decrease the complexity
of the use case diagram and increase its cohesion. The advan-
tage of functional decomposition of use cases from the pro-
cess point of view when developing large software systems
is allowing the delivery of less complex modeling artifacts to
the teams implementing the software system. The advantage
of functional decomposition of use cases from the process
point of view when developing software systems with vari-
ability is the possibility of modeling later on an alternative
to a part of the decomposed use case or modeling a part of
the decomposed use case that is an optional part.

A lot of literature exists on variability modeling (some
of it particularly related to requirements modeling). We ana-
lyzed an extensive and significant set of references on the
subject and found the need to systematize the modeling of

variability according to our position on the subject (accord-
ing to our current and previous research). A set of stereo-
types are the solution we concluded to be more adequate,
efficient and effective for modeling variability in use cases.
We also provide for comprehension about use case modeling
with functional refinement (refer to the definition of func-
tional decomposition in the paragraph above together with
the notion of detailing the textual descriptions of use cases
as the functional refinement of use cases) when variability is
present, considering the systematization of the modeling of
variability we undertook based on that set of references and
our position on the subject.

The paper is structured as follows. Section 2 elaborates on
the differences between others’ approaches and this paper’s
approach. Section 3 elaborates on the different types of var-
iability we propose to be used in the context of use case
modeling. Section 4 provides for the analysis of the UML
«extend» relationship in contexts of variability and also for
the extension we propose to the UML metamodel to support
the different variability types. Section 5 analyzes the process
of handling variability in use case diagrams in the context of
the functional refinement of use cases. Section 6 illustrates
our approach with the GoPhone case study. Finally, Sect. 7
affords some concluding remarks.

2 Related work

Despite use cases being sometimes used as drafts during the
process of developing software and not as modeling artifacts
that actively contribute to the development of software, use
cases shall have mechanisms to deal with variability for them
to have the ability to actively contribute to the process of
developing product lines. Consider that the variability types
we propose in the context of use cases can be represented by

123



On the refinement of use case models with variability support 53

option, alternative and specialization use cases. For instance,
modeling variability in use case diagrams is important to later
model variability in activity diagrams [4]: option use cases
map to alternative insertions in activity diagrams (alterna-
tive insertion is a type of sequences of actions in the context
of activity diagrams), and both alternative and specialization
use cases map to alternative fragments in activity diagrams
(alternative fragment is another type of sequences of actions
in the context of activity diagrams). We do not elaborate fur-
ther on this topic since it is out of the scope of this paper.
Further in this paper we talk thoroughly about option, alter-
native and specialization use cases as the representation of the
three different types of variability we consider in the context
of we cases.

This paper’s work is inspired on the approach of Bragança
and Machado to variability modeling in use case diagrams
[5]. Bragança and Machado represent variation points explic-
itly in use case diagrams through extension points. Their
approach consists of commenting «extend» relationships
with the name of the products from the product line on which
the extension point shall be present. Their approach to prod-
uct line modeling is bottom-up (rather than top-down), which
means that all the product line’s products are known a pri-
ori. A top-down approach would consider that the product
line would support as many products as possible within the
given domain. In [6,7], John and Muthig refer to required
and anticipated variations as well as to a planned set of prod-
ucts for the product line, which indicates that their approach
to product line modeling is bottom-up. The approach in this
paper adopts the top-down approach for product line model-
ing, therefore discarding the comments to the «extend» rela-
tionships. In [8], Bayer et al. refer that all variants do not
have to be anticipated when modeling the product line.

In [6], John and Muthig refer the benefits of representing
variability in use cases, namely establishing a variability and
product line mindset among all involved roles in a product
line’s engineering, supporting the derivation of models and
instantiation in application engineering, and communicating
the possibilities of the possible products to different stake-
holders. Although we totally agree with the position of these
authors towards the benefits of representing variability in use
cases, we cannot agree when they state that information on
whether certain use cases are optional or alternatives to other
use cases shall only be in decision models as it would over-
load use case diagrams and make them less readable (deci-
sion models in this context are feature diagrams [9]). John
and Muthig use one variability stereotype in use cases (the
«variant» stereotype) applicable for variant use cases (use
cases that are not supported by some products of the prod-
uct line, whether optional or alternative). Our position is that
features as well as use cases shall be suited for treating vari-
ability in its different types. If a use case is an alternative to
another use case then both use cases shall be modeled in the

use case diagram, otherwise the use case diagram will only
show a part of the possibilities of the possible products as
John and Muthig [6] mentioned. Bachmann et al. [10] men-
tion that variability shall be introduced at different phases
of the development of product families. Bühne et al. [11]
propose a metamodel for representing variability in product
lines based on the metamodel of Bachmann et al. [10] for
representing variability in product lines.

Gomaa and Shin [12,13] analyze variability in differ-
ent modeling views of product lines. They mention that the
«extend» relationship models a variation of requirements
through alternatives. They also model options in use case dia-
grams using the stereotype «optional» in use cases. We adopt
these approaches to alternatives and options but we elabo-
rate on another form of variability (specializations, which
we consider to be a special kind of alternatives). Gomaa and
Shin [12,13] refer specialization as a means to express var-
iability. Besides alternative and optional use cases, Gomaa
and Shin consider kernel use cases (use cases common to
all product line members). Gomaa together with Olimpiew
[14] talks again about kernel, optional and alternative use
cases. Gomaa [15] models kernel and optional use cases both
with the «extend» as well as with the «include» relationships
(our approach is towards modeling kernel and optional use
cases independently of their involvement in either «extend»
or «include» relationships and with a stereotype in use cases).
In [16], Webber and Gomaa propose the Variation Point
Model to model variation points. In that context, the vari-
ation point shall be treated from four different views, one
of which is the requirements variation point view. This view
captures requirements together with variation points during
the product line’s domain analysis phase. Variation points
are considered to be mandatory or optional (the difference
between both is that mandatory variation points do not supply
a default variant, whether optional ones do). In our approach
to variability modeling, we consider more types of variability
besides the optional one (alternative and specialization).

Bayer et al. [8] present the Consolidated Variability Meta-
model. In that context, they systematize different kinds of
variability recurrently present in product line models. The
work of this paper is related to that systematization since it
addresses some of those kinds of variability and realizes it in
annotations to the UML applicable to some model elements
to which the selected variability kinds apply. Ziadi et al. [17]
expose a UML profile for software product lines, however
they do not talk about stereotypes to be applied to require-
ments models.

Coplien et al. [18] defend the analysis of commonality and
variability during the requirements analysis for the analysis
decisions not to be taken during the implementation stage
by the professionals who are not familiar with the impli-
cations and impact of decisions that shall be made much
earlier during the development cycle. They refer that early

123



54 S. Azevedo et al.

decisions on commonality and variability contribute to large-
scale reuse and the automated generation of family members.

Halmans and Pohl [19] propose use cases as the means
to communicate variability relevant to the customer and they
also propose extensions to use case diagrams to represent
variability relevant to the customer. Halmans and Pohl con-
sider that generalizations between use cases are adequate to
represent use cases’ variants. This is not our position. We
recommend using the «extend» relationship instead of the
generalization relationship. Although Halmans and Pohl con-
sider that the «extend» relationship is suitable for modeling
options to parts of the use cases to which those options refer,
they do not recommend it because of not explicitly represent-
ing variation points (Halmans and Pohl consider that by not
having the variation points explicitly represented in the use
case diagrams, it is not documented if the customer can or
must select one or more variants or if all of them are already
present in the system, which violates the principle of commu-
nicating variability). They consider that modeling mandatory
and optional use cases with stereotypes in use cases is not
adequate because the same use case can be mandatory for
one use case and optional for another. Again this is not our
position. We also consider that a mandatory use case is not
mandatory with regard to another use case, rather it is man-
datory for all product line members. We also consider that
an optional use case is optional with regard to one or more
product line members. Halmans and Pohl end up by intro-
ducing additional graphical elements to use case diagrams to
represent variation points and variability cardinality explic-
itly in use case diagrams. We do not agree with this approach
since it introduces more complexity to use case diagrams
than modeling variability with stereotypes and use case rela-
tionships as well as it introduces a reasoning about variability
that should be present in decision models (the selection of the
variants to be present in the system and the system/product to
which that selection applies according to the features). Pohl
[20] uses the graphical notation used by Halmans and him-
self [19] to represent variability in use case diagrams. Salicki
and Farcet [21] talk about variation points and additionally
in decision models.

Maßen and Lichter [22] talk about three types of variabil-
ity: optional, alternative and optional alternative (as opposite
to alternatives that represent a “1 from n choice”, optional
alternatives represent a “0 or 1 from n choice”). In this con-
text, they propose to extend the UML metamodel to incor-
porate two new relationships for connecting use cases. Our
approach considers options and alternatives as well but we
introduce these concepts into the UML metamodel through
stereotypes (we consider that the «extend» relationship is
adequate for modeling alternatives and a stereotype applica-
ble to use cases for modeling options).

According to Gomaa [15], and John and Muthig [6,7],
use cases can be tagged with some stereotypes concerning

Table 1 Some use case stereotypes concerned with variability

Stereotype Applicability

«kernel » Use cases
«alternative» «extend» relationships
«optional » Use cases
«variant » Use cases

variability. Table 1 shows the applicability of those stereo-
types in our approach.

Some examples of approaches to functional decompo-
sition of software systems are the 4SRS (Four Step Rule
Set) method [23], KobrA or RSEB (Reuse-Driven Software
Engineering Business) [24,25]. However, neither KobrA nor
RSEB clearly contemplates a technique for refining use cases
like the 4SRS method does.

Greenfield and Short [26] refer to refinement as the inverse
of abstraction or the process of turning a description more
complex by adding information to it. They refer to the pro-
cess of developing software through refinement as progres-
sive refinement. The process starts with requirements and
ends up with the more concrete description of the software
(the executable). They consider refinement as a concatena-
tion of interrelated transformations mapping a problem to a
solution. The goal of refinement is to smoothly decrease the
abstraction levels that separate the problem from the solution.
In general terms Greenfield and Short talk about refinement
as the stepwise decomposition of features’ granularity. In the
context of use cases, refinement is their detailing. However,
we defend that use cases can themselves be refined to facili-
tate the transformation of a problem (which can be modeled
with use cases) to a solution (which shall be modeled with
design artifacts e.g. logical architectures).

Pons and Kutsche [27] present the refinement activity as
a way to trace code back to system requirements and system
requirements back to business goals, which allows verifying
whether the code meets the business goals and the system
requirements as expected in the specification of the system.

Eriksson et al. [28] treat refinement as a relation between
features that are obtained from decomposing other features.
Features at different levels of decomposition maintain rela-
tionships with use cases or parts of their textual descriptions.
We consider that refining use cases includes their decompo-
sition as well as features do. We also consider that use cases
can be decomposed without being refined: in our approach
refining use cases includes their detailing (adding detail to
the description of use cases) besides their decomposition.
For us to consider the relationship between features and use
cases at different levels of abstraction, those different levels
of abstraction shall be defined based on both decomposition
and detailing.

Gomaa [15] explored refinement in the context of feature
modeling, where a feature can be a refinement of another.
But to get to the features, use cases have to be modeled and

123



On the refinement of use case models with variability support 55

mapped to features. Our approach eliminates this mapping
activity. To Gomaa the refinement is expressed through
«extend» relationships in the context of use cases. To us,
the refinement shall be expressed through the «refine» rela-
tionship we proposed in [29].

Refinement has been treated over the years. Paech and
Rumpe [30] provide a formal approach to incrementally
design static software system models through refinement.
Our approach is not formal and relates to the refinement of
external functionalities of software systems, which shall be
taken into account before the static part of those systems.
Quartel et al. [31] propose an approach for the refinement
of actions. Again our approach relates to a perspective that
shall be taken into account before behavior is. Darimont and
van Lamsweerde [32] talk about goal refinement. This time
our approach to refinement relates to a perspective that shall
be taken into account after goals. Mikolajczak and Wang
[33] present an approach to vertical conceptual modeling of
concurrent systems through stepwise refinement using Petri
net morphisms. Our approach to refinement is not formal.
Batory created a model (the AHEAD model [34]) for express-
ing the refinement of system representations as equations. He
worked at a code-oriented level. Our approach allows refining
software models that shall be handled before code is handled
during the software construction phase.

Cherfi et al. [35] (in their work on quality-based use case
modeling with refinement) describe the refinement process
as the application of a set of decomposition and restructur-
ing rules to the initial use case diagram. Our approach is
iterative and incremental. It consists of decomposing the ini-
tial use case diagram into smaller and more cohesive ones
to decrease the complexity of the diagram and increase its
cohesion. In the approach of Cherfi et al. to refinement, use
cases are not actually detailed (like in ours), rather they are
decomposed without detail being added to the description of
those use cases.

Regarding use case semantics and notation, we analyzed
the position of Simons [36] and of Heldal [37] on the topic.
Simons argues that the insertion semantics of the «extend»
relationship is inadequate to model alternatives. That is not
our position (as we explain further on this paper) since the
UML semantics supports our notion of variability (alterna-
tive is one type of variability that the «extend» relationship
supports). Heldal worked on the extraction of system opera-
tions (calls into the system or communication between actors
and the system) by structuring use cases through the group-
ing of action steps (e.g. sentences with the structure sub-
ject+verb+object) from use cases into action blocks. These
action blocks allow writing contracts for the system opera-
tions (contracts are system operations with pre and post con-
ditions). Heldal refers to event-driven systems where system
operations make more sense than use cases. For every action
block, a contract can be written. A use case has more than one

action block. Input and output data shall be related to single
action blocks and not to a single use case because a use case
has more than one action block and a contract is written for a
single action block. An incomplete use case contains only one
action block. A complete use case has more than one action
block and fulfills a goal for the actor(s). Heldal mentions that
«include» and «extend» relationships do not refer to complete
use cases on both ends of the relationship, therefore in his
approach these use cases are contracts rather than a group of
action blocks, which does not allow fulfilling (a) goal(s) for
(an) actor(s). That is not our position. In our approach, use
cases involved in «include» or «extend» relationships are still
use cases that fulfill (a) goal(s) for (an) actor(s), representing
external functionality of the system that can be performed by
the actors (a use case still represents observable value to an
actor, despite being more or less detailed, despite decompos-
ing another use case or despite being an extension to another
use case) [29].

Fowler made the following advice in his book “UML Dis-
tilled” [38]: “don’t try to break down use cases into sub-use
cases and subsub-use cases using functional decomposition.
Such decomposition is a good way to waste a lot of time”. We
cannot agree with Fowler’s opinion at a certain extent. The
pertinence of functional decomposition lies on the scale of
the software system under development. The development of
large software systems benefits from decomposing the func-
tionality of those systems to a level that allows delivering
less complex modeling artifacts to the teams implementing
the software system. All the more large software systems are
frequently built from a series of components developed by
different teams. A single team is not expected to develop the
whole system, therefore it shall not be delivered the mod-
eling artifacts concerning the whole system to guide the
conception of the component that is required to be devel-
oped by that team [39]. Fowler made another suggestion in
his book: “The UML includes other relationships between
use cases beyond the simple includes, such as «extend »İ
strongly suggest that you ignore them. I’ve seen too many
situations in which teams can get terribly hung up on when
to use different use case relationships, and such energy is
wasted. Instead, concentrate on the textual description of a
use case; that’s where the real value of the technique lies”.
We completely agree with Fowler when he says that the value
of use case modeling lies on the textual descriptions of use
cases. Our approach to use case refinement is based on those
descriptions. But we cannot agree when Fowler says that
the relationships besides the «include» relationship shall be
ignored when modeling use cases. The «refine» relationship
cannot be ignored. It is needed to formalize at an early stage
(the use case modeling) where functional decomposition
shall happen to decrease the complexity of the modeling arti-
facts delivered to the different development teams. Also the
«extend» relationship is needed to formalize at an early stage

123



56 S. Azevedo et al.

(the use case modeling) where variation will occur when
instantiating the product line (Bosch et al. [40] mention the
need for describing variability within different modeling lev-
els such as the requirements one).

3 Handling variability in use case modeling

Figure 1 illustrates the variability types we consider and pro-
pose to be applicable in the context of use cases [1]. Use
cases can be non-option or option. Non-option use cases are
present in all product line members. Option use cases can be
present in one product of the product line and not in another.
It is not mandatory that option use cases are present in all
products of the product line. Non-variant use cases are use
cases that do not support variability. Variant use cases are
use cases that support variability. This means that different
products will support different alternatives for performing
the same functionality or that different products will support
different specializations of the same functionality. Later on
during the modeling activity, variant use cases are realized
into alternatives or specializations, respectively. Alternative
use cases represent alternatives for performing the same sys-
tem’s use in different products or sets of products from the
product line. A specialization use case is a use case that rep-
resents the specialization of another use case. Specialization
use cases that specialize the same use case indeed repre-
sent alternatives to each other but they specialize a use case,
which is not the case of alternative use cases. Option, alter-
native and specialization use cases are the representation of
the three variability types that will be translated into stereo-
types to be applicable to use cases. The use cases that do not
represent options and are not variant (not later alternatives
or specializations) are non-option and non-variant, and shall
not be marked with any stereotype. Non-option and option
use cases are different as well as non-variant and variant
use cases. Figure 1 represents the activity of classifying use
cases with variability types: either non-option and non-var-
iant or option and non-variant or non-option and variant or
option and variant. These last two variability types can be
realized into the alternative or the specialization variabil-
ity types (as already explained). The activity of classifying
use cases with the variability types is important for apply-
ing the corresponding stereotypes to the use cases (except
for the non-option and non-variant use cases, which shall
not be marked with any stereotype). The conditions of the
decision nodes express the semantics of each one of the var-
iability types. We would like to give emphasis to a particular
variability type: the option and variant variability type. This
variability type is applicable to a use case that is not present in
all product line members but the different members in which
it is present support different alternatives for performing that
use case’s functionality or different specializations of that
use case’s functionality. Option and non-variant use cases

shall be marked as option use cases; non-option and variant
as variant use cases; and option and variant use cases as both
option and variant use cases.

4 The «extend» relationship

For use cases to be appropriate for product line modeling,
they have to be equipped with variability mechanisms. These
variability mechanisms must allow determining the locations
in diagrams (in this case use case diagrams) where variation
will occur when instantiating the product line.

The «extend» relationship allows modeling alternative and
specialization use cases in use case diagrams. Consider that
an extending use case is a use case that extends another
use case and that an extended use case is a use case that
is extended by other use cases. As any other use case, an
extending use case represents a given use of the system by a
given actor or actors.

In the UML metamodel, the extending use cases are con-
sidered to represent supplementary behavioral increments
that have to be inserted into the appropriate insertion points
between the extended use case’s fragments. These fragments
refer to parts of the textual descriptions of use cases. Our posi-
tion is that both extending and extended use cases represent
supplementary behavioral increments since in the context of
product lines they represent functionality that is only essen-
tial for developing product lines. In principle the functionality
represented by the extended use cases will be available for
less advanced products in terms of functionality.

Alternatives [1] represent supplementary functionality (or
supplementary behavioral increments) since they are not
essential for a product without variability to function. It
shall be noted that alternatives are no longer supplemen-
tary when product line members are instantiated from the
product line. Alternatives can be modeled with the general-
ization relationship in use case diagrams, but we recommend
to model alternatives with the «extend» relationship to evi-
dence their supplementary character according to the UML
semantics (when we mention supplementary in the paper,
we refer to supplementary behavioral increments from the
UML semantics associated with the «extend » relationship).
Therefore, the concept of alternative is semantically sup-
ported by the «extend» relationship. The «extend» relation-
ship implies that alternatives are represented as binary and
unidirectional dependencies. The alternative relationship is
binary and unidirectional because the extending use case (just
one or one from many) is an alternative to the extended use
case. The extended use case is modeled as the extended one
to evidence that it shall be present in products less robust in
terms of functionality as opposite to all the others. A situation
in which we have more than one alternative to a specific use
case shall be represented with that specific use case as the

123



On the refinement of use case models with variability support 57

extended use case and the other use cases as the extending
ones relatively to that specific use case (the «extend» rela-
tionships shall be marked with the stereotype «alternative»).
Situations with a high number of alternatives shall be mod-
eled with different diagrams that shall have the extended use
case in common.

If the intention is to use differential specification, spe-
cializations [1] shall be modeled with the «extend» relation-
ship to evidence their supplementary character according to
the UML semantics, otherwise they shall be modeled with
the generalization relationship. Differential specification of
specializations means that specialization use cases repre-
sent supplementary functionality regarding the use case they
specialize, therefore, a product without variability does not
require the specialization use cases to function. Not requir-
ing the specialization use cases implies that the respective use
case that has been specialized is not required for a product
without variability to function as well. Besides that, a spe-
cialization use case is an extending use case and the respec-
tive use case that has been specialized is an extended use
case, which according to our position means that both repre-
sent supplementary functionality as previously explained. It
can be concluded that differential specification is related to
supplementary functionality from the UML «extend» rela-
tionship’s semantics. In our approach, we use differential
specification, therefore a specialization is represented as a
relationship through a stereotype applicable to the «extend»
relationship. A «specialization» relationship is an «extend»
relationship marked with the stereotype «specialization».

Options [1] represent functionality that is only essential
for a product with variability to function (when develop-
ing product lines), therefore options represent supplemen-
tary functionality. However, we do not recommend modeling
options with the «extend» relationship because if the stereo-
type was on the relationship, the relationship itself would be
optional and that is not the case (the use case is not optional
with regard to any other use case, rather it is optional by
itself).

Options shall be modeled with a stereotype in use cases.
The involvement of an option use case in either «extend» or
«include» relationships, or even in none of those does not
imply the presence of that use case in all product line mem-
bers (which makes of it optional).

In principle, an extending use case is a use case that
extends another use case both in the case of alternatives and
specializations. In the case of specializations, we consider
that there is no multiple inheritance, therefore it is impossi-
ble for an extending use case to extend more than one use
case. If we have more than one alternative use case for the
same functionality, one of those use cases shall be the alter-
native to all the others and extended by them. That use case
is the one to be present in the products less robust in terms
of functionality. The extended use case is not aware of the

Fig. 2 The specialization of the variant use case Borrow Book with a
single actor

Fig. 3 The specialization of the use case Borrow Book with two dif-
ferent actors

Fig. 4 The specialization of the variant use case Borrow Book with
two different actors

functionality described in the extending use case. We impose
the restriction of multiple inheritance due to the technology
we use to implement use cases in our projects. It is not an
argument to avoid the discussion of the topic in this paper.

As previously mentioned, if the intention is not to use
differential specification, generalization relationships shall
be used. However, we may argue in a different way that the
generalization relationship shall not be used to represent spe-
cializations in contexts of variability. Consider the examples
depicted in Figs. 2, 3, 4 and 5. The example is an exception
in terms of the (GoPhone) case study we will use further on
this paper. The figure shows that the use case Borrow Book
can be specialized into Borrow Book to Student and Borrow
Book to Teacher. If the actor is the same (the Librarian, who
registers the borrowing), then the use cases that specialize the
Borrow Book use case are alternatives to borrowing a book as
both can be performed by the same actor. If the actor is not the
same (the Student in the case of the Borrow Book to Student
and the Teacher in the case of the Borrow Book to Teacher),

123



58 S. Azevedo et al.

Fig. 5 The specialization of the variant use case Borrow Object

then the use cases that specialize the Borrow Book use case
are not alternatives to borrowing a book as both cannot be
performed by the same actor (the same actor does not have an
alternative way of borrowing a book). Although the use case
Borrow Book is connected to no actor, it is a use case that is
in fact connected to the actors of the use cases that specialize
it (Student and Teacher). If both of these actors were con-
nected to the use case Borrow Book, it would not be explicit
which part of the use case they would perform (either the one
related to the book borrowing to student or the other related
to the book borrowing to teacher). In this case, for the gener-
alization to be considered as variability, the actor of Borrow
Book has to be the Library User (connected to Borrow Book)
specialized into the Student (connected to Borrow Book to
Student) and into the Teacher (connected to Borrow Book to
Teacher). Following the semantics of generalization in what
actors in use case diagrams are concerned, being Student and
Teacher subtypes of Library User, they both interact with the
specific subuse case they are associated with, as well as with
the superuse case they are associated with via the superactor.
Contrarily to the case of Fig. 3, in Fig. 4 we know explicitly
which part of the superuse case Borrow Book they perform
(the Student performs the one related to the book borrow-
ing to student and the Teacher performs the other related to
the book borrowing to teacher). Another example: the use
case Borrow Object can be specialized into Borrow Book
and Borrow CD. In this case the actor can be the same for all

the use cases (the Student OR the Teacher). To support all the
actors at the same time (the Student AND the Teacher), the
Library User has to be specialized into them (the Student and
the Teacher) and connected to the Borrow Object use case.
In this way, the same actor (the Library User) can borrow an
object (a Book) or alternatively another (a CD).

4.1 Extending the UML for modeling variability in use
cases

Figure 6 depicts the extension we propose to the UML meta-
model concerning the «extend» relationship and use cases.
We have added the stereotypes «alternative» , «specializa-
tion» and «option» to the standard UML stereotypes to dis-
tinguish the three variability types that were to be translated
into stereotypes to be applicable to use cases. We have also
added the stereotype «variant» to the standard UML ste-
reotypes to mark use cases at higher levels of abstraction
before they are realized into alternatives or specializations.
A use case can include some use cases that are not marked
with «variant» since they are alternatives (involved in «alter-
native» relationships), they are involved in «specialization»
relationships or they are non-option and non-variant (if not
marked with any stereotype and not involved in «alterna-
tive» or «specialization» relationships). For instance, Send
Message (Fig. 10) is at the highest level of detail and it is
marked with «variant». Some of the use cases it includes
are not marked with «variant» since they have been realized
as alternatives (involved in «alternative» relationships), or
they are non-option and non-variant (if not marked with any
stereotype and not involved in «alternative» relationships).
We could have modeled use cases marked with «variant»
in our approach as being related to variation points. Usu-
ally, a variation point is associated with one or more variants
(from [19]). We have not adopted variation points to avoid
additional graphical elements to use case diagrams, to avoid
more complexity to use case diagrams and to avoid reasoning
about variability that shall be present in decision models. We
propose the stereotype «option» to be applicable to use cases
that represent options. «option» is for marking use cases that

Fig. 6 The proposed extension
to the UML metamodel (figure
16.2 from [3]) for modeling
variability in use case diagrams

123



On the refinement of use case models with variability support 59

are not mandatory for all product line members. We also
propose the stereotypes «alternative» and «specialization»
to be applicable to the «extend» relationship for modeling
alternatives and specializations, respectively. Extending use
cases involved in «alternative» relationships do not need to
be marked with the stereotype «alternative» to evidence them
as alternatives since they do not make sense without being
involved in that kind of relationships (an alternative use case
is always alternative to another use case). The same happens
with the stereotype «specialization» (a use case involved in
a specialization relationship always specializes another use
case). Regarding Fig. 6 and the Extend metamodel element,
as far as the unidirectional association is concerned, the end
named extendedCase references the use case that is being
extended (the extended use case) and the association means
that many (zero or more) «extend» relationships refer to one
extended use case. Regarding the aggregation, the end named
extend references the «extend» relationships owned by the
use case, and the end named extension references the use
case that represents the extension (the extending use case)
and owns the «extend» relationship. The metamodel means
that one «extend» relationship is owned by one extending use
case. In summary, a use case can be extended by many use
cases and a use case can extend another use case. There can
be zero or more alternatives («alternative» relationships) to
a use case. There can also be zero or more specializations
(«specialization» relationships) for a use case. Although it
can be argued that specializations are only worth the effort
when there are two or more specialization use cases, we do
not want to take freedom away from the modeler.

From now on, we either use the «extend» relationship
without stereotypes or with one of the two stereotypes appli-
cable to this relationship from the proposed extension to the
UML metamodel (depending on whether we are modeling
alternatives or specializations). Using no stereotypes on the
«extend» relationship means that no variability is being mod-
eled, otherwise the stereotypes applicable to the «extend»
relationship from the proposed extension to the UML meta-
model shall be used.

It is important to distinguish alternatives from generaliza-
tions in contexts of variability. In the case of alternatives,
the extending use case is an alternative to the extended use
case. In the case of specializations, the extending use cases
are alternatives to each other. Figure 7 shows the special-
ization of two alternative use cases from the GoPhone case
study: Insert Picture and Insert Picture or Draft Text. It is
possible to transform alternatives into specializations and the
other way around. Again we are not restrictive on this since
we do not want to take freedom away from the modeler.
Insert Picture or Draft Text is an alternative to Insert Picture
because it extends the functionality represented by Insert
Picture (which means that in this case and in the context of
product lines it is an alternative to Insert Picture).

Fig. 7 The specialization of Insert Picture and Insert Picture or Draft
Text

5 Handling variability in use case modeling with
refinement

Use cases can be decomposed with or without detailing their
non-stepwise textual descriptions. Without detailing those
descriptions, we propose to represent the decomposition of
use cases in use case diagrams with the «include» relation-
ship. This decomposition suits the purpose of e.g. (1) mod-
eling an alternative to a part of the decomposed use case or
(2) modeling a part of the decomposed use case that is an
optional part.

We consider that refining means decomposing and simul-
taneously detailing use cases. By refining use cases, the arti-
facts resulting from the refinement process (the refining use
cases) are situated in lower abstraction levels comparatively
to the refined use cases (the use cases that were submitted to
the refinement process). To represent in the use case diagram
this decrease in the abstraction level when refining use cases,
we proposed in [29] to use the «refine» relationship (as a sort
of traceability between use cases at different levels of detail).

In this section of the paper, we depict in Fig. 8 use cases
according to the perspectives of detail*variability to illus-
trate in abstract terms our approach to use case modeling
with support for variability. The detail perspective is inti-
mately related to the activity of use case refinement. In this
sense, use cases can be more detailed if they are refined. The
variability perspective is associated with the modeling of var-
iability for product line support. The two perspectives (detail
and variability) have been converted into axes of the illus-
trated space: y = detail and z = variability. Each level of the
z axis corresponds to a (parallel) plan, which means that we
position use cases in variability plans. Thus, the variability
plans are the plans that contain use cases representing vari-
ability in the three different types that have been translated

123



60 S. Azevedo et al.

Fig. 8 Use cases positioned according to the perspectives of
detail*variability

into stereotypes to be applicable to use cases. The plan z = 0
contains none of these use cases that represent variability.

The figure clarifies that the «refine» relationships imply
increasing the detail level, whereas the «extend» relationships
do not imply increasing the detail level but rather changing
from one variability plan (z plan) to another. Extending use
cases represent alternative or specialization use cases, there-
fore they must be situated at the same level of detail but in
different variability plans (z plans). Variabilities do not imply
adding detail to the non-stepwise textual descriptions of the
use cases like refinements do.

The figure shows the general case of the refinement of
two use cases connected through an«extend» relationship.
The refinement of a use case stereotyped as «option» is not
relevant here since it is not the case of an «extend» relation-
ship connecting two use cases. The figure evidences that the
refinement of two use cases connected through an «extend»
relationship originates more detailed use cases organized in
two packages that have also an «extend» relationship con-
necting them. That is not always the case. It is possible to have
two use cases connected through a «specialization» relation-
ship, which produces «specialization» relationships connect-
ing more detailed individual use cases (and not packages) in
different variability plans (an example of such case is in the
next section of this paper).

6 The variability in the GoPhone case study

The non-stepwise textual descriptions in Fig. 9 were elabo-
rated based on the functional requirements for the GoPhone.
We rely on non-stepwise textual descriptions of use cases
(the opposite of stepwise textual descriptions of use cases)
to model variability in use case diagrams. Stepwise textual
descriptions are structured textual descriptions in natural lan-
guage that provide for a stepwise view of the use case as
a sequence of steps, alert for the decisions that have to be
made by the user and evidence the notion of use case actions

temporarily dependent on each other. Stepwise descriptions
shall be treated after modeling the use cases. (Cockburn
presents [41] different forms of writing textual descriptions
for use cases.)

Figure 10 shows some examples of variability modeled in
use cases. The use cases in grey are those that do not represent
variability. No borders containing use cases in the variability
plans with z > 0 were drawn because those borders are going
to be needed during product derivation (or the generation of
product models from the product line model, which is out of
the scope of this particular paper). All the use cases in the
diagrams in this section have the values they take for both
the perspectives of variability (z) and detail (y). These are not
tagged values, rather just a help for the reader to visualize
the use cases in the right place. Figure 10 seems complex but
it ought to be noticed that the figure contains two diagrams
and that the extensions to the use cases in the diagrams could
have been modeled in different artifacts. By stating this we
say that the diagram in Fig. 10 could have been separated
in some diagrams, which we did not do because of space
restrictions. Nevertheless, we cannot escape to variability in
its different types for the reasons already explained.

The «include» relationship involves two types of use
cases: the including use case (the use case that includes other
use cases) and the included use case (the use case that is
included by other use cases). In the context of the «include»
relationship, the UML Superstructure states that the includ-
ing use case depends on the addition of the included use
cases to be complete. Nevertheless in our opinion, the func-
tionality of the included use cases shall be described in the
including use case. Since we rely on non-stepwise textual
descriptions of use cases to determine the «include» relation-
ships, the including use case has to contain the description
of the included use cases so that the modeler is able to define
the parts that compose the including use case to decompose
that use case (e.g. as can be seen from Fig. 9 the functionality
of the Compose Message use case is described in the Send
Message use case).

In the context of the «extend» relationship, the UML
Superstructure states that an extending use case consists of
one or more behavior fragment descriptions to be inserted
into the appropriate spots of the extended use case. This
means that the functionality of the extending use case is not
described in the extended use case. The extended use case
is not aware of the functionality described in the extending
use case (e.g. as can be seen from Fig. 9 the functional-
ity of the Automatically Archive Message use case is not
described in the Archive Message by Request use case). As
Fig. 10 depicts, the use case Automatically Archive Message
is an alternative to the use case Archive Message by Request
(they are connected through a kind of «extend» relationship,
tagged with the stereotype «alternative» to evidence that the
use case Automatically Archive Message is an alternative to

123



On the refinement of use case models with variability support 61

Fig. 9 Non-stepwise textual
descriptions from the GoPhone
use case Send Message and
some of its related use cases

the use case Archive Message by Request). It must be noticed
that Archive Message by Request is an (included) use case
included by the including use case Send Message, which
means that the functionality of the use case Archive Message
by Request is described in the Send Message use case. For this
reason, we could have extended the Send Message use case
with the use case Automatically Archive Message, but then
we would not be evidencing to which part of the functional-
ity of the Send Message use case the use case Automatically
Archive Message is an alternative to. Figure 10 also depicts
that the Browse Directory of Pictures use case is a specializa-
tion of the use case Browse Repository (they are connected
through another kind of «extend» relationship, tagged with
the stereotype «specialization» to evidence that the use case
Browse Directory of Pictures is a specialization of the use

case Browse Repository). Option use cases shall be marked
with the stereotype «option» (e.g. as Fig. 10 evidences for
the Activate Letter Combination use case).

6.1 Refinement of specializations and alternatives

Figure 11 shows the refinement of the specialization type of
variability. The figure shows that both the use case that has
been specialized (the Browse Repository use case) and the
specialization use cases (the Browse Directory and Browse
List use cases) were refined. Some use cases that refine
the specialization use cases are specializations of the use
cases that refine the use case that has been specialized
(e.g. the View Picture use case is a specialization of the
View Object use case). The use case Open Folder represents

123



62 S. Azevedo et al.

Fig. 10 Variability modeled for the Send Message use case from the GoPhone

Fig. 11 An example of refinement of the specialization type of variability from the GoPhone

functionality that is not common to both specialization use
cases since it is only applicable to one of the objects the
specialization use cases refer to (the Directory of Pictures).

Having in mind that specializations are a special kind of
alternatives, specialization use cases are alternatives to each
other. Figure 11 illustrates that the use cases that refine the

123



On the refinement of use case models with variability support 63

Fig. 12 An example of refinement of alternative variability from the GoPhone

specialization use cases are alternatives to each other as
packages.

Figure 12 depicts that the use cases that refine two use
cases connected through an «alternative» relationship are
alternatives to each other as packages.

7 Conclusions

This paper has elaborated on the representation of variabil-
ity in use case diagrams and the implications of functionally
refining use cases when variability is represented in this kind
of diagrams. It began by providing an in depth analysis of the
state-of-the-art concerned with both if these topics. Based on
our position towards the related work, we proposed an exten-
sion to the UML metamodel to represent the three types of
variability we have synthesized: alternatives, specializations
and options. We concluded that alternatives and specializa-
tions shall be adequately modeled with the «extend» rela-
tionship, and that options shall be adequately modeled with
a stereotype in use cases. This conclusion was based on the
UML metamodel’s semantics associated with the relation-
ships for connecting use cases in use case diagrams: alter-
natives, specializations and options represent supplementary
functionality. We have also introduced the functional refine-
ment of use cases connected through «extend» relationships
due to its pertinence in large-scale product line contexts.

References

1. Azevedo S, Machado RJ, Bragança A, Ribeiro H (2010) The UML
«extend» relationship as support for software variability. In: 14th

international software product line conference (SPLC 2010), Jeju
Island, South Korea. Springer, Berlin

2. Muthig D, John I, Anastasopoulos M, Forster T, Dörr J, Schmid
K (2004) GoPhone—a software product line in the mobile phone
domain. Fraunhofer IESE, IESE-Report No. 025.04/EMarch 5

3. OMG (2009) Unified modeling language: superstructure—version
2.2. Object Management Group, p 740

4. Bragança A, Machado RJ (2006) Extending UML 2.0 metamodel
for complementary usages of the «extend» relationship within use
case variability specification. In: 10th international software prod-
uct line conference (SPLC 2006), Baltimore, MD, USA. IEEE
Computer Society, California

5. Bragança A, Machado RJ (2005) Deriving software product
line’s architectural requirements from use cases: an experimental
approach. In: 2nd international workshop on model-based meth-
odologies for pervasive and embedded software (MOMPES 2005),
Rennes, France. TUCS General Publications, Turku

6. John I, Muthig D (2002) Product line modeling with generic use
cases. In: Workshop on techniques for exploiting commonality
through variability management, San Diego, CA, USA. Springer,
Berlin

7. John I, Muthig D (2002) Tailoring use cases for product line
modeling. In: International workshop on requirements engineer-
ing for product lines (REPL 2002), Essen, Germany. Avaya Labs,
New Jersey

8. Bayer J, Gerard S, Haugen Ø, Mansell J, Møller-Pedersen B,
Oldevik J, Tessier P, Thibault J-P, Widen T (2006) Consolidated
Product Line Variability Modeling. In: Käköla T, Duenas JC (eds)
Software product lines—research issues in engineering and man-
agement. Springer, Berlin, pp 195–241

9. Kang K, Cohen S, Hess J, Novak W, Peterson AS (1990) Feature-
oriented domain analysis (FODA) feasibility study. Software Engi-
neering Institute, Carnegie Mellon University, Technical Report

10. Bachmann F, Goedicke M, Leite J, Nord R, Pohl K, Ramesh B,
Vilbig A (2004) A Meta-model for representing variability in prod-
uct family development. In: 5th international workshop on prod-
uct-family engineering (PFE-5), Siena, Italy. Springer, Berlin

11. Bühne S, Lauenroth K, Pohl K (2005) Modelling Requirements
Variability across Product Lines. In: 13th IEEE international

123



64 S. Azevedo et al.

conference on requirements engineering (RE 2005), Paris, France:
IEEE Computer Society

12. Gomaa H, Shin ME (2008) Multiple-view modelling and meta-
modelling of software product lines. Inst Eng Technol Softw 2:94–
122

13. Gomaa H, Shin ME (2004) A multiple-view meta-modeling
approach for variability management in software product lines. In:
8th international conference on software reuse (ICSR-8), Madrid,
Spain. Springer, Berlin

14. Gomaa H, Olimpiew EM (2008) Managing variability in reusable
requirement models for software product lines. In: 10th interna-
tional conference on software reuse (ICSR-10), Beijing, China.
Springer, Berlin

15. Gomaa H (2004) Designing software product lines with uml: from
use cases to pattern-based software architectures. Addison-Wesley,
Upper Saddle River

16. Webber DL, Gomaa H (2004) Modeling Variability in Software
Product Lines with the Variation Point Model. Sci Comput Pro-
gram 53:305–331

17. Ziadi T, Hélouët L, Jézéquel J-M (2004) Towards a UML profile
for software product lines. In: 5th international workshop on prod-
uct-family engineering (PFE-5), Siena, Italy. Springer, Berlin

18. Coplien J, Hoffman D, Weiss D (1998) Commonality and variabil-
ity in software engineering. IEEE Softw 15:37–45

19. Halmans G, Pohl K (2003) Communicating the variability of a soft-
ware-product family to customers. Softw Syst Model 2:15–36

20. Pohl K, Böckle G, Linden Fvd (2005) Software product line
engineering: foundations, principles, and techniques. Springer,
Heidelberg

21. Salicki S, Farcet N (2002) Expression and usage of the variabil-
ity in the software product lines. In: 4th international workshop
on product family engineering (PFE-4), Bilbao, Spain. Springer,
Berlin

22. Maßen Tvd, Lichter H (2002) Modeling variability by UML use
case diagrams. In: International workshop on requirements engi-
neering for product lines (REPL 2002), Essen, Germany. Avaya
Labs, New Jersey

23. Machado RJ, Fernandes JM, Monteiro P, Rodrigues H (2005)
Transformation of UML models for service-oriented software
architectures. In: 12th IEEE international conference and work-
shops on the engineering of computer-based systems (ECBS 2005),
Greenbelt, MD, USA. IEEE Computer Society, California

24. Atkinson C, Bayer J, Muthig D (2000) Component-based prod-
uct line development: the KobrA approach. In: 1st software prod-
uct line conference (SPLC 2000), Denver, CO, USA. Kluwer
Academic Publishers, Dordrecht

25. Jacobson I, Griss M, Jonsson P (1997) Software reuse: architec-
ture, process and organization for business success. Addison-
Wesley, Upper Saddle River

26. Greenfield J, Short K (2004) Software factories: assembling
applications with patterns, models, frameworks, and tools. Wiley,
Hoboken

27. Pons C, Kutsche R-D (2004) Traceability across refinement steps
in uml modeling. In: 3rd UML workshop in software model engi-
neering (WiSME 2004), Lisbon, Portugal. Springer, Berlin

28. Eriksson M, Börstler J, Borg K (2006) Software product line mod-
eling made practical. Commun. ACM 49:49–53

29. Azevedo S, Machado RJ, Bragança A, Ribeiro H (2010) The
UML «include» relationship and the functional refinement of use
cases. In: 36th euromicro conference on software engineering and
advanced applications (SEAA 2010), Lille, France. IEEE Com-
puter Society, California

30. Paech B, Rumpe B (1994) A new concept of refinement used for
behaviour modelling with automata. In: 2nd international sympo-
sium of formal methods Europe (FME 1994), Barcelona, Spain.
Springer, Berlin

31. Quartel DAC, Pires LF, Franken HM, Vissers CA (1995) An engi-
neering approach towards action refinement. In: 5th IEEE work-
shop on future trends of distributed computing systems (FTDCS
1995), Chenju, Korea. IEEE Computer Society, California

32. Darimont R, Lamsweerde Av (1996) Formal refinement patterns
for goal-driven requirements elaboration. In: 4th symposium on the
foundations of software engineering (FSE-4) San Francisco, CA,
USA. ACM, New York

33. Mikolajczak B, Wang Z (2003) Conceptual modeling of concurrent
systems through stepwise abstraction and refinement using petri
net morphisms. In: 22nd international conference on conceptual
modeling (ER 2003), Chicago, IL, USA. Springer, Berlin

34. Batory D, Sarvela JN, Rauschmayer A (2004) Scaling step-wise
refinement. IEEE Trans Softw Eng 30:355–371

35. Cherfi SS-s, Akoka J, Comyn-Wattiau I (2006) Use case modeling
and refinement: a quality-based approach. In: 25th international
conference on conceptual modeling (ER 2006), Tucson, AZ, USA.
Springer, Berlin

36. Simons AJH (1999) Use cases considered harmful. In: 29th con-
ference on technology of object-oriented languages and systems
(TOOLS Europe 1999), Nancy, France: IEEE Computer Society,
California

37. Heldal R (2005) Use cases are more than system operations. In: 2nd
international workshop on use case modeling (WUsCaM 2005),
Montego Bay, Jamaica. Chalmers Publication Library, Sweden

38. Fowler M (2004) UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley, Upper Saddle River

39. Machado RJ, Fernandes JM, Monteiro P, Rodrigues H (2006)
Refinement of software architectures by recursive model trans-
formations. In: 7th international conference on product focused
software process improvement (PROFES 2006), Amsterdam, The
Netherlands. Springer, Berlin

40. Bosch J, Florijn G, Greefhorst D, Kuusela J, Obbink JH, Pohl K
(2002) Variability issues in software product lines. In: 4th interna-
tional workshop on product family engineering (PFE-4), Bilbao,
Spain. Springer, Berlin

41. Cockburn A (2000) Writing effective use cases. Addison-Wesley,
Upper Saddle River

123


	On the refinement of use case models with variability support
	Abstract
	1 Introduction
	2 Related work
	3 Handling variability in use case modeling
	4 The «extend» relationship
	4.1 Extending the UML for modeling variability in use cases

	5 Handling variability in use case modeling with refinement
	6 The variability in the GoPhone case study
	6.1 Refinement of specializations and alternatives

	7 Conclusions
	References


