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Abstract. Automation is the essence of MDD (Model-Driven Development). 
Transforming models into models following a set of rules is at the core of 
automation. It allows using tools to enliven processes that have been defined. 
Transition methods are most likely the most important player in the engineering 
of software. The 4SRS (Four Step Rule Set) is a transition method we adopt in 
this paper to focus the discussion on the transition from the analysis to the 
design of software. It has been formalized as a small software development 
process that can be plugged into larger software development processes. That 
formalization was conducted with the SPEM (Software & Systems Process 
Engineering Metamodel), which is a process modeling language for the domain 
of software and systems. This paper exemplifies how a transition method like 
the 4SRS can be modeled with the SPEM as a way to study the benefits of the 
automatic or semiautomatic execution of a transition method as a small 
dedicated software development process.  

Keywords: automation, software process modeling, transition method, software 
development process, software process modeling language.  

1 Introduction 

The automation of software processes may be facilitated by process modeling. 
Method modeling is also essential when it comes to process modeling. The same 
method can be used by many different processes and more than once in the same 
process. A method can be defined as a general description of how to develop software 
and systems. This description shall be the basis for defining or formalizing software 
and systems development processes. Software and systems development processes 
can be described as sequences of phases and milestones. The sequence of phases and 
milestones represents the development lifecycle of the product, so processes may 
represent product development lifecycles. In this context, methods are only 
contextualized in a development lifecycle when positioned within a process. 
Processes can be modeled with process modeling languages like the SPEM (Software 
& Systems Process Engineering Metamodel) [1]. A process modeling language can be 
defined as the instrument to express software development processes through a 
process model [2].  
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The 4SRS (Four Step Rule Set) [3-5] method allows the iterative and incremental 
model-based transition from user functional requirements (represented as use cases) 
to system functional requirements (or logical architectures represented as component 
models). In other words the transformation of use cases (which are dealt with during 
the analysis of software development) into logical architectures (which are dealt with 
during the design of software development) is conducted with a method specifically 
conceived for the purpose. The main concern of the method is: (1) not to lose any user 
requirements when moving from the analysis to the design; and (2) to assure that no 
user requirements that have not been elicited with the customer are considered. 

A logical software architecture can be faced as a view of a system composed of a 
set of problem-specific abstractions composed from the system’s functional 
requirements and it is represented as objects or object classes [6]. Another definition 
of logical software architecture is a module view representing the static structure of 
the software system (the system’s functional blocks, including traceability back to the 
use cases that express the system’s functional requirements) [7]. In the context of this 
paper, a logical software architecture (represented as a component model) is a design 
artifact representing a functionality-based structure of the system being designed.  

The SPEM (2.0) is a software and systems development process modeling 
language. We used the SPEM to model the 4SRS as a process. We showed how to 
model transition methods as processes with a process modeling language (the SPEM) 
and we used the 4SRS as the example of a transition method to illustrate our 
approach. In the context of this paper, a transition method is a method that describes 
how to transform analysis artifacts (use case diagrams) into design artifacts 
(component models) to develop software. Some other transition methods may for 
instance describe how to transform design artifacts into implementation artifacts, or 
how to generate test artifacts, or how to transform business modeling artifacts. Being 
the 4SRS a method, we formalized it as a small dedicated (at transitioning from 
analysis to design) software development process that can be plugged into larger 
software development processes. 

The problem this paper addresses is the automation of transition methods, 
particularly those modeled with the SPEM. The 4SRS was modeled with the SPEM in 
order to formalize it as a software process. It had to be automated so that it could be 
enlivened by means of a tool. The SPEM was chosen because it is standard, therefore 
it would be possible to benefit from the advantages of using a standard that is 
available to every professional of process modeling. Assuming that disciplines are 
sets of tasks that can be grouped according to their particular relevance in specific 
phase(s) from large software development processes into which small dedicated 
software development processes can be plugged into, transition methods are methods 
that describe how to transform artifacts from one discipline of a large software 
development process into artifacts from another discipline of such a process. 
Transition methods have particularities regarding other methods. They realize a 
change in the perspective on the system, consequently in the artifacts that represent 
the system from different perspectives, as well as they mark a change in the phase of 
the large software development process. In this paper, we use the 4SRS as the 
example of a transition method modeled with the SPEM and we illustrate the 
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automation of transition methods modeled with the SPEM, in this case a transition 
method that transforms analysis artifacts into design artifacts. The goal of the 
automation of transition methods modeled with the SPEM is the automatic or 
semiautomatic execution of those methods as small dedicated software development 
processes, in this case the 4SRS. The intent is to decrease the cost of introducing the 
method into large software development processes, facilitating its use. The 
(semi)automatic execution of the 4SRS transition method was based on the Moderne 
[8], which is a tool developed in the Federal University of Bahia (Brazil). The 
Moderne is a model-driven tool of process modeling and execution. The Moderne tool 
allows the execution of the 4SRS in an explicit model-driven approach, which implies 
generating logical architectures through model transformations using a model-to-
model transformation language [9, 10]. 

The paper is structured as follows. Section 2 exposes basics concepts to understand 
software process modeling, automation, execution and enactment. Section 3 is on 
work related to process execution through tools, on the SPEM and on process 
architecture. Section 4 elaborates on a vision over the SPEM and presents the 4SRS 
transition method. Section 5 shows the preparation necessary for the automation of 
transition methods modeled with the SPEM, particularly the work undertaken to 
prepare the automation of the 4SRS. Section 6 presents the case study. Finally Section 
7 provides some concluding remarks. 

2 Basic Concepts 

The goal of processes is to assure the quality of products and the productivity in 
developing them [11]. Process comprehension and process communication may be 
negatively affected by the lack of a standard and unified terminology [12]. In such 
conditions process enactment is far away from process definition, thus the quality of 
products and the productivity in developing them may be compromised and the goal 
of processes may not be achieved. Process modeling using a standard and unified 
terminology suits some purposes like process understanding, process design, process 
training, process simulation and process support, among others [13]. A short 
definition of process is the way activities are organized to reach a goal [14]. In the 
case of software development, a process (software process) can be defined as the set 
of activities (analysis, design, implementation, testing, among others) organized to 
deliver a software product (goal). A process model is an artifact that expresses a 
process with the intention of (among other things) automating that process. A tool 
supports the execution of the process to consistently reach the goal (delivering a 
software product). 

In 1995 Conradi and Liu [15] says that enactable process models are low-level 
process models in terms of abstraction. Process modeling languages suit the purpose 
of detailing process models to make them enactable. According to Henderson-Sellers 
[16], a process enactment is an instance of a process in a particular project with actual 
people playing roles, deadlines having real dates and so on. Different enactments have 
different people playing the same role and different dates for the same deadline. 
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Bendraou, et al. [17] considers that process enactment shall contemplate support for 
automatic task assignments to roles, automatic routing of artifacts, automatic control 
on work product states, among others. In what process enactment is concerned, Feiler 
and Humphrey [18] define an enactable process as an instance of a process definition 
that shall have process inputs, assigned agents (people or machines that interpret the 
enactable process), an initial state, a final state and an initiation role. A process 
definition is a set of enactable process steps. Process definitions can be a composition 
of subprocess definitions as well as process steps can be a composition of process 
substeps. A process definition only fits for enactment when fully refined, which 
means that it cannot be more decomposed into subprocess definitions and into process 
substeps. The act of creating enactable processes from process definitions is defined 
by Feiler and Humphrey as process instantiation. They define process enactment as 
the execution of a process by a process agent following a process definition. 
Bendraou, et al. [17] consider that support for the execution of process models helps 
coordinating participants, routing artifacts, ensuring process constraints and process 
deadlines, simulating processes and testing processes. The use of machines in process 
enactment is called process automation and requires for a process definition to be 
embodied in a process program [18]. Gruhn [19] defines automatic activities as those 
executed without human interaction. He mentions that the automation of activities is 
one of the purposes of process modeling. Another purpose is to govern real processes 
on the basis of the underlying process models. 

3 Related Work 

Processes can be executed through tools. In [11] Osterweil considers coding software 
processes (as part of programming them). Process modeling is one of the parts of 
programming a software process with a model-driven approach. Software process 
code is in a lower abstraction level when compared to software process models and it 
can be executed by computers. Software process code specifications require that 
software process models define (for new software processes) or formalize (for 
existing software processes) how software artifacts shall be input to or output from 
software process tools and how those artifacts are to be handled by the right roles at 
the right time of the process. Software process models can be analyzed to identify 
process steps that may be automated. The number of processes being followed to 
develop software is high. Some key software development processes like software 
requirements specification and software design lack definition (if they’re new ones) or 
formalization (if they’re existing ones). Software design for instance is a process that 
can be modeled and coded. This paper shows an approach to code a previously 
modeled software development process, which is the 4SRS transition method 
modeled with the SPEM as a small dedicated software development process. We 
analyzed software process models to identify process steps that might be automated 
with the Moderne tool. 

A process’ capability can be assessed according to three criteria [20]: task 
customization, project customization and maturity customization. According to 
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Henderson-Sellers, et al. [20], SPEM allows for task customization and for project 
customization, but not for maturity customization. SPEM allows for task 
customization because it allows for the selection of techniques for each task according 
to the organization and the expertise of the professionals in those techniques. For 
instance various techniques can be used to elaborate a requirements specification 
depending on the organization and the project: questionnaires, workshops, 
storyboards, prototypes and others. SPEM allows for project customization since it 
allows for the selection of activities, tasks and techniques according to the project. 
The tasks required to be performed and the products to be developed (models and 
documents) vary from one project to another. Project customization is a matter of 
selecting or omitting portions of a process. SPEM does not allow for the 
addition/removal of activities and tasks to/from a process, and consequently work 
products depending on the capability or maturity level of the organization. 
Furthermore Henderson-Sellers, et al. [20] refers that SPEM allows for the definition 
of discrete activities and steps, therefore allowing for process fragment selection. 

Kruchten [6] defines development architecture in his “4+1” View Model of 
Software Architecture. The software system is structured in subsystems that shall be 
developed by one or a small number of developers (a team). That structure of 
subsystems is the development architecture, which can be used to allocate work to 
teams. The development architecture is in fact a logical architecture. In a higher level 
of abstraction a logical architecture may be process-based (according to our 
designation) or a process architecture (according to Kruchten’s designation), 
consisting of a functionality-based structure of the process being designed. To our 
concern a product-based logical architecture or product architecture is an architecture 
that resides in a lower level of abstraction comparatively to a process-based or process 
architecture and consists of a functionality-based structure of the product being 
designed. Allocating work to teams developing subsystems (as the development 
architecture can be used to) presupposes that those subsystems can also represent 
process architecture components that consist of tasks (ultimately steps) that are 
performed by some roles to produce some output (work products). In fact process 
architecture components are activities that compose a process structure. Activities are 
a (kind of) work breakdown element. We can conclude that the 4SRS is not only a 
method dedicated at transitioning from analysis to design but can also be a method for 
defining a development architecture (or process architecture). This paper shows how 
to automate transition methods, particularly those modeled with the SPEM. We use 
the 4SRS previously modeled with the SPEM as the example of a transition method 
modeled with the SPEM and we illustrate the automation of transition methods 
modeled with the SPEM by means of this transition method that transforms analysis 
artifacts into design artifacts. Automated transition methods modeled with the SPEM 
can be automatically or semiautomatically executed as small dedicated software 
development processes. This paper focuses on transition methods from the product 
development point of view and not from the process architecture point of view.  
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4 Synopsis of the 4SRS Transition Method 

This paper shows how to automate transition methods, particularly those modeled 
with the SPEM. We use the 4SRS previously modeled with the SPEM as the example 
of a transition method and we illustrate the automation of transition methods modeled 
witht the SPEM by means of this transition method that transforms analysis artifacts 
into design artifacts. Automated transition methods modeled with the SPEM can be 
automatically or semiautomatically executed as small dedicated software 
development processes. 

The SPEM is a modeling language that contains the minimal elements to define 
software and systems development processes. The SPEM distinguishes between the 
concepts of process and of method content. From the process’ perspective, activities 
represent work that can be assigned to roles that intervene on the process, and require 
inputs and/or outputs (work products) to be performed. Activities are relevant for 
modeling phases of a development lifecycle (waterfall, iterative and incremental are 
three types of development lifecycles). The same role can be used in an early phase of 
a development lifecycle represented by an activity and in a later phase of the same 
development lifecycle represented by another activity, which may mean that e.g. that 
role will handle different work products in those two different phases. 

A method content can be considered as a set of concepts (tasks, roles and work 
products) that allows representing a software and systems development method and 
its techniques which can be positioned within a specific software and systems 
development lifecycle (consider that a method is composed of many techniques and 
that a development lifecycle can be composed of a sequence of phases and milestones 
for example). Processes shall use method content elements and organize them into 
sequences. A method content is a stepwise definition of tasks that shall be performed 
by roles to originate work products. They may consume work products as well. A task 
from a method content may have its steps, inputs or outputs (work products) changed 
depending on the development lifecycle it is positioned. 

The main difference between a method content and a process is that a method 
content defines methods and techniques for software and systems development 
processes, whereas a process defines the positioning of those methods and techniques 
within a development lifecycle composed of e.g. a sequence of phases and milestones. 
When a specific composition of tasks, roles and work products (a specific method 
content) is positioned within a development lifecycle, it means that the method 
content has been applied to that part of the process where it has been positioned. It 
also means that the method content was used by that process. 

The 4SRS is a method for obtaining system functional requirements from user 
functional requirements [3]. Use cases model user functional requirements and logical 
architectures model system functional requirements. Use cases are problem-related, 
technology-independent and are dealt with during the analysis phase of software 
development. Logical architectures are solution-related, technology-independent and 
are dealt with in the beginning of the design phase of software development. 

According to Kaindl [21], we can classify 4SRS as a transition method. Kaindl 
argues that it is difficult to move from the analysis to the design of software. From the 



 On the Use of Model Transformations for the Automation 255 

perspective of object-oriented software development, the main reason is that analysis 
objects and design objects represent different kinds of concepts. Analysis objects are 
from the problem domain and represent objects from the real world. Design objects 
are from a solution domain and shall indicate how the system shall be developed. 
Design objects are abstractions of code or the implementation details needed in order 
to build a system with that solution to that problem. Design objects are both an 
abstraction of concepts from the problem domain and of the implementation of the 
system to be built. An analysis model can become part of a design model by 
influencing architectural decisions. The 4SRS is a method that allows moving from 
the analysis to the design of software. In the case of the 4SRS, the analysis model (a 
UML (Unified Modeling Language) [22] use case diagram) influences architectural 
decisions that originate the design model (a UML component model).  

 

Fig. 1. Schematic representation of the recursive execution of the 4SRS method 

Shortly the 4SRS method is composed of the following steps: (1) Component 
Creation, to create three kinds of components for each use case (an interface 
component, a control component and a data component; other kinds of components 
could be created, so this is not a limitation of the method, rather an architectural 
decision); (2) Component Elimination, to remove redundant requirements and find 
missing requirements (this step is vital in order to validate the components blindly 
created in the previous step and includes eliminating the components whose 
requirements are already represented by other components; the finding of missing 
requirements means that components have been inadequately eliminated or use cases 
are missing); (3) Component Packaging and Nesting, to semantically group 
components in packages; and (4) Component Association, to define associations of 
components with each other in the component model.  
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Architectural refinement is the approach the 4SRS method takes to increment a 
primary logical architecture with detail (by primary we mean the architecture that is 
going to be detailed) [4]. In the context of this paper, recursion is the ability of the 
method to be executed over parts of its output artifact after transformed into the input 
artifact for that execution. As depicted in Figure 1, the 4SRS method may be applied 
recursively, in several executions. In the context of each one of those executions, 
various iterations can be performed. Although there is no stopping rule for iterating 
over the same set of use case diagrams, it shall be performed until the results obtained 
generate a logical architecture that does not benefit from additional iterations in terms 
of the elimination of redundant requirements, the finding of missing requirements and 
the increasing of the logical architecture’s cohesion. There cannot be components 
isolated from the rest of the architecture when the global architecture is composed 
from the various logical architectures generated by the different executions. In the 
case of refinement (by recursion), when one of the executions is considered to be 
finished by the modeler, the output of that execution’s last iteration (a component 
model) is going to originate the input of a subsequent execution’s first iteration (a use 
case diagram). The task flow of the new execution is exactly the same as the task flow 
of the preceding one. Again in the case of refinement (by recursion), the logical 
architectures produced by the various executions are situated in lower levels of 
abstraction and cover less functionality than the logical architectures they refined. 

Considering architectural refinement, the sequence of steps for the 4SRS method is 
the following: (1) Component Creation; (2) Component Elimination; (3) Component 
Packaging and Nesting; (4) Component Association; (4+1) Filtering and Collapsing; 
and (4+2) From Components to Use Cases. The first four steps are the original steps 
and the other ones are what we call the intermediate steps, which are performed in 
between executions of the 4SRS method. The step 2 is composed of seven microsteps. 
The microstep (2.i) Use Case Classification is about determining the kinds of 
components that will originate from each use case according to the eight possible 
combinations. According to this classification, the microstep (2.ii) Local Elimination 
is about eliminating the components blindly created in the step 1 by analyzing the 
textual description of the use cases and deciding on whether those components make 
sense in the problem domain. The microstep (2.iii) Component Naming is about 
naming the components that have not been eliminated in the previous microstep. The 
microstep (2.iv) Component Description is about textually describing the components 
named in the previous microstep, based on the textual descriptions of the use cases 
they originated from, on nonfunctional requirements and on design decisions. The 
microstep (2.v) Component Representation is about determining whether some 
components represent both their own system requirements and others’. The microstep 
(2.vi) Global Elimination is about eliminating the components whose requirements 
are already represented by other components (elimination of functional redundancy). 
Finally the microstep (2.vii) Component Renaming is about renaming the components 
that were not eliminated in the previous microstep and that represent additional 
components. 

The filtering consists of considering some components as the subsystem for 
refinement and discarding those that are not associated with them [5]. The collapsing 
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consists of hiding the details of the subsystem whose components are going to be 
refined. Later on, those components are replaced inside the limits of the subsystem’s 
border by others of lower abstraction level. 

The intermediate step (4+2) From Components to Use Cases of the 4SRS method 
is composed of two intermediate substeps: the (4+2.i) Deriving Use Cases from 
Components and the (4+2.ii) Detailing Use Cases. The goal of the (4+2.i) Deriving 
Use Cases from Components is to derive the use cases to hand out as input for the 
succeeding recursive execution of the 4SRS method from the components to refine. 
The goal of the (4+2.ii) Detailing Use Cases is to refine those use cases. 

5 Automating the 4SRS Method 

The goal of automated transition methods modeled with the SPEM is to automatically 
or semiautomatically execute them as small dedicated software development 
processes. That goal was achieved with the support of a tool. That tool is the 
Moderne, which is a tool developed at the Federal University of Bahia (Brazil). The 
Moderne is a model-driven tool of process modeling and execution. The Moderne tool 
allows the execution of the 4SRS in an explicit model-driven approach, which implies 
generating logical architectures through model transformations using a model-to-
model transformation language. These model transformations can be executed with 
any ATL (Atlas Transformation Language) [9] engine that uses UML, and not only 
with the Moderne. 

This section exposes the way the 4SRS transition method modeled with the SPEM 
has been automated according to our definition of goal for the automation of transition 
methods modeled with the SPEM: the automation allows the automatic or 
semiautomatic execution of these transition methods as small dedicated software 
development processes. By automatic it is meant that models (the artifacts) are 
transformed using a transformation language or based on some action the modeler (the 
tool user) performs with the tool (to which the tool is programmed to respond) or even 
based on rules the tool has been programmed with to respond to some particular event 
without any modeler’s action. By semiautomatic it is meant that the tool supports 
decisions the modeler has to make by allowing him to represent them in the diagrams. 

The modeling of the 4SRS transition method with the SPEM we performed 
beforehand (and that is not the focus of this paper) had to be adapted in order for the 
method to be automatically or semiautomatically executed as a microprocess with the 
Moderne tool. In the context of this paper, a microprocess is a small dedicated 
software development process dedicated at transitioning from analysis to design and 
that can be plugged into larger software development processes. From the perspective 
of the SPEM, a process can be considered to be at least a method content (or shortly 
method) positioned within a development lifecycle. In this paper, a method defines 
tasks (composed of steps), roles and work products, therefore methods are modeled 
with the following elements: tasks (and steps), roles and work products. We 
subclassed tasks into transition tasks and intermediate tasks, steps into transition steps 
and intermediate steps, and finally work products into initial work products, 
intermediate work products and final work products. Figure 2 illustrates some 
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examples of these elements. In the case of tasks, steps and work products, the 
stereotypes respectively indicate the type of task, step or work product according to 
the subclassing just mentioned.   

The model of the 4SRS transition method with the SPEM (elaborated beforehand) 
was adapted by adding the transformation rule i-c-dComponentsFromLeafUseCases 
as an input to the transition task ComponentCreation and by adding the intermediate 
task UseCaseDiagramDrawing to the model. The transformation rule is an ATL [9] 
rule that defines how to transform the use case diagram (the initial work product 
UseCaseDiagram) into the component diagram (the intermediate work product i-c-
dComponents). The intermediate task had to be modeled to give the input (initial 
work product UseCaseDiagram) to the task that consumes the only initial work 
product in the model of the 4SRS transition method with the SPEM, which are the 
transition task ComponentCreation and the initial work product UseCaseDiagram. 
The intermediate task UseCaseDiagramDrawing was needed since the Moderne tool 
does not allow creating an input to a task in the context of the task itself, rather in the 
context of another task as output of that own task.  

 

Fig. 2. The 4SRS transition method modeled with the SPEM for automation purposes 

We analyzed the model of the 4SRS transition method with the SPEM to identify 
the steps that could be automated with the Moderne tool. Table 1 shows that analysis. 
Some of the steps from the 4SRS transition method where concluded to be fully 
automated with the Moderne tool whereas others where concluded to be 
semiautomated or not automated at all. The automation capability is the ability of a 
method’s step to be automated with a tool. The ones concluded to be fully automated 
with the tool were classified as “Automatic” in terms of their automation capability, 
the ones concluded to be semiautomated with the tool were classified as 
“Semiautomatic” and the ones concluded to be not automated with the tool where 
classified as “Not automatic”. The automatic steps were automated using ATL model-
to-model transformation rules. A semiautomatic step depends on some modeler’s 
action in the models by means of the tool before the ATL model-to-model 
transformation rules concerning that particular step can be applied. The not automatic 
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steps comprise actions that are fully performed by the modeler even that they consist 
of input for the models or for the information attached to the models, in the tool. 

6 Case Study 

The use case diagram in Figure 3 was used to exemplify the model-to-model 
transformations the Moderne tool is able to perform in the context of the 4SRS. The 
diagram is based on the Fraunhofer IESE’s GoPhone [23] case study, which presents 
a series of use cases for a part of a mobile phone product line particularly concerning 
the interaction between the user and the mobile phone software. 

Table 1. Analysis of the automation capability of the steps from the 4SRS  

4SRS Step/Microstep Automation Capability 
Step 1: Component Creation Automatic 

Microstep 2.i: Use Case Classification Not automatic (the modeler shall decide 
each use case’s classification) 

Microstep 2.ii: Local Elimination Semiautomatic (the modeler shall tag in the 
component diagram the components to 

eliminate or maintain)  
Microstep 2.iii: Component Naming Not automatic 

Microstep 2.iv: Component Description Not automatic 
Microstep 2.v: Component Representation Not automatic (the modeler explicitly relates 

components in the diagram through 
Dependency relationships indicating which 

component represents others) 
Microstep 2.vi: Global Elimination Automatic (based on the Dependency 

relationships mentioned above in this table) 
Microstep 2.vii: Component Renaming Not automatic 

Step 3: Component Packaging and Nesting Not automatic 
Step 4: Component Association Semiautomatic (partially based on the rules 

for associating components and partially 
based on the modeler’s decision) 

Intermediate step 4+1: Filtering and 
Collapsing 

Semiautomatic (the collapsing is automatic; 
the filtering is semiautomatic depending 

partially on the modeler’s decision to 
perform refinement and with the automatic 
exclusion of the components not associated 

with any component from the region to 
refine determined by the modeler) 

Intermediate microstep 4+2.i: Deriving Use 
Cases from Components 

Not automatic 

Intermediate microstep 4+2.ii: Detailing Use 
Cases 

Not automatic 
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The transformation of the use case diagram in Figure 3 into the corresponding 
component diagram was defined in an ATL rule that mostly determines what leaf use 
cases are. Leaf use cases are those from which interface components, control 
components and data components are generated in the step 1 of the 4SRS (Component 
Creation). The ATL rule defines that leaf use cases are those that are included by at 
least one use case and that do not include any other use case, and those that are not 
included by any use case and do not include any use case. The rule also defines some 
associations between components, and between components and actors (from the use 
case diagram). This anticipates part of the step 4 (Component Association) of the 
4SRS to the step 1 (Component Creation).  

 

 

Fig. 3. A use case diagram from the GoPhone 

Figure 4 depicts part of the ATL rule that determines the leaf use cases of a use 
case diagram. The function srcIncludes() gets all associations whose source is 
the element that called the rule. The component diagram generated from the use case 
diagram in Figure 3 through the ATL rule and the Moderne tool is in Figure 5. 
 
helper context UML!UseCase def : isLeaf() : Boolean = 

 self.srcIncludes()->size() = 0; 

Fig. 4. Part of the ATL rule that determines the leaf use cases of a use case diagram 

We have defined some well-formedeness rules or constraints in OCL (Object 
Constraint Language [24]) to do what the following figures illustrate. 

A transition task can transform an initial work product into an intermediate work 
product or an intermediate work product into an intermediate work product or even an 
intermediate work product into a final work product. The OCL code for these 
constraints is in Figure 6. Figure 7 shows a validation error signaled with a cross in a 
transition task that transforms an intermediate work product into an initial work 
product. 
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Fig. 5. The component diagram automatically generated from the use case diagram in  
Figure 3 

 
context TransitionTask 
inv:  
(self.in->forAll(wp | wp.oclIsTypeOf(InitialWorkProduct)) 
and 
self.out->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct))) 
OR 
(self.in->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct)) 
and 
self.out->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct))) 
OR 
(self.in->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct)) 
and 
self.out->forAll(wp | wp.oclIsTypeOf(FinalWorkProduct))) 

Fig. 6. The OCL code for constraints on the relation between transition tasks and work  
products 

 

 
Fig. 7. An example of a validation error in the constraints on the relation between transition 
tasks and work products 

An intermediate task transforms a final work product into an initial work product. 
The OCL code for this constraint is in Figure 8. Figure 9 illustrates a validation error 
signaled with a cross in an association between an intermediate task and an initial 
work product. 
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context IntermediateTask 

inv:  self.in->forAll(wp | wp.oclIsTypeOf(FinalWorkProduct)); 

inv:  self.out->forAll(wp | wp.oclIsTypeOf(InitialWorkProduct)); 

Fig. 8. The OCL code for constraint on the relation between intermediate tasks and work 
products 

 

Fig. 9. An example of a validation error in the constraint on the relation between intermediate 
tasks and work products 

A transition step can only be contained by a transition task, whereas an 
intermediate step can only be contained by an intermediate task. The OCL code for 
these constraints is in Figure 10. Figure 11 depicts that a composition could not be 
drawn between a transition task and an intermediate step. In the case of the constraints 
above, a validation error was signaled with a cross in model elements because 
changing properties (the names) of the associations would eliminate that error. In this 
case changing properties of the association would not eliminate the error since the 
association should not exist in the first place to obey the constraint. 

 
context IntermediateTask 

inv: steps->forAll(step | step.oclIsTypeOf(IntermediateStep)) 

 

context TransitionTask 

inv: steps->forAll(step | step.oclIsTypeOf(TransitionStep))) 

Fig. 10. The OCL code for constraints on the relation between tasks and steps 

 

Fig. 11. An example of the impossibility of a composition between a transition task and an 
intermediate step 

7 Conclusions 

Transition methods describe how to transform artifacts originally produced within a 
certain discipline of a large software development process into artifacts from another 
discipline of such a process. Some transition methods are targeted at moving from the 
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analysis to the design of software. The 4SRS is a method that allows transforming 
UML use case diagrams (considered here as the analysis model) into the logical 
architecture of the system as a UML component model (considered here as the design 
model, the first technical artifact to initiate the design of the system). 

This paper describes the automation of a transition method, using the 4SRS method 
modeled with the SPEM as the case study. We adopted the Moderne tool to automate 
the generation of logical architectures through model transformations defined with the 
ATL language. We have defined some well-formedeness rules or constraints in OCL 
to validate the modeling of the 4SRS transition method with the SPEM. 

The SPEM model of the 4SRS transition method elaborated beforehand was 
adapted for automation purposes. For instance a transformation rule was added to the 
model.  

The OCL constrains on the modeling of the 4SRS transition method with the 
SPEM established the well-formedeness of the relations between transition tasks and 
work products, between intermediate tasks and work products, and between tasks and 
steps (all of these are elements for modeling methods). The violation of the 
constraints on those relations was tagged in the model through validation errors. 

In terms of future work, we plan to assess the efficiency of our approach by 
adopting the Moderne tool to apply the 4SRS transition method in a real industrial 
project. 
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