
M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 249–264, 2012.
© Springer-Verlag Berlin Heidelberg 2012

On the Use of Model Transformations
for the Automation of the 4SRS Transition Method

Sofia Azevedo1, Ricardo J. Machado1, and Rita Suzana Pitangueira Maciel2

1 Universidade do Minho, Portugal
{sofia.azevedo,rmac}@dsi.uminho.pt

2 Universidade Federal da Bahia, Brazil
ritasuzana@dcc.ufba.br

Abstract. Automation is the essence of MDD (Model-Driven Development).
Transforming models into models following a set of rules is at the core of
automation. It allows using tools to enliven processes that have been defined.
Transition methods are most likely the most important player in the engineering
of software. The 4SRS (Four Step Rule Set) is a transition method we adopt in
this paper to focus the discussion on the transition from the analysis to the
design of software. It has been formalized as a small software development
process that can be plugged into larger software development processes. That
formalization was conducted with the SPEM (Software & Systems Process
Engineering Metamodel), which is a process modeling language for the domain
of software and systems. This paper exemplifies how a transition method like
the 4SRS can be modeled with the SPEM as a way to study the benefits of the
automatic or semiautomatic execution of a transition method as a small
dedicated software development process.

Keywords: automation, software process modeling, transition method, software
development process, software process modeling language.

1 Introduction

The automation of software processes may be facilitated by process modeling.
Method modeling is also essential when it comes to process modeling. The same
method can be used by many different processes and more than once in the same
process. A method can be defined as a general description of how to develop software
and systems. This description shall be the basis for defining or formalizing software
and systems development processes. Software and systems development processes
can be described as sequences of phases and milestones. The sequence of phases and
milestones represents the development lifecycle of the product, so processes may
represent product development lifecycles. In this context, methods are only
contextualized in a development lifecycle when positioned within a process.
Processes can be modeled with process modeling languages like the SPEM (Software
& Systems Process Engineering Metamodel) [1]. A process modeling language can be
defined as the instrument to express software development processes through a
process model [2].

250 S. Azevedo, R.J. Machado, and R.S.P. Maciel

The 4SRS (Four Step Rule Set) [3-5] method allows the iterative and incremental
model-based transition from user functional requirements (represented as use cases)
to system functional requirements (or logical architectures represented as component
models). In other words the transformation of use cases (which are dealt with during
the analysis of software development) into logical architectures (which are dealt with
during the design of software development) is conducted with a method specifically
conceived for the purpose. The main concern of the method is: (1) not to lose any user
requirements when moving from the analysis to the design; and (2) to assure that no
user requirements that have not been elicited with the customer are considered.

A logical software architecture can be faced as a view of a system composed of a
set of problem-specific abstractions composed from the system’s functional
requirements and it is represented as objects or object classes [6]. Another definition
of logical software architecture is a module view representing the static structure of
the software system (the system’s functional blocks, including traceability back to the
use cases that express the system’s functional requirements) [7]. In the context of this
paper, a logical software architecture (represented as a component model) is a design
artifact representing a functionality-based structure of the system being designed.

The SPEM (2.0) is a software and systems development process modeling
language. We used the SPEM to model the 4SRS as a process. We showed how to
model transition methods as processes with a process modeling language (the SPEM)
and we used the 4SRS as the example of a transition method to illustrate our
approach. In the context of this paper, a transition method is a method that describes
how to transform analysis artifacts (use case diagrams) into design artifacts
(component models) to develop software. Some other transition methods may for
instance describe how to transform design artifacts into implementation artifacts, or
how to generate test artifacts, or how to transform business modeling artifacts. Being
the 4SRS a method, we formalized it as a small dedicated (at transitioning from
analysis to design) software development process that can be plugged into larger
software development processes.

The problem this paper addresses is the automation of transition methods,
particularly those modeled with the SPEM. The 4SRS was modeled with the SPEM in
order to formalize it as a software process. It had to be automated so that it could be
enlivened by means of a tool. The SPEM was chosen because it is standard, therefore
it would be possible to benefit from the advantages of using a standard that is
available to every professional of process modeling. Assuming that disciplines are
sets of tasks that can be grouped according to their particular relevance in specific
phase(s) from large software development processes into which small dedicated
software development processes can be plugged into, transition methods are methods
that describe how to transform artifacts from one discipline of a large software
development process into artifacts from another discipline of such a process.
Transition methods have particularities regarding other methods. They realize a
change in the perspective on the system, consequently in the artifacts that represent
the system from different perspectives, as well as they mark a change in the phase of
the large software development process. In this paper, we use the 4SRS as the
example of a transition method modeled with the SPEM and we illustrate the

 On the Use of Model Transformations for the Automation 251

automation of transition methods modeled with the SPEM, in this case a transition
method that transforms analysis artifacts into design artifacts. The goal of the
automation of transition methods modeled with the SPEM is the automatic or
semiautomatic execution of those methods as small dedicated software development
processes, in this case the 4SRS. The intent is to decrease the cost of introducing the
method into large software development processes, facilitating its use. The
(semi)automatic execution of the 4SRS transition method was based on the Moderne
[8], which is a tool developed in the Federal University of Bahia (Brazil). The
Moderne is a model-driven tool of process modeling and execution. The Moderne tool
allows the execution of the 4SRS in an explicit model-driven approach, which implies
generating logical architectures through model transformations using a model-to-
model transformation language [9, 10].

The paper is structured as follows. Section 2 exposes basics concepts to understand
software process modeling, automation, execution and enactment. Section 3 is on
work related to process execution through tools, on the SPEM and on process
architecture. Section 4 elaborates on a vision over the SPEM and presents the 4SRS
transition method. Section 5 shows the preparation necessary for the automation of
transition methods modeled with the SPEM, particularly the work undertaken to
prepare the automation of the 4SRS. Section 6 presents the case study. Finally Section
7 provides some concluding remarks.

2 Basic Concepts

The goal of processes is to assure the quality of products and the productivity in
developing them [11]. Process comprehension and process communication may be
negatively affected by the lack of a standard and unified terminology [12]. In such
conditions process enactment is far away from process definition, thus the quality of
products and the productivity in developing them may be compromised and the goal
of processes may not be achieved. Process modeling using a standard and unified
terminology suits some purposes like process understanding, process design, process
training, process simulation and process support, among others [13]. A short
definition of process is the way activities are organized to reach a goal [14]. In the
case of software development, a process (software process) can be defined as the set
of activities (analysis, design, implementation, testing, among others) organized to
deliver a software product (goal). A process model is an artifact that expresses a
process with the intention of (among other things) automating that process. A tool
supports the execution of the process to consistently reach the goal (delivering a
software product).

In 1995 Conradi and Liu [15] says that enactable process models are low-level
process models in terms of abstraction. Process modeling languages suit the purpose
of detailing process models to make them enactable. According to Henderson-Sellers
[16], a process enactment is an instance of a process in a particular project with actual
people playing roles, deadlines having real dates and so on. Different enactments have
different people playing the same role and different dates for the same deadline.

252 S. Azevedo, R.J. Machado, and R.S.P. Maciel

Bendraou, et al. [17] considers that process enactment shall contemplate support for
automatic task assignments to roles, automatic routing of artifacts, automatic control
on work product states, among others. In what process enactment is concerned, Feiler
and Humphrey [18] define an enactable process as an instance of a process definition
that shall have process inputs, assigned agents (people or machines that interpret the
enactable process), an initial state, a final state and an initiation role. A process
definition is a set of enactable process steps. Process definitions can be a composition
of subprocess definitions as well as process steps can be a composition of process
substeps. A process definition only fits for enactment when fully refined, which
means that it cannot be more decomposed into subprocess definitions and into process
substeps. The act of creating enactable processes from process definitions is defined
by Feiler and Humphrey as process instantiation. They define process enactment as
the execution of a process by a process agent following a process definition.
Bendraou, et al. [17] consider that support for the execution of process models helps
coordinating participants, routing artifacts, ensuring process constraints and process
deadlines, simulating processes and testing processes. The use of machines in process
enactment is called process automation and requires for a process definition to be
embodied in a process program [18]. Gruhn [19] defines automatic activities as those
executed without human interaction. He mentions that the automation of activities is
one of the purposes of process modeling. Another purpose is to govern real processes
on the basis of the underlying process models.

3 Related Work

Processes can be executed through tools. In [11] Osterweil considers coding software
processes (as part of programming them). Process modeling is one of the parts of
programming a software process with a model-driven approach. Software process
code is in a lower abstraction level when compared to software process models and it
can be executed by computers. Software process code specifications require that
software process models define (for new software processes) or formalize (for
existing software processes) how software artifacts shall be input to or output from
software process tools and how those artifacts are to be handled by the right roles at
the right time of the process. Software process models can be analyzed to identify
process steps that may be automated. The number of processes being followed to
develop software is high. Some key software development processes like software
requirements specification and software design lack definition (if they’re new ones) or
formalization (if they’re existing ones). Software design for instance is a process that
can be modeled and coded. This paper shows an approach to code a previously
modeled software development process, which is the 4SRS transition method
modeled with the SPEM as a small dedicated software development process. We
analyzed software process models to identify process steps that might be automated
with the Moderne tool.

A process’ capability can be assessed according to three criteria [20]: task
customization, project customization and maturity customization. According to

 On the Use of Model Transformations for the Automation 253

Henderson-Sellers, et al. [20], SPEM allows for task customization and for project
customization, but not for maturity customization. SPEM allows for task
customization because it allows for the selection of techniques for each task according
to the organization and the expertise of the professionals in those techniques. For
instance various techniques can be used to elaborate a requirements specification
depending on the organization and the project: questionnaires, workshops,
storyboards, prototypes and others. SPEM allows for project customization since it
allows for the selection of activities, tasks and techniques according to the project.
The tasks required to be performed and the products to be developed (models and
documents) vary from one project to another. Project customization is a matter of
selecting or omitting portions of a process. SPEM does not allow for the
addition/removal of activities and tasks to/from a process, and consequently work
products depending on the capability or maturity level of the organization.
Furthermore Henderson-Sellers, et al. [20] refers that SPEM allows for the definition
of discrete activities and steps, therefore allowing for process fragment selection.

Kruchten [6] defines development architecture in his “4+1” View Model of
Software Architecture. The software system is structured in subsystems that shall be
developed by one or a small number of developers (a team). That structure of
subsystems is the development architecture, which can be used to allocate work to
teams. The development architecture is in fact a logical architecture. In a higher level
of abstraction a logical architecture may be process-based (according to our
designation) or a process architecture (according to Kruchten’s designation),
consisting of a functionality-based structure of the process being designed. To our
concern a product-based logical architecture or product architecture is an architecture
that resides in a lower level of abstraction comparatively to a process-based or process
architecture and consists of a functionality-based structure of the product being
designed. Allocating work to teams developing subsystems (as the development
architecture can be used to) presupposes that those subsystems can also represent
process architecture components that consist of tasks (ultimately steps) that are
performed by some roles to produce some output (work products). In fact process
architecture components are activities that compose a process structure. Activities are
a (kind of) work breakdown element. We can conclude that the 4SRS is not only a
method dedicated at transitioning from analysis to design but can also be a method for
defining a development architecture (or process architecture). This paper shows how
to automate transition methods, particularly those modeled with the SPEM. We use
the 4SRS previously modeled with the SPEM as the example of a transition method
modeled with the SPEM and we illustrate the automation of transition methods
modeled with the SPEM by means of this transition method that transforms analysis
artifacts into design artifacts. Automated transition methods modeled with the SPEM
can be automatically or semiautomatically executed as small dedicated software
development processes. This paper focuses on transition methods from the product
development point of view and not from the process architecture point of view.

254 S. Azevedo, R.J. Machado, and R.S.P. Maciel

4 Synopsis of the 4SRS Transition Method

This paper shows how to automate transition methods, particularly those modeled
with the SPEM. We use the 4SRS previously modeled with the SPEM as the example
of a transition method and we illustrate the automation of transition methods modeled
witht the SPEM by means of this transition method that transforms analysis artifacts
into design artifacts. Automated transition methods modeled with the SPEM can be
automatically or semiautomatically executed as small dedicated software
development processes.

The SPEM is a modeling language that contains the minimal elements to define
software and systems development processes. The SPEM distinguishes between the
concepts of process and of method content. From the process’ perspective, activities
represent work that can be assigned to roles that intervene on the process, and require
inputs and/or outputs (work products) to be performed. Activities are relevant for
modeling phases of a development lifecycle (waterfall, iterative and incremental are
three types of development lifecycles). The same role can be used in an early phase of
a development lifecycle represented by an activity and in a later phase of the same
development lifecycle represented by another activity, which may mean that e.g. that
role will handle different work products in those two different phases.

A method content can be considered as a set of concepts (tasks, roles and work
products) that allows representing a software and systems development method and
its techniques which can be positioned within a specific software and systems
development lifecycle (consider that a method is composed of many techniques and
that a development lifecycle can be composed of a sequence of phases and milestones
for example). Processes shall use method content elements and organize them into
sequences. A method content is a stepwise definition of tasks that shall be performed
by roles to originate work products. They may consume work products as well. A task
from a method content may have its steps, inputs or outputs (work products) changed
depending on the development lifecycle it is positioned.

The main difference between a method content and a process is that a method
content defines methods and techniques for software and systems development
processes, whereas a process defines the positioning of those methods and techniques
within a development lifecycle composed of e.g. a sequence of phases and milestones.
When a specific composition of tasks, roles and work products (a specific method
content) is positioned within a development lifecycle, it means that the method
content has been applied to that part of the process where it has been positioned. It
also means that the method content was used by that process.

The 4SRS is a method for obtaining system functional requirements from user
functional requirements [3]. Use cases model user functional requirements and logical
architectures model system functional requirements. Use cases are problem-related,
technology-independent and are dealt with during the analysis phase of software
development. Logical architectures are solution-related, technology-independent and
are dealt with in the beginning of the design phase of software development.

According to Kaindl [21], we can classify 4SRS as a transition method. Kaindl
argues that it is difficult to move from the analysis to the design of software. From the

 On the Use of Model Transformations for the Automation 255

perspective of object-oriented software development, the main reason is that analysis
objects and design objects represent different kinds of concepts. Analysis objects are
from the problem domain and represent objects from the real world. Design objects
are from a solution domain and shall indicate how the system shall be developed.
Design objects are abstractions of code or the implementation details needed in order
to build a system with that solution to that problem. Design objects are both an
abstraction of concepts from the problem domain and of the implementation of the
system to be built. An analysis model can become part of a design model by
influencing architectural decisions. The 4SRS is a method that allows moving from
the analysis to the design of software. In the case of the 4SRS, the analysis model (a
UML (Unified Modeling Language) [22] use case diagram) influences architectural
decisions that originate the design model (a UML component model).

Fig. 1. Schematic representation of the recursive execution of the 4SRS method

Shortly the 4SRS method is composed of the following steps: (1) Component
Creation, to create three kinds of components for each use case (an interface
component, a control component and a data component; other kinds of components
could be created, so this is not a limitation of the method, rather an architectural
decision); (2) Component Elimination, to remove redundant requirements and find
missing requirements (this step is vital in order to validate the components blindly
created in the previous step and includes eliminating the components whose
requirements are already represented by other components; the finding of missing
requirements means that components have been inadequately eliminated or use cases
are missing); (3) Component Packaging and Nesting, to semantically group
components in packages; and (4) Component Association, to define associations of
components with each other in the component model.

256 S. Azevedo, R.J. Machado, and R.S.P. Maciel

Architectural refinement is the approach the 4SRS method takes to increment a
primary logical architecture with detail (by primary we mean the architecture that is
going to be detailed) [4]. In the context of this paper, recursion is the ability of the
method to be executed over parts of its output artifact after transformed into the input
artifact for that execution. As depicted in Figure 1, the 4SRS method may be applied
recursively, in several executions. In the context of each one of those executions,
various iterations can be performed. Although there is no stopping rule for iterating
over the same set of use case diagrams, it shall be performed until the results obtained
generate a logical architecture that does not benefit from additional iterations in terms
of the elimination of redundant requirements, the finding of missing requirements and
the increasing of the logical architecture’s cohesion. There cannot be components
isolated from the rest of the architecture when the global architecture is composed
from the various logical architectures generated by the different executions. In the
case of refinement (by recursion), when one of the executions is considered to be
finished by the modeler, the output of that execution’s last iteration (a component
model) is going to originate the input of a subsequent execution’s first iteration (a use
case diagram). The task flow of the new execution is exactly the same as the task flow
of the preceding one. Again in the case of refinement (by recursion), the logical
architectures produced by the various executions are situated in lower levels of
abstraction and cover less functionality than the logical architectures they refined.

Considering architectural refinement, the sequence of steps for the 4SRS method is
the following: (1) Component Creation; (2) Component Elimination; (3) Component
Packaging and Nesting; (4) Component Association; (4+1) Filtering and Collapsing;
and (4+2) From Components to Use Cases. The first four steps are the original steps
and the other ones are what we call the intermediate steps, which are performed in
between executions of the 4SRS method. The step 2 is composed of seven microsteps.
The microstep (2.i) Use Case Classification is about determining the kinds of
components that will originate from each use case according to the eight possible
combinations. According to this classification, the microstep (2.ii) Local Elimination
is about eliminating the components blindly created in the step 1 by analyzing the
textual description of the use cases and deciding on whether those components make
sense in the problem domain. The microstep (2.iii) Component Naming is about
naming the components that have not been eliminated in the previous microstep. The
microstep (2.iv) Component Description is about textually describing the components
named in the previous microstep, based on the textual descriptions of the use cases
they originated from, on nonfunctional requirements and on design decisions. The
microstep (2.v) Component Representation is about determining whether some
components represent both their own system requirements and others’. The microstep
(2.vi) Global Elimination is about eliminating the components whose requirements
are already represented by other components (elimination of functional redundancy).
Finally the microstep (2.vii) Component Renaming is about renaming the components
that were not eliminated in the previous microstep and that represent additional
components.

The filtering consists of considering some components as the subsystem for
refinement and discarding those that are not associated with them [5]. The collapsing

 On the Use of Model Transformations for the Automation 257

consists of hiding the details of the subsystem whose components are going to be
refined. Later on, those components are replaced inside the limits of the subsystem’s
border by others of lower abstraction level.

The intermediate step (4+2) From Components to Use Cases of the 4SRS method
is composed of two intermediate substeps: the (4+2.i) Deriving Use Cases from
Components and the (4+2.ii) Detailing Use Cases. The goal of the (4+2.i) Deriving
Use Cases from Components is to derive the use cases to hand out as input for the
succeeding recursive execution of the 4SRS method from the components to refine.
The goal of the (4+2.ii) Detailing Use Cases is to refine those use cases.

5 Automating the 4SRS Method

The goal of automated transition methods modeled with the SPEM is to automatically
or semiautomatically execute them as small dedicated software development
processes. That goal was achieved with the support of a tool. That tool is the
Moderne, which is a tool developed at the Federal University of Bahia (Brazil). The
Moderne is a model-driven tool of process modeling and execution. The Moderne tool
allows the execution of the 4SRS in an explicit model-driven approach, which implies
generating logical architectures through model transformations using a model-to-
model transformation language. These model transformations can be executed with
any ATL (Atlas Transformation Language) [9] engine that uses UML, and not only
with the Moderne.

This section exposes the way the 4SRS transition method modeled with the SPEM
has been automated according to our definition of goal for the automation of transition
methods modeled with the SPEM: the automation allows the automatic or
semiautomatic execution of these transition methods as small dedicated software
development processes. By automatic it is meant that models (the artifacts) are
transformed using a transformation language or based on some action the modeler (the
tool user) performs with the tool (to which the tool is programmed to respond) or even
based on rules the tool has been programmed with to respond to some particular event
without any modeler’s action. By semiautomatic it is meant that the tool supports
decisions the modeler has to make by allowing him to represent them in the diagrams.

The modeling of the 4SRS transition method with the SPEM we performed
beforehand (and that is not the focus of this paper) had to be adapted in order for the
method to be automatically or semiautomatically executed as a microprocess with the
Moderne tool. In the context of this paper, a microprocess is a small dedicated
software development process dedicated at transitioning from analysis to design and
that can be plugged into larger software development processes. From the perspective
of the SPEM, a process can be considered to be at least a method content (or shortly
method) positioned within a development lifecycle. In this paper, a method defines
tasks (composed of steps), roles and work products, therefore methods are modeled
with the following elements: tasks (and steps), roles and work products. We
subclassed tasks into transition tasks and intermediate tasks, steps into transition steps
and intermediate steps, and finally work products into initial work products,
intermediate work products and final work products. Figure 2 illustrates some

258 S. Azevedo, R.J. Machado, and R.S.P. Maciel

examples of these elements. In the case of tasks, steps and work products, the
stereotypes respectively indicate the type of task, step or work product according to
the subclassing just mentioned.

The model of the 4SRS transition method with the SPEM (elaborated beforehand)
was adapted by adding the transformation rule i-c-dComponentsFromLeafUseCases
as an input to the transition task ComponentCreation and by adding the intermediate
task UseCaseDiagramDrawing to the model. The transformation rule is an ATL [9]
rule that defines how to transform the use case diagram (the initial work product
UseCaseDiagram) into the component diagram (the intermediate work product i-c-
dComponents). The intermediate task had to be modeled to give the input (initial
work product UseCaseDiagram) to the task that consumes the only initial work
product in the model of the 4SRS transition method with the SPEM, which are the
transition task ComponentCreation and the initial work product UseCaseDiagram.
The intermediate task UseCaseDiagramDrawing was needed since the Moderne tool
does not allow creating an input to a task in the context of the task itself, rather in the
context of another task as output of that own task.

Fig. 2. The 4SRS transition method modeled with the SPEM for automation purposes

We analyzed the model of the 4SRS transition method with the SPEM to identify
the steps that could be automated with the Moderne tool. Table 1 shows that analysis.
Some of the steps from the 4SRS transition method where concluded to be fully
automated with the Moderne tool whereas others where concluded to be
semiautomated or not automated at all. The automation capability is the ability of a
method’s step to be automated with a tool. The ones concluded to be fully automated
with the tool were classified as “Automatic” in terms of their automation capability,
the ones concluded to be semiautomated with the tool were classified as
“Semiautomatic” and the ones concluded to be not automated with the tool where
classified as “Not automatic”. The automatic steps were automated using ATL model-
to-model transformation rules. A semiautomatic step depends on some modeler’s
action in the models by means of the tool before the ATL model-to-model
transformation rules concerning that particular step can be applied. The not automatic

 On the Use of Model Transformations for the Automation 259

steps comprise actions that are fully performed by the modeler even that they consist
of input for the models or for the information attached to the models, in the tool.

6 Case Study

The use case diagram in Figure 3 was used to exemplify the model-to-model
transformations the Moderne tool is able to perform in the context of the 4SRS. The
diagram is based on the Fraunhofer IESE’s GoPhone [23] case study, which presents
a series of use cases for a part of a mobile phone product line particularly concerning
the interaction between the user and the mobile phone software.

Table 1. Analysis of the automation capability of the steps from the 4SRS

4SRS Step/Microstep Automation Capability
Step 1: Component Creation Automatic

Microstep 2.i: Use Case Classification Not automatic (the modeler shall decide
each use case’s classification)

Microstep 2.ii: Local Elimination Semiautomatic (the modeler shall tag in the
component diagram the components to

eliminate or maintain)
Microstep 2.iii: Component Naming Not automatic

Microstep 2.iv: Component Description Not automatic
Microstep 2.v: Component Representation Not automatic (the modeler explicitly relates

components in the diagram through
Dependency relationships indicating which

component represents others)
Microstep 2.vi: Global Elimination Automatic (based on the Dependency

relationships mentioned above in this table)
Microstep 2.vii: Component Renaming Not automatic

Step 3: Component Packaging and Nesting Not automatic
Step 4: Component Association Semiautomatic (partially based on the rules

for associating components and partially
based on the modeler’s decision)

Intermediate step 4+1: Filtering and
Collapsing

Semiautomatic (the collapsing is automatic;
the filtering is semiautomatic depending

partially on the modeler’s decision to
perform refinement and with the automatic
exclusion of the components not associated

with any component from the region to
refine determined by the modeler)

Intermediate microstep 4+2.i: Deriving Use
Cases from Components

Not automatic

Intermediate microstep 4+2.ii: Detailing Use
Cases

Not automatic

260 S. Azevedo, R.J. Machado, and R.S.P. Maciel

The transformation of the use case diagram in Figure 3 into the corresponding
component diagram was defined in an ATL rule that mostly determines what leaf use
cases are. Leaf use cases are those from which interface components, control
components and data components are generated in the step 1 of the 4SRS (Component
Creation). The ATL rule defines that leaf use cases are those that are included by at
least one use case and that do not include any other use case, and those that are not
included by any use case and do not include any use case. The rule also defines some
associations between components, and between components and actors (from the use
case diagram). This anticipates part of the step 4 (Component Association) of the
4SRS to the step 1 (Component Creation).

Fig. 3. A use case diagram from the GoPhone

Figure 4 depicts part of the ATL rule that determines the leaf use cases of a use
case diagram. The function srcIncludes() gets all associations whose source is
the element that called the rule. The component diagram generated from the use case
diagram in Figure 3 through the ATL rule and the Moderne tool is in Figure 5.

helper context UML!UseCase def : isLeaf() : Boolean =

 self.srcIncludes()->size() = 0;

Fig. 4. Part of the ATL rule that determines the leaf use cases of a use case diagram

We have defined some well-formedeness rules or constraints in OCL (Object
Constraint Language [24]) to do what the following figures illustrate.

A transition task can transform an initial work product into an intermediate work
product or an intermediate work product into an intermediate work product or even an
intermediate work product into a final work product. The OCL code for these
constraints is in Figure 6. Figure 7 shows a validation error signaled with a cross in a
transition task that transforms an intermediate work product into an initial work
product.

 On the Use of Model Transformations for the Automation 261

Fig. 5. The component diagram automatically generated from the use case diagram in
Figure 3

context TransitionTask
inv:
(self.in->forAll(wp | wp.oclIsTypeOf(InitialWorkProduct))
and
self.out->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct)))
OR
(self.in->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct))
and
self.out->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct)))
OR
(self.in->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct))
and
self.out->forAll(wp | wp.oclIsTypeOf(FinalWorkProduct)))

Fig. 6. The OCL code for constraints on the relation between transition tasks and work
products

Fig. 7. An example of a validation error in the constraints on the relation between transition
tasks and work products

An intermediate task transforms a final work product into an initial work product.
The OCL code for this constraint is in Figure 8. Figure 9 illustrates a validation error
signaled with a cross in an association between an intermediate task and an initial
work product.

262 S. Azevedo, R.J. Machado, and R.S.P. Maciel

context IntermediateTask

inv: self.in->forAll(wp | wp.oclIsTypeOf(FinalWorkProduct));

inv: self.out->forAll(wp | wp.oclIsTypeOf(InitialWorkProduct));

Fig. 8. The OCL code for constraint on the relation between intermediate tasks and work
products

Fig. 9. An example of a validation error in the constraint on the relation between intermediate
tasks and work products

A transition step can only be contained by a transition task, whereas an
intermediate step can only be contained by an intermediate task. The OCL code for
these constraints is in Figure 10. Figure 11 depicts that a composition could not be
drawn between a transition task and an intermediate step. In the case of the constraints
above, a validation error was signaled with a cross in model elements because
changing properties (the names) of the associations would eliminate that error. In this
case changing properties of the association would not eliminate the error since the
association should not exist in the first place to obey the constraint.

context IntermediateTask

inv: steps->forAll(step | step.oclIsTypeOf(IntermediateStep))

context TransitionTask

inv: steps->forAll(step | step.oclIsTypeOf(TransitionStep)))

Fig. 10. The OCL code for constraints on the relation between tasks and steps

Fig. 11. An example of the impossibility of a composition between a transition task and an
intermediate step

7 Conclusions

Transition methods describe how to transform artifacts originally produced within a
certain discipline of a large software development process into artifacts from another
discipline of such a process. Some transition methods are targeted at moving from the

 On the Use of Model Transformations for the Automation 263

analysis to the design of software. The 4SRS is a method that allows transforming
UML use case diagrams (considered here as the analysis model) into the logical
architecture of the system as a UML component model (considered here as the design
model, the first technical artifact to initiate the design of the system).

This paper describes the automation of a transition method, using the 4SRS method
modeled with the SPEM as the case study. We adopted the Moderne tool to automate
the generation of logical architectures through model transformations defined with the
ATL language. We have defined some well-formedeness rules or constraints in OCL
to validate the modeling of the 4SRS transition method with the SPEM.

The SPEM model of the 4SRS transition method elaborated beforehand was
adapted for automation purposes. For instance a transformation rule was added to the
model.

The OCL constrains on the modeling of the 4SRS transition method with the
SPEM established the well-formedeness of the relations between transition tasks and
work products, between intermediate tasks and work products, and between tasks and
steps (all of these are elements for modeling methods). The violation of the
constraints on those relations was tagged in the model through validation errors.

In terms of future work, we plan to assess the efficiency of our approach by
adopting the Moderne tool to apply the 4SRS transition method in a real industrial
project.

References

[1] OMG. Software & Systems Process Engineering Meta-Model Specification - version 2.0
(2008), http://www.omg.org

[2] Conradi, R., Jaccheri, M.L.: Process Modelling Languages. In: Derniame, J.-C., Kaba,
B.A., Wastell, D., et al. (eds.) Promoter-2 1998. LNCS, vol. 1500, pp. 27–52. Springer,
Heidelberg (1999)

[3] Machado, R.J., et al.: Transformation of UML Models for Service-Oriented Software
Architectures. Presented at the 12th IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems, ECBS 2005, Greenbelt, Maryland, USA
(2005)

[4] Machado, R.J., Fernandes, J.M., Monteiro, P., Daskalakis, C.: Refinement of Software
Architectures by Recursive Model Transformations. In: Münch, J., Vierimaa, M., et al.
(eds.) PROFES 2006. LNCS, vol. 4034, pp. 422–428. Springer, Heidelberg (2006)

[5] Fernandes, J.M., et al.: A Demonstration Case on the Transformation of Software
Architectures for Service Specification. Presented at the 5th IFIP Working Conference on
Distributed and Parallel Embedded Systems, DIPES 2006, Braga, Portugal (2006)

[6] Kruchten, P.: Architectural Blueprints - The "4+1" View Model of Software Architecture.
IEEE Software 12, 42–50 (1995)

[7] Clements, P., et al.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, Upper Saddle River (2002)

[8] Gomes, R.A., et al.: Moderne: Model Driven Process Centered Software Engineering
Environment. Presented at the 2nd Congresso Brasileiro de Software: Teoria e Prática,
CBSoft 2011, São Paulo, Brasil (2011)

264 S. Azevedo, R.J. Machado, and R.S.P. Maciel

[9] The Eclipse Foundation. ATL Project (2010),
http://www.eclipse.org/m2m/atl

[10] Brown, A.W., et al.: Introduction: Models, Modeling, and Model-Driven Architecture
(MDA). In: Beydeda, S., et al. (eds.) Model-Driven Software Development, pp. 1–16.
Springer, Heidelberg (2005)

[11] Osterweil, L.J.: Software Processes Are Software Too, Revisited: An Invited Talk on the
Most Influential Paper of ICSE 9. Presented at the 1997 International Conference on
Software Engineering, ICSE 1997, Boston, Massachusetts, USA (1997)

[12] Maciel, R.S.P., et al.: An Integrated Approach for Model Driven Process Modeling and
Enactment. Presented at the XXIII Brazilian Symposium on Software Engineering, SBES
2009, Fortaleza, Brazil (2009)

[13] Fuggetta, A.: Software Process: A Roadmap. Presented at the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick, Ireland (2000)

[14] Estublier, J.: Software are Processes Too. In: Li, M., Boehm, B., Osterweil, L.J. (eds.)
SPW 2005. LNCS, vol. 3840, pp. 25–34. Springer, Heidelberg (2006)

[15] Conradi, R., Liu, C.: Process Modelling Languages: One or Many? In: Schäfer, W. (ed.)
EWSPT 1995. LNCS, vol. 913, pp. 98–118. Springer, Heidelberg (1995)

[16] Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering 14, 341–
362 (2002)

[17] Bendraou, R., et al.: A Comparison of Six UML-Based Languages for Software Process
Modeling. IEEE Transactions on Software Engineering 36, 662–675 (2010)

[18] Feiler, P.H., Humphrey, W.S.: Software Process Development and Enactment: Concepts
and Definitions. Presented at the 2nd International Conference on the Software Process,
ICSP 1993, Berlin, Germany (1993)

[19] Gruhn, V.: Process-Centered Software Engineering Environments, A Brief History and
Future Challenges. Annals of Software Engineering 14, 363–382 (2002)

[20] Henderson-Sellers, B., et al.: Process Construction and Customization. Journal of
Universal Computer Science 17, 326–358 (2004)

[21] Kaindl, H.: Difficulties in the Transition from OO Analysis to Design. IEEE Software 16,
94–102 (1999)

[22] OMG. Unified Modeling Language: Superstructure - version 2.2 (2009),
http://www.omg.org

[23] Muthig, D., et al.: GoPhone - A Software Product Line in the Mobile Phone Domain.
Fraunhofer IESE, IESE-Report No. 025.04/E (March 5, 2004)

[24] OMG. Object Constraint Language: Specification - version 2.2 (2010),
http://www.omg.org

	On the Use of Model Transformations for the Automation of the 4SRS Transition Method
	Introduction
	Basic Concepts
	Related Work
	Synopsis of the 4SRS Transition Method
	Automating the 4SRS Method
	Case Study
	Conclusions
	References

