
O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 44–58, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Derivation of Process-Oriented Logical Architectures:
An Elicitation Approach for Cloud Design*

Nuno Ferreira1, Nuno Santos2, Ricardo J. Machado3, and Dragan Gašević4

1 I2S Informática, Sistemas e Serviços S.A., Porto, Portugal
2 CCG - Centro de Computação Gráfica, Campus de Azurém, Guimarães, Portugal

3 Centro ALGORITMI, Escola de Engenharia, Universidade do Minho, Guimarães, Portugal
4 School of Computing and Information Systems, Athabasca University, Canada

Abstract. The benefits of cloud computing approaches are well known but
designing logical architectures for that context can be complicated. Prior to de-
signing a logical architecture, a proper requirements elicitation must be ex-
ecuted. When requirements are not properly elicited, and there are insufficient
inputs for a product approach to requirements elicitation, a process-level pers-
pective is an alternative way for achieving the intended base requirements for
the logical design. Our proposed solution regards the adaptation and extension
of the 4SRS (Four-Step-Rule-Set) method to derive logical architectural mod-
els, in a process-level perspective. This perspective creates context for the
product-level requirements elicitation conducing to cloud design. We present a
real industrial case where the method was applied and assessed. The method
application results in the creation of a validated architectural model and in the
uncovering of hidden requirements for the intended cloud design.

Keywords: Requirements Elicitation, Logical Architectures, Application Ar-
chitectures, Development Methods for Cloud Applications.

1 Introduction

The design of software architectures for systems to be executed in a cloud computing
environment brings many difficulties to system architects. Instead of designing a
cloud computing architecture based on user requirements traditionally defined in a
product-level perspective, we propose the use of a process-level perspective for the
requirements definition and design of the logical model of the system architecture.
This is built upon the premise that such an approach contributes to a more accurate
definition of product requirements and understanding of the project scope.

The term process, in a generic context, is hard to define. In the definition given in
[1], a process is a specific ordering of work activities across time and place, with a be-
ginning, an end, and clearly identified inputs and outputs. Software architecture deals
with the design and implementation of the high-level structure of the software [2].

* This work has been supported by project ISOFIN (QREN 2010/013837).

 Derivation of Process-Oriented Logical Architectures 45

This paper describes the extensions introduced into the 4SRS method to be adopted
at the process-level perspective in large-scale projects. The 4SRS method was first
defined and detailed in [3, 4]. The described extensions are focused on a process-level
perspective to deliver a logical architectural model. This logical architectural model
contributes to the context definition of a proper requirements elicitation. This paper
additionally illustrates the applicability of the proposed approach in a real industrial
case: the ISOFIN project (Interoperability in Financial Software). This project aims to
deliver a set of cloud-based functionalities enacting the coordination of independent
services relying on private clouds. The resulting ISOFIN platform will allow the se-
mantic and application interoperability between enrolled financial institutions (Banks,
Insurance Companies and others). In the presented real industrial case, the process-
level 4SRS is used to create the necessary context to elicit the requirements for de-
signing an architecture capable to be implemented in the three typical cloud-layers:
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS), as defined in [5]. The transformation of such context into product-
level requirements does not belong to the scope of the present work.

This paper is structured as follows: section 2 describes the problem associated to
the real industrial case study which is presented in this paper, as well as some related
work concerning the core topics and the reason for the new approach; section 3
presents the main differences between the traditional approach of the 4SRS method
and the proposed process-level approach; section 4 presents the designed logical ar-
chitecture as context for elicitation; and in section 5, we present our conclusions and
some future work.

2 Problem Overview

This work is based on a premise that the process-level 4SRS method can be used when
there is no agreed on or defined context for requirements elicitation. Requirements
Elicitation is concerned with where software requirements come from and how they
are collected [6] within the Requirements Engineering area. The objective of a re-
quirements elicitation task is to communicate the needs of users and project sponsors to
system developers [7]. A proper requirements elicitation task must encompass an un-
derstanding of the organizational environment, through their business processes [8].

An accurate requirements elicitation can be assured through the use of require-
ments elicitation methodologies, methods or techniques. The Work System Method
[9] presents a combined static view of the current (or proposed) system and a dynamic
view of the system evolution over time. The Soft Systems Methodology (SSM) [10] is
a domain-independent analysis methodology designed for tackling problematic situa-
tions where there is neither clear problem definition nor solution.

Our approach suggests the derivation of a process-level logical architecture for
creating context for cloud design. There are several approaches to support the design
of software architectures, in a product-level perspective, like RSEB [11], FAST [12],
FORM [13], KobrA [14] and QADA [15]. The product-level perspective of the 4SRS
[4] method also promotes functional decomposition of software systems.

46 N. Ferreira et al.

Tropos [16] and 4SRS (in [17]) are process-level requirement modeling methods.
Tropos uses notions of actor, goal and (actor) dependency as a foundation to model
early and late requirements, architectural and detailed design. The 4SRS method is
usually applied in a product-level perspective. Our presented approach formalizes the
process-level perspective that was firstly used in [17]. Use cases act as input for the
4SRS method and, in the 4SRS process-level perspective, portray the activities
(processes) executed by persons or machines in the scope of the system, instead of the
characteristics (requirements) of the intended products to be developed. According to
[18], and in a business context, a process is executed to achieve a given business goal
and where business processes, human resources, raw material, and internal procedures
are combined and synchronized towards a common objective. Our processes represent
the real-world activities of a software production process, like in [19]. A software
process is composed of a set of activities related to the software development life-
cycle. Designing a process comprises the development of a process architecture that
continually aggregates process elements to support tailoring and enhancements of
processes. Implementing a process encompasses the specification of the requirements
for process execution.

The requirements for process execution can be represented in a logical architecture.
A logical architecture can be considered a view of a system composed of a set of
problem-specific abstractions supporting functional requirements [20]. The process
architecture represents the fundamental organization of service development, service
creation, and service distribution in the relevant enterprise context [21]. A process
architecture can also be defined as an arrangement of the activities and their interfaces
in a process [22], takes into account some non-functional requirements, such as per-
formance and availability [2], and can be represented with components, connectors,
systems/configurations of components and connectors, ports, roles, representations
and rep-maps [23], as well as by architectural elements’ static and temporal features
[24]. The result of the application of the 4SRS method is a logical architecture.

Existing approaches for designing software architecture do not support any specific
technique for requirements elicitation; rather, they use the information delivered by an
adopted elicitation technique. One problem arises when typical (product-oriented)
elicitation techniques cannot properly identify the necessary requirements. With the
real industrial case described in this paper we demonstrate that firstly adopting
process-level techniques allows for better understanding of the project scope since it
allows for the elicitation of the activities that will be supported by the product to be
developed.

2.1 The ISOFIN Project

The logical process-level architecture of the ISOFIN solution [25] has embedded
design decisions that are initially injected in the processes descriptions. The design
decisions concern the deployment of the system in a public cloud environment and its
interoperability with several other private clouds as defined in the project objectives.

The resulting logical model of the system architecture, based on the processes that
are intended to be executed, shows a software solution able to be deployed in an IaaS

 Derivation of Process-Oriented Logical Architectures 47

layer. That layer will support the execution of a set of services that will allow suppli-
ers to specify the behaviour of the services they intend on supplying, in a PaaS layer.
This will allow customers, or third-parties, to use the platform’s services, in a SaaS
layer and be billed accordingly. This paper only presents a subset of the proposed
process-level architecture related to the customer perspective, as seen in Fig. 1. Proc-
esses regarding the provider perspective (e.g., infrastructure management) are not
considered. We present subsets of two use case models concerning two distinctive
functionalities provided by the platform.

Fig. 1. Use Case Model Regarding the ISOFIN Process-level Perspective Functionalities

The process-level architecture focuses on two sets of functionalities: Intercon-
nected Business Service (IBS) and Supplier Business Service (SBS). IBSs concern a
set of functionalities that are exposed from the ISOFIN SaaS Platform to ISOFIN
Customers. An IBS interconnects one or more SBSs and/or IBSs exposing functional-
ities that relate directly to business needs. SBSs are a set of functionalities that are
exposed from the ISOFIN Supplier private cloud.

Fig. 2. Refinement of Use Case 1 and Use Case 2 (subset)

SBS DeveloperSBS Business
Analyst

IBS DeveloperIBS Business
Analyst

{U1.} Perform
Busines Activities

{U3.} Develop
SBS{U2.} Develop IBS

<<uses>> <<uses>>

Native Business Services

ISOFIN
Customer

Process-level ISOFIN Functionalities

48 N. Ferreira et al.

In Fig. 2 there is a description of the execution of a set of economically-related
business processes within the context of the project. They are executed through the
SaaS layer, since the software components and applications are hosted by third-party
service providers in the cloud. By accessing the services functionalities (represented
by implemented IBSs), ISOFIN Customers fulfills their business needs.

Most of these processes, namely the ones regarding the design and implementation
efforts, are executed through the PaaS layer. The defined processes will correspond to
some of the services and applications that the ISOFIN Platform will support, when
executed in the SaaS layer. The model encompasses the analysis, design and imple-
mentation of IBSs, accessed externally, through the SaaS layer, and providing
ISOFIN Customers with added business value.

3 Process-Level 4SRS as an Elicitation Method for Cloud Design

The 4SRS method allows for the transformation of user requirements into an architec-
tural model representation. This paper presents an extension of the traditional (prod-
uct-level perspective) usage of the 4SRS method (presented in [4]) to allow its
application in a process-level perspective supporting the creation of context for the
product-level requirements elicitation. This application differs from the traditional by
defining a set of rules that must be observed when reasoning about the execution of
the method steps. Our extension of the method also defines additional micro-steps to
the existing ones. Alongside the method presentation there will be included some
examples created during the method application to derive a logical architecture that
acts as a basis for the requirements elicitation of a cloud SaaS solution, in this case, a
subset of the ISOFIN project.

The 4SRS method takes as input a set of use cases describing the requirements for
the cloud-specific processes that tackle the initial problem. These use cases are re-
fined trough successive 4SRS iterations, representing the intended cloud concerns of
the involved business and technological stakeholders. Neither KobrA, RSEB, nor
Tropos make use of techniques for refining use cases like the 4SRS method does.
Application of the 4SRS method requires the creation of “architectural elements”
(AEs). The nature of AEs varies according to the type of system under study and also
with the context where it is applied. In the specific context of logical architectures, the
term architectural element refers to the pieces from which the final logical architec-
ture can be built. We deliberately use this term to distinguish those artifacts from the
components, objects or modules used in other well established contexts, like in the
UML structure diagrams.

The execution of the 4SRS transformation steps can be supported in tabular repre-
sentations as it can be seen in [4]. Moreover, the usage of tables permits a set of tools
to be devised and built, so that the transformations can be partially automated. These
tabular representations constitute the main mechanism to automate a set of decision-
assisted model transformation steps. Tabular transformations are supported in a table
where the cells are filled with the set of decisions that were taken and made possible
the derivation of a logical architecture for the cloud design. Each column of the table

 Derivation of Process-Oriented Logical Architectures 49

concerns a step/micro-step of the method execution. For readability purpose, the en-
tire table was divided into five smaller tables (Tables 1 to 5). In the real context, we
manipulate the entire table and not the smaller ones. The next sub-sections detail the
extensions made to the process-level perspective of the 4SRS method and the added
micro-steps (product-level 4SRS original steps are in [4]).

3.1 Step 1: Architectural Element Creation

This step regards the creation of AEs. The product-level 4SRS [4] rule of transform-
ing each use case into three AEs is still valid in the process-level 4SRS. According to
the MVC-like pattern applied in the product-level 4SRS, an interface, data and control
AEs are created for each use case. i-type, d-type, or c-type stereotypes respectively are
added to each AE and their names are prefixed with "AE" (the stereotypes definition
will be detailed in micro-step 2i). No particular rationale or decision is required at this
step since it concerns mainly the transformation of one use case into three specific
AEs. This step is represented in the 1st and 2nd columns of Table 1.

An addition to this step is the identification of glue elements resulting from the tex-
tual descriptions associated with the use case under analysis. If the use case depicts
pre- or post-conditions in the form of validations, those can be expressed in this step
as a Glue AE. These AEs have the c-type stereotypes since they require decisions to
be made with computational support, that is, they must be supported by the system
architecture to be represented. A sequential number is added to each Glue AE. Those
elements will be used as generic process interfaces between generated AEs and act as
pre- or post-condition process validations. Other AEs are expressed as Generated AE.

For example, {AE1.9.c2} Validate Business User was created as a result of the
analysis of the use case {U1.9.} Send info to IBS with the description “[…] Before
sending commands to an IBS, ISOFIN Customers must subscribe […]”.

Table 1. Step 1 of the 4SRS method

{U1.9.} Send info to IBS
{AE1.9.c2} Glue AE

{AE1.9.i} Generated AE

Step 1 -architectural element creation
Use Case Description

3.2 Step 2: Architectural Element Elimination

In this step, AEs are submitted to elimination tasks according to pre-defined rules. At
this moment, the system architect decides which of the original three AEs (i, c, d) plus
any glue element are maintained or eliminated taking into account the entire system.

The original step 2 of 4SRS is divided into seven micro-steps. We added a new mi-
cro-step, 2viii: Architectural Element Specification. With this addition, step 2 be-
comes more robust and detailed. It provides information to the next steps that was
hard to obtain in the original version.

50 N. Ferreira et al.

Micro-step 2i: Use Case Classification. In this step, each use case is classified ac-
cording to the nature of its AEs, previously created in step 1. The nature of an AE is
defined according to the suffix the AE was tagged with. This classification is
represented in the 2nd column of Table 2 (the 1st column regards the AE identifica-
tion). In the process-level perspective more than one of each AE type can be generat-
ed according to the textual description and in the model of the use case. Each AE type
must be interpreted as follows:

• i-type – refer to interface. These represent process’ interfaces with users, software
or other processes. An AE belonging to or being classified in this category is due to
its ability interact with other AEs external to itself;

• c-type – refer to control. These represent a process focusing on decision making
and such decision must have a computational support given from the overall in-
tended system;

• d-type – refer to generic decision repositories (data), not computationally supported
from the overall intended system. This repository stores information for a given pe-
riod of time, regardless of duration, comprising decisions based on physical reposi-
tories (like documents or databases) or verbal decisions taken and transmitted be-
tween humans.

In the process-level perspective, c-type and d-type AEs are related to decision-making
processes. The difference resides on the computational support of the AE by then
under design overall intended system (in hypotheses).

Micro-step 2ii: Local Elimination. This micro-step refers to determining which AEs
must be eliminated in the context of a use case, guaranteeing its full representation.
This is required since micro-step 2i disregards any representativeness concerns.

There are cases when there is an explicit place for a d-type AE and it is admittedly
eliminated. Reasons for this are due to the process-level perspective: there is no need
for certain types of decision repositories that only regard information for the final
product and not the process. This is the case, for example, in use case {U1.9.} Send
info to IBS, where any possible repository (data object in the traditional 4SRS) that
could exist would only reflect the product-level perspective and not the process. Other
situation similar to the previous one is when a given d-type AE exists in the product-
level perspective but also, and above it, exists in the process-level perspective. This is
the case of {U1.6} Instantiate IBS to Remote Business Program, where {AE1.6.d}
IBS Configuration Decisions represents the process for supporting the configuration
process (process-level), not the configuration repository (product-level).

The 3rd column in Table 2 corresponds to the execution of micro-step 2ii. The
cells are filled with “T” or “F”. “T” means the AE is going to be eliminated and “F”
that the AE is kept alive.

Micro-step 2iii: Architectural Element Naming. In this micro-step (4th column of
Table 2), AEs that survived the previous micro-step are given a name. The name must
reflect the role of the AE within the entire use case, in order to semantically give hints

 Derivation of Process-Oriented Logical Architectures 51

on what it represents and not just copy the original use case name. Usually, the AE
name reflects also the use case from which the AE was originated.

For better understanding of the role of the AE, it is advisable that the name given
reflects the type (c, d or i) of the AE. For instance, since d-type refers to decision-
making, in our model, we decided to name “IBS Configuration Decisions” to
{AE1.6.d}. In glue AE cases, the naming of the AE should reflect the pre- or post-
conditions that are executed. For instance, {AE2.4.3.d} ISOFIN Platform Supplier
Policy, reflects the pre-condition “The ISOFIN Supplier must accept […] to comply
with the defined policy”.

Table 2. Micro-steps 2i trough 2iv of the 4SRS method

{U1.9.} i

{AE1.9.c2} F
Validate Remote Business
Program

Execute the necessary verification procedures to
ensure that the Remote Business Program is …

{AE1.9.i} F Send Commands to IBS
Send commands and associated information to the
IBS in order to process a business request…

2i - use case
classification

2ii - local
elimination

2iii - architectural
element naming

2iv - architectural element description

Step 2 - architectural element elimination

Micro-step 2iv: Architectural Element Description. This micro-step is represented
in the 5th column of Table 2. The resulting AEs that were named in the previous mi-
cro-step must be described and the requirements that they represent must be addressed
in the process-level perspective. This micro-step is where the transition is made from
the problem domain to the solution domain, so the descriptions must detail, in process
terms, how, why, when by whom that AE is going to be executed. This micro-step
must explicitly describe the expected behavior of the AE execution, including which
decisions will be made and how will they be supported.

Micro-step 2v: Architectural Element Representation. The purpose of this micro-
step is to eliminate AE redundancy in the global process. In this micro-step, all AEs
are considered and compared in order to identify if one AE is represented by any oth-
er one. The identification of AE representation is the most critical task in the 4SRS
method application, because the elimination of redundancy assures a semantic cohe-
rence of the logical architecture and discovers anomalies in the use case model. Since
the architecture being described concerns the process-level, the identification of AE
redundancy takes in consideration facts like the execution context, actors involved,
used artifacts, activities and tasks, among others. If all of these factors are similar,
though the AEs are originated by different use cases, the given AE can be considered
to represent another. Other cases when an AE is considered to represent another:

• In similar activities, if the same actor has the same role in the both AEs, despite
different execution contexts (e.g., {AE2.4.1.i} Perform ISOFIN Supplier Request
Evaluation is considered to be represented by {AE2.4.2.i} Perform ISOFIN Cus-
tomer Request Evaluation, the IBS Business Analyst triggers both AEs – the first
AE represents the second AE, because the actor interacts with the same type of in-
formation);

52 N. Ferreira et al.

• In similar activities, different actors participate in the AE, but the execution context
is the same (e.g., {AE2.1.c} Access Remote Catalogs and {AE1.11.i} Browse
ISOFIN Catalogs, the involved actors are different, but the execution platform is
the same – both of them execute in the ISOFIN Platform, in the SaaS layer).

These cases are only applicable for i-type and c-type AEs. This set of rules cannot be
applied to d-type AEs since they represent the decisions that need to be taken and
whose computational support is not assured by the scope of the project under analysis.
Also, d-type AEs are usually input for other decision processes (c-type AEs) requiring
computational support.

Despite the decision making process may be similar, d-type AEs differ in the deci-
sion making purpose. This difference is required to assure the process variability,
when the execution contexts are similar but the involved actors and activities are dif-
ferent. For example, {AE1.5.d} Consumer Subscription Requirements and {AE3.3.d}
SBS Catalog Subscription Requirements cannot be represented by one AE, although
the i-type related AEs – {AE1.5.i} and {AE3.3.i} – are represented by the same AE.
The decision making regarding a specific purpose viewed from different perspectives
concerns different purposes, even if, at first sight, the interface seems to be the same.

A potential concern when executing this micro-step regards the number of AEs in-
volved. Since all living AEs must be accounted in the analysis, it is hard to keep track
of all the processes they refer to in order to know if one can be represented by other.

In the product-level perspective, this step concerns the analysis if a given AE is
complex enough to exist by itself or if there is any other AE whose functionalities can
be incorporated in the one under analysis. This rule also applies to the process-level
perspective, if three questions are considered:

• Is the analyzed AE suitable to be represented by other in his entire functionality?
• Is the target AE suitable to incorporate the AE under analysis functionalities with-

out losing any of its own characteristics?
• If the target AE is complex and the extra-functionalities to be added increase the

complexity will it be in a degree where its maintenance, description or scope are
compromised?

If the activities or processes executed within the context of a given AE are to be ex-
ecuted by another AE and the target AE is subject to change, no extra complexity
should be added to that target AE nor its core specification change in order to full
represent the source AE.

The execution of micro-step 2v is presented in Table 3 in the 2nd and 3rd columns.
The 2nd column, “represented by”, stores the reference of the AE that will represent
the AE being analyzed. If the analyzed AE is going to be represented by itself, the
corresponding “represented by” column must refer to itself. The 3rd column,
“represent”, stores the references of the objects that the analyzed AE will represent.

Micro-step 2vi: Global Elimination. This micro-step (4th column in Table 3) refers
to determining which AEs must be eliminated in the context of the global model,
similar to micro-step 2ii, since its execution is automatic.

 Derivation of Process-Oriented Logical Architectures 53

The AE that is represented by itself or represents other AEs is maintained. The rest
(i.e., AEs that are represented by other AEs) are eliminated. This is a fully “automat-
ic” micro-step, since it is based on the results of the previous one. If the AE is
represented by itself, cell is filled with “T”, meaning that the AE is represented by
other AE and thus, eliminated, and “F” if the AE is going to be kept alive.

Micro-step 2vii: Architectural Element Renaming. In this micro-step (5th column
in Table 3), AEs that have not been eliminated in micro-step 2vi are renamed. In cases
where the AE under analysis results of the representation of more than one AE, the
new name must reflect the global execution of the AE in the project context.

Micro-step 2viii: Architectural Element Specification. This micro-step (6th column
in Table 3) has never been considered in previous versions of the traditional 4SRS
method. Though it is similar to micro-step 2iv, this micro-step intends to describe
AEs that, in micro-step 2v, are considered to represent other AEs. The decision of
creating this micro-step arises from the need to clearly define the proper behavior of
the “new” AE in a way that is clear to system architects. Besides including the infor-
mation regarding AEs eliminated in micro-step 2vi as a result of micro-step 2v, the
AEs specifications must include the pre-conditions of the basic AEs, so it can proper-
ly support the associations to be established in step 4. For instance, if the extended
description of {AE1.9.c1} does not include the conditions described in {AE1.1.c1},
that information would be lost since {AE1.1.c1} has been eliminated in micro-step
2vi and, as such, is not considered in step 4. If those references are not preserved in
any surviving AEs, they will be permanently lost and thus, disregarded in the con-
struction of the logical diagram model.

The specification must also include execution sequence references of the AEs. For
instance, {AE2.9.i} must reference the ISOFIN Application catalog described by
{AE1.3.d}, which is also eliminated in micro-step 2v, to create the association in step
4. The specification information is required in the transformation from the process-
level approach to the product-level approach, to infer the necessary requirements of a
given product based on the processes of which the product is composed.

This micro-step contributes to a better description of AEs that result from joining
other AEs. By adding this information, the designer can clearly express their thoughts
and decisions concerning the creation of the AE under analysis as a result of the po-
tentially added extra-complexity resulting from micro-step 2v.

Table 3. Micro-steps 2v trough 2viii of the 4SRS method

represented by represent
{U1.9.}

{AE1.9.c2} {AE1.9.c2} {AE1.1.c2} F
Validate Platform
Access

Execute the necessary verification procedures
to ensure that subscribed ISOFIN Customers…

{AE1.9.i} {AE1.9.i} F
Send Commands to
IBS

Step 2 - architectural element elimination
2v - architectural element representation 2vi - global

elimination
2vii - architectural
element renaming

2viii - architectural element specification

54 N. Ferreira et al.

It is necessary to pay a special attention to the AEs that represent other AEs in micro-
step 2v. The specification must clarify system architects in what way the AE is ex-
ecuted and how its execution represents an eliminated AE.

3.3 Step 3: Packaging and Aggregation

Like in the traditional 4SRS method, in this step (2nd column in Table 4), the remain-
ing AEs (those that were maintained after executing step 2), for which there is an
advantage in being treated in a unified process, should give the origin to aggregations
or packages of semantically consistent AEs. This step supports the construction of a
truly coherent process-level model.

In order to correctly package AEs, it is necessary to consider the model as a whole,
so that all relevant processes (in a high-level order of abstraction) are identified. Then,
when justifiable, the AEs are associated to a package. The packaging technique con-
tributes for a temporary obtainment of a more comprehensive and understandable
process model. Typically, aggregation is used when there is a part of the process that
constitutes a legacy sub-system, or when the design has a pre-defined reference archi-
tecture that constricts the model.

Table 4. Step 3 of the 4SRS method

{U1.9.}
{AE1.9.c2} {P6} ISOFIN Platform Management

{AE1.9.i} {P2.4} IBS

Step 3 - packaging & aggregation

3.4 Step 4: Architectural Element Association

Decisions on the identification of associations between AEs can be based in informa-
tion contained in the use case model and in micro-step 2i. Thus, step 4 was divided in
two micro-steps: micro-step 4i: Direct Associations and 4ii: Use Case Associations.

It is also important to point out that any textual references to eliminated AEs in mi-
cro-step 2vi, must be included in micro-step 2viii, making it another source of infor-
mation for step 4.

In the traditional 4SRS application, this step is executed in a single step. We pro-
pose to do it in two micro-steps to easily identify unnecessary direct associations, as
well as associations originated by textual description of eliminated AEs. This divi-
sion, by separating the associations by its source, also helps to adjust the model when
there are changes due to refinements or corrections in the previous steps execution.

Micro-step 4i: Direct Associations. Direct associations (2nd column of Table 5) are
the ones that derive from AEs originated by the same use case. These associations are
depicted from the classification given in the method micro-step 2i. For example,
{AE1.6.d} IBS Configuration Decisions and {AE1.6.i} Configure pre-runtime IBS
are directly associated since they are originated by the same use case, {U1.6} Instan-
tiate IBS to Remote Business Program.

 Derivation of Process-Oriented Logical Architectures 55

Micro-step 4ii: Use Case Model Associations. Use Case Model Associations are the
ones that can be inferred from the textual descriptions of use cases, that is, when a use
case description refers, implicitly or explicitly to another use case, the associations
inferred imply that the use cases are connected. This micro-step is represented in the
3rd column of Table 5.

Table 5. Step 4 of the 4SRS method

{U1.9.}
{AE1.9.c2} {AE1.1.i}, {AE1.9.c1}, {AE1.9.i}. {AE3.3.i}.

{AE1.9.i} {AE1.9.c1}, {AE1.9.c2}. {AE1.7.i}, {AE2.9.i}, {AE3.3.i}.

4ii - UC Model Associations
Step 4 - architectural element association

4i - Direct Associations

As an example for these situations, the use case textual description of {U3.7.1.}
Publish in Platform Catalog in the use case model refers that “The SBS […] is availa-
ble for access to IBS Business Analyst (see use case {U2.2.} Choose SBS Specs, use
case {U2.3.1.} Define IBS Internal Structure and use case {U2.5.} Choose SBS Im-
plementation) and to the SBS Developer (see use case {U2.6.} Implement IBS)”. Thus,
the generated surviving AE – {AE3.7.1.i} Remote SBS Publishing Interface – is asso-
ciated with {AE2.1.c}, {AE2.3.1.c}, and {AE2.6.1.i}.

4 The ISOFIN Process-Level Logical Architecture

The ISOFIN project [25] is executed in a consortium comprising eight entities (pri-
vate companies, public research centers and universities). The initial request for the
project requirements resulted in mixed and confusing sets of misaligned information.
Even when a requirement found a consensus in the consortium, the intended behavior
or definition was not easily understood by all the stakeholders. Our proposal of adopt-
ing a process-level perspective was agreed on and, after being executed, resulted in a
set of information that the consortium is sustainably using to evolve to the traditional
(product-level) development scenario. Elicited requirements in a process-level
perspective describe the processes in a higher level of abstraction, making them un-
derstandable by business stakeholders. At the same time, definitions and intended
behavior of the system, expressed in the architecture that results from the process-
level 4SRS method, describe the system to technological stakeholders.

The turning point for eliciting requirements was the usage of the 4SRS method in
the process-level perspective, which allowed the transformation of process-level re-
quirements into the logical diagram. Due to size limitation for this paper and also to
the diagram’s complexity, we only present a subset in Fig. 3. This diagram represents
the logical architecture of the process-level ISOFIN functionalities. The architecture
is composed by the AEs that survived after the execution of step 2. The packaging
executed in step 3 allows the identification of major processes. The associations iden-
tified in step 4 are represented in the diagram by the connections between the AEs
(for readability purposes, the “direct associations” were represented in dashed lines,
and the “use case model associations” in straight lines).

56 N. Ferreira et al.

Fig. 3. Subset of the process-level logical architecture

As seen previously, the process-level architecture focuses on IBS and SBSs, acting
as services in the cloud environment and allowing interoperability between the insur-
ance domain business entities. In this context, there are two external business domain
entities with access to the ISOFIN Platform: ISOFIN Customers and ISOFIN Suppli-
ers. An ISOFIN Customer is an entity whose domain of interactions resides in the
scope of consuming, for economic reasons, the functionalities exposed by IBSs. An
ISOFIN Supplier is a company that interacts with the ISOFIN SaaS Platform by sup-
plying the platform with functionalities (SBSs) that reside in their private clouds.

SBSs are made available in the ISOFIN Supplier private cloud by the use of gene-
rators ({AE3.6.i} Generate SBS Code) and are composed, in the public cloud where
the ISOFIN SaaS Platform resides ({AE2.6.1.i} Generate IBS Code) to implement an
IBS. Composition of basic SBSs into IBSs give origin to more powerful functionali-
ties that are exposed by the platform.

Fig. 4. Interoperability in ISOFIN

 Derivation of Process-Oriented Logical Architectures 57

Due to the lack of consensus in the requirements elicitation in this “newfound” pa-
radigm of IT solutions (Cloud Computing), our approach changed the traditional
product-level perspective to the described process-level perspective. This new pers-
pective allows the proper elicitation of requirements in Cloud Computing projects.

The ISOFIN project aims to deliver a set of functionalities that help forward inte-
roperability in the Insurance application domain. The obtained process-level logical
architecture is mainly devoted to be used by IT-professionals and not by business
stakeholders. Based on the main constructors presented in the architecture (Fig. 3),
Fig. 4 emerged with the aim to be presented to any technical role engaged in the
ISOFIN project and be used to explain in a simple way that in the bottom layer there
are SBSs that connect to IBSs in the ISOFIN Platform layer and that the later are
connected to a ISOFIN Customer role.

5 Conclusion and Outlook

This paper presents the extensions to the traditional application of the 4SRS method,
for creating context for requirements elicitation and later derivation of logical archi-
tectural diagrams from use cases in a process-level perspective. By using the proposed
approach, we succeeded to define the requirements in such a way that they were un-
derstood by all the project stakeholders, uncovering more information: as an example,
we started with 39 use cases and ended with 74 documented AEs (not counting asso-
ciations). This means that we added more details to the problem description and that
the information is understood by all involved. The process-level perspective allowed
us to overcome difficulties when adopting a product-level perspective.

On the other hand, the manual execution of the method is prone to errors and very
time consuming. Also, by adopting first the process-level perspective instead of the
product-level perspective, time for delivering documentation to implementation teams
increased. These are opportunities for improvement. We will address these drawbacks
as future work. Additionally, we plan to study the required transformations to support
the evolution of the process-level logical architecture into a product-level logical ar-
chitecture that is needed to formally start the design phase of the cloud solution. We
will also incorporate traceability features between process requirements, process-level
logical architectures, product requirements and product-level logical architectures.

References

1. Davenport, T.H.: Process innovation: reengineering work through information technology.
Harvard Business Press (1993)

2. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12, 42–50 (1995)
3. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of UML

Models for Service-Oriented Software Architectures. In: Proceedings of the 12th IEEE
ECBS, pp. 173–182. IEEE Computer Society (2005)

4. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Refinement of Software Ar-
chitectures by Recursive Model Transformations. In: Münch, J., Vierimaa, M. (eds.)
PROFES 2006. LNCS, vol. 4034, pp. 422–428. Springer, Heidelberg (2006)

5. National Institute of Standards and Technology,
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

58 N. Ferreira et al.

6. Abran, A., Moore, J.W., Dupuis, R., Dupuis, R., Tripp, L.L.: In: Bourque, P., Dupuis, R.,
Abran, A., Moore, J.W. (eds.) Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE Press (2001, 2004)

7. Zowghi, D., Coulin, C.: Requirements elicitation: A survey of techniques, approaches, and
tools. In: Engineering and Managing Software Requirements, pp. 19–46. Springer, Heidel-
berg (2005)

8. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G.: Requirements engineering based on busi-
ness process models: A case study. In: 13th Enterprise Distributed Object Computing Con-
ference Workshops, EDOCW 2009, pp. 320–327 (2009)

9. Alter, S.: The work system method for understanding information systems and information
systems research. Communications of the Association for Information Systems 9, 6 (2002)

10. Checkland, P.: Soft systems methodology: a thirty year retrospective. Systems Re-
search 17, S11–S58 (2000)

11. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organiza-
tion for Business Success. Addison Wesley Longman (1997)

12. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley Professional (1999)

13. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Sw Engineering (1998)

14. Bayer, J., Muthig, D., Göpfert, B.: The library system product line. A KobrA case study.
Fraunhofer IESE (2001)

15. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven architecture design and quality
analysis method. In: A Revolutionary Initiation Approach to a Product Line Architecture.
VTT Tech, Research Centre of Finland (2002)

16. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems (2002)

17. Machado, R.J., Fernandes, J.: Heterogeneous Information Systems Integration: Organiza-
tions and Methodologies. In: Oivo, M., Komi-Sirviö, S. (eds.) PROFES 2002. LNCS,
vol. 2559, pp. 629–643. Springer, Heidelberg (2002)

18. Hammer, M.: Beyond reengineering: How the process-centered organization is changing
our work and our lives. Harper Paperbacks (1997)

19. Conradi, R., Jaccheri, M.L.: Process Modelling Languages. In: Derniame, J.-C., Kaba, B.A.,
Wastell, D. (eds.) Promoter-2 1998. LNCS, vol. 1500, pp. 27–52. Springer, Heidelberg (1999)

20. Azevedo, S., Machado, R.J., Muthig, D., Ribeiro, H.: Refinement of Software Product
Line Architectures through Recursive Modeling Techniques. In: Meersman, R., Herrero,
P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 411–422. Springer, Hei-
delberg (2009)

21. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Archi-
tecture. In: 10th IEEE International Enterprise Distributed Object Computing Conference
Workshops (EDOCW), p. 30 (2006)

22. Browning, T.R., Eppinger, S.D.: Modeling impacts of process architecture on cost and
schedule risk in product development. IEEE Trans. on Eng. Management 49, 428–442
(2002)

23. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Trans. on Software Engineering 26, 70–93 (2000)

24. Kazman, R.: Tool support for architecture analysis and design. In: Sw Arch. Workshop
(ISAW-2) and Intern. Workshop on Multiple Perspectives in Sw. Dev (Viewpoints 1996)
on SIGSOFT 1996 Workshops, pp. 94–97. ACM, San Francisco (1996)

25. ISOFIN Research Project, http://isofincloud.i2s.pt

	Derivation of Process-Oriented Logical Architectures: An Elicitation Approach for Cloud Design
	Introduction
	Problem Overview
	The ISOFIN Project

	Process-Level 4SRS as an Elicitation Method for Cloud Design
	Step 1: Architectural Element Creation
	Step 2: Architectural Element Elimination
	Step 3: Packaging and Aggregation
	Step 4: Architectural Element Association

	The ISOFIN Process-Level Logical Architecture
	Conclusion and Outlook
	References

