
International Journal of Web Portals, 4(2), 1-18, April-June 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Architecture,	Framework,	Information	Systems,	Model-Based/Driven	Development	(MDD),	
Pervasive,	Pervasive	Information	Systems	(PIS),	Process,	Software	Engineering,	Ubiquitous

INTRODUCTION

The dissemination of computing and heteroge-
neous devices and platforms, the high pace of
technological innovations and volatile require-
ments, the size and complexity of software

systems characterize the software development
context today. This context challenges the way
software is developed for emerging forms of
information systems. Software Development
Processes (SDPs), as well as generalized adop-
tion of models, are fundamental to efficient
development efforts of successful software
systems.

A Case Studies Approach
to the Analysis of Profiling
and Framing Structures for

Pervasive Information Systems
José	Eduardo	Fernandes,	Department	of	Informatics	and	Communications,	School	of	

Technology	and	Management,	Polytechnic	Institute	of	Bragança,	Portugal

Ricardo	J.	Machado,	Escola	de	Engenharia,	Centro	Algoritmi,	Universidade	do	Minho,	
Portugal

João	Á.	Carvalho,	Escola	de	Engenharia,	Centro	Algoritmi,	Universidade	do	Minho,	Portugal

ABSTRACT
Model-Based/Driven	Development	 (MDD)	 constitutes	 an	 approach	 to	 software	 design	 and	 development	
that	potentially	contributes	to:	concepts	closer	to	domain	and	reduction	of	semantic	gaps,	automation	and	
less	sensitivity	to	technological	changes,	and	the	capture	of	expert	knowledge	and	reuse.	The	widespread	
adoption	of	pervasive	technologies	as	basis	for	new	systems	and	applications	lead	to	the	need	of	effectively	
design	pervasive	information	systems	that	properly	fulfil	the	goals	they	were	designed	for.	This	paper	presents	
a	profiling	and	framing	structure	approach	for	the	development	of	Pervasive	Information	Systems	(PIS).	This	
profiling	and	framing	structure	allows	the	organization	of	the	functionality	that	can	be	assigned	to	computa-
tional	devices	in	a	system	and	of	the	corresponding	development	structures	and	models,	being.	The	proposed	
approach	enables	a	structural	approach	to	PIS	development.	The	paper	also	presents	two	case	studies	that	
allowed	demonstrating	the	applicability	of	the	approach.

DOI: 10.4018/jwp.2012040101

2 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Pervasive Computing, also called Ubiq-
uitous Computing (Weiser, 1993b; Weiser,
Gold, & Brown, 1999), represents a new di-
rection on the thinking about the integration
and use of computers in people’s lives. It aims
to achieve a new computing paradigm, one in
which there is a high degree of pervasiveness
and availability of interconnected computing
devices in the physical environment. Wide-
spread availability of affordable and innovative
information technologies represents a potential
opportunity for improvement/innovation on
business processes or for enhancement of life
quality of individuals. Among other things (such
as social concerns), this opportunity promotes
the attention to the efficiency and effective-
ness of information management regarding to
the way they acquire, process, store, retrieve,
communicate, use, and share information. To
take full benefits of the opportunities offered
by modern information technologies, these
devices need to be “appropriately integrated
within organizational frameworks” (Sage &
Rouse, 1999). Therefore, Pervasive Informa-
tion Systems (PIS) (Fernandes, Machado, &
Carvalho, 2008) orchestrate these devices in
order to achieve a set of well-established goals.
In this way, PIS not only provide a solid basis
to sustain the needed information to achieve ef-
fectiveness at both individual and organizational
levels, but also leverages the investment on those
information technologies or other organizational
resources. In order to explore the potential of-
fered by pervasive computing and to maximize
the revenue of these kinds of systems, a PIS, as
any other information system, must be designed,
developed and deployed attending to its nature
(these systems may potentially accommodate a
large quantity of heterogeneous devices and be
subject of frequent updates/evolutions).

Software engineering has been, since its
existence, subject of research and improvement
in several areas of interest, such as software
development processes (SDPs) whose process
models evolved from waterfall and nowadays
may assume several forms (Ruparelia, 2010).
The development of large software systems
is another area of interest that has been, for

decades, subject of research work; several
topics can be pointed out such as the explora-
tion of issues related to the management of
large scale software development (Benincasa,
Daneels, Heymans, & Serre, 1985; Kay, 1969),
software architecture (Gorton & Liu, 2010;
Laine, 2001; Mirakhorli, Sharifloo, & Shams,
2008), model-driven development (Heijstek &
Chaudron, 2009; Mattsson, Lundell, Lings, &
Fitzgerald, 2007), among others. Not directly
related with large projects, Medvidovic (2005)
points the relevance of software architecture in
leveraging the pervasive and ubiquitous area.
Model-Based/Driven Development (hereafter
in this document, unless otherwise stated,
simply referred as MDD) is another area that
gains an increasing focus. MDD constitutes an
approach to software design and development
that strongly focuses and relies on models
(Fernandes, Machado, & Carvalho, 2004). It
automates, as much as possible, the transforma-
tion of models and the generation of the final
code. This enables higher independence from
the technological platform that supports the
realization of the system.

This paper, further exploring the topic of
software development for PIS, proposes an
approach for profiling and framing functional
profiles for PIS development, and presents a
case study used for its applicability. This docu-
ment structures its content as follows: first, we
introduce pervasive information systems, its
issues and the benefits of a model-based/driven
development based approach; then, we give
insight into related research works and gives an
overview of a development framework for PIS;
afterwards, we present the suggested approach;
folllowing that a case study wherein this ap-
proach is demonstrated; and finally we present
the conclusions and finishes this document.

PERVASIVE INFORMATION
SYSTEMS

Ubiquitous (computing embodies a philosophy
different of that inherent to the personal com-
puters of the 70s. In essence, it sustains that

International Journal of Web Portals, 4(2), 1-18, April-June 2012 3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

computing technology should not be the focus
of attention of the user activity. It even does not
require the need of carrying around any personal
computer or PDA to access information; in this
world, fully of connected devices, information
is available and accessible everywhere (Weiser,
1993a). The data, once entered in a comput-
ing system, is readily available whenever and
wherever needed (Ark & Selker, 1999), being
accessible in an intuitive way through the use
of devices eventually different from that one
through which the data was entered.

Decreasing emphasis of focus on the
personal computer has already occurred with
the emergence of the World Wide Web. For
many users the computer is just a machine that
provides a portal to the digital world where
they have presence through their homepage,
their email, or chat. In this way, computers
are ‘disappearing’ and the focus goes beyond
them (Davies & Gellersen, 2002). Ubiquitous
computing brings then “the end of dominance
of the traditional computing” (Ark & Selker,
1999), being computing embedded in more
things than just our personal computer.

Considering the vision about ubiquitous
computing, there are key characteristics of
ubiquitous computing systems that differenti-
ate these from traditional computing systems.
Among these are: decentralization (autonomous
small devices, taking over specific tasks and
functionality, cooperate and establish a “dy-
namic network of relationships”), diversifica-
tion (there is a move from universal computers
to diversified devices for specific purposes),
connectivity (different type of devices connect
among themselves to exchange data and applica-
tions) and simplicity (pervasive devices, being
specialized tools, should be easy and intuitive
to use − “complex technology is hidden behind
a friendly user-interface”) (Hansmann, Merck,
Nicklous, & Stober, 2003).

In ubiquitous computing, the environment
take a relevant place in computing: in “contrast
with most traditional computing, in which the
environment is mostly irrelevant, the environ-
ment plays a fundamental role for ubiquitous
computing; the environment has influence on

the ‘semantics’ of computing” (Ciarletta &
Dima, 2000). There is a need of perceptual
information about the environment (Saha &
Mukherjee, 2003) and about the location of
people and devices: such information enables
for an enhanced interaction with users, allow-
ing applications to adapt themselves to their
environment, and constitutes an enabler element
for the so-called invisible computing.

Beyond the traditional media, the web
has emerged as a new fundamental and valu-
able global information system, being widely
adopted not only by organizations but also by
people. Today, the web is easily accessible in
all developed countries, in schools, in private
and public organizations, at home, and inside
or outside buildings. Also notable has been the
widespread adoption of cellular phones that,
along with increasing computing resources,
have acquired improved communication ca-
pabilities and new multimedia features. They
allowed a new and quick way to contact and
interchange information with people, to access
to the World Wide Web everywhere, and to
interconnect computing devices all around the
world (even in the most inhospitable places).

The advent of accessible commercial wire-
less networks and communications systems fur-
ther contributed to dissemination of computing.
The embedding of computing devices in objects
or places for monitoring or control, enabled us
to envision a “real” physical world enhanced
with information and computing capabilities.
These capabilities can be used to facilitate and
pleasure human life in its diverse facets (as the
personal or social) or to improve businesses or
other organizational processes. Want, Pering,
Borriello and Farkas (2002) consider that the
“four most notable improvements in hardware
technology” during the last decade that directly
affected ubiquitous computing are: wireless
networking, processing capability, storage
capability, and high quality displays.

These factors, among others, contributed
for a culture characterized not only by having an
easy access to information, but also by demand-
ing for information availability; consequently
there is an implicit acceptance of surrounding

4 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

and permanent computing or other IT devices.
Nowadays, there is an increasing feeling that
information is omnipresent (we just need an IT
device to access it) and that computing devices or
applications are naturally part of our daily lives.

From a business perspective, ubiquitous
computing brings the opportunity to introduce
changes in the way business and consumers
interact with each other (Fano & Gershman,
2002). It allows for an improvement on mutual
intercommunications, richer and innovative
interactions, and closer relationships. People
become able to interact with services not only
through telephone or PC but also through
products.

What was initially confined in developing
technology to make pervasive computing out of
a vision (Lyytinen & Yoo, 2002), surpassed the
initial restricted frontiers to reach the develop-
ment of applications for organizational domains,
enabling for enhancements of current business
processes or even to assist the development of
new business models (Langheinrich, Coroama,
Bohn, & Rohs, 2002).

Business benefits and ubiquitous comput-
ing technologies have a mutual influence in each
other: ubiquitous computing technologies are
seen has offering support for potential business
benefits to organization efficiency, and those
potential benefits constitute a driving force and
key factors to further research and deployment
of ubiquitous computing technologies (Bohn,
Coroamã, Langheinrich, Mattern, & Rohs,
2004); this leads to a permanent, vigorous, and
rapid proliferation of information technology.
Aware of those business benefits potentially
offered by ubiquitous computing technolo-
gies, the industry has set their attention to the
deployment of those technologies in supporting
applications in diverse domains, pursuing imag-
ined business benefits. Government agencies,
insurance companies, organizations of several
domains have been developing projects aiming
to collect the potential gains of deployment of
ubiquitous computing.

A world full of smart devices and the
widespread adoption of pervasive technologies
as basis for new systems and applications, lead

to the need of effectively design information
systems that properly fulfil the goals they were
designed for. These pervasive information sys-
tems and the applications that constitute them
need to be able to accommodate the permanent
technological evolutions/innovations of the
heterogeneous devices and the requirements
changes that result from a faster and intense
world of business competition.

MODEL-DRIVEN
DEVELOPMENT

Albeit some opinions consider that there is no
“universally accepted definition of MDD is
and what support for it entails” (Atkinson &
Kuhne, 2003), it can be said that MDD carries
the notion that it can be possible to build, with
modelling languages, a model that entirely
represents the intended software system. This
model can then be transformed, through well-
defined transformation rules, into the “real
thing” (Mellor, Clark, & Futagami, 2003).
Nonetheless, it’s noteworthy to point out that,
to achieve or undertake model-driven develop-
ment, “not all models need to be executable or
even formal, but those that are can benefit from
automation” (Mellor et al., 2003) and models do
not need to be complete, as “it incompleteness
or high degree of abstraction do not equate to
imprecision” (Mellor et al., 2003).

Since antiquity engineering disciplines
have the activity of modelling as a fundamen-
tal technique to cope with complexity (“The
use of engineering models is almost as old as
engineering itself.” (Selic, 2003)). Modelling
provides a way to facilitate the understanding,
reasoning, construction, simulation, and com-
munication about complex systems (usually
composed by smaller parts) (Thomas, 2004).
Software engineering, in comparison with other
forms of engineering, is on a privileged position
to attain benefits from modelling, as it is one
whereby an “abstract high-level model can be
gradually evolved into the final product without
requiring a change in skills, methods, concepts,
or tools” (Selic, 2003).

International Journal of Web Portals, 4(2), 1-18, April-June 2012 5

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

There have been, and there will always be,
several efforts in order either to improve the
way and the cost of development of sosftware
systems, or to achieve a better satisfaction on
accomplishment of systems requirements and
expectations. One area of these efforts of im-
provement is on raising the abstraction at which
software developers mainly work.

Several examples of such rising of abstrac-
tion are the movements from binary languages
to assembly languages and from assembly
languages to higher-level languages. The new
abstractions, initially introduced as novel
concepts, were later adopted and supported,
and tools were developed “to map from one
layer to the next automatically” (Miller et
al., 2004). Nowadays, there is a promotion of
another rising of abstraction at which develop-
ment occurs: this one is based on changing of
the main development efforts from code and
programming to models and modelling. This
raise of abstraction at which software is writ-
ten (the shift of the level of abstraction from
code and programming languages, to models
and model languages (Sendall & Kozaczynski,
2003)) implies that a software system will be
mainly and fully (as possible) expressed by
models. The models are the main artefacts of
the development effort rather than computer
programs (Selic, 2003). The raise of abstrac-
tion subjacent to the use of models allows for
productivity improvement: “it’s cheaper to write
one line of Java than write 10 lines of assembly
language. Similarly, (…) it’s cheaper to build
a graphical model in UML, say, than to write
in Java” (Mellor et al., 2003).

Synthetically, models, in a descriptive or a
prescriptive form, can then be used to: (i) un-
derstand or communicate a problem, a existing
system, or a proposed solution; (ii) analyse, or
predict on changes, systems properties or risk
failures; (iii) productivity improvement; and
(iv) reduction of system’s development costs.

As models are the primary artefact in
model-driven development approach, it is
necessary that “a clear, common understanding
of the semantics of our modelling languages is

at least as important as a clear, common under-
standing of the semantics of our programming
languages.” (Seidewitz, 2003). The Unified
Modelling Language (UML) specifies the
primary notation used in the current practice
of modelling. UML allows for the creation of
models that capture different perspectives of
the system.

Regarding to the development of software
systems, the Object Management Group (OMG,
2005) introduced in 2001 the Model Driven
Architecture (MDA) (OMG, 2003), an open
and vendor neutral architectural framework
to the construction of software systems. MDA
constitutes a software development approach
that, through the focus on models and defined
standards, separates the specification of the
functionality of a system from the specification
of its implementation on target technological
platforms, providing a set of guidelines fram-
ing these specifications (Appukuttan, Clark,
Reddy, Tratt, & Venkatesh, 2003). It enables
the detachment of business-oriented decisions
from technological issues of eventual specific
platforms into which the system could be tar-
geted, allowing for “a greater flexibility on
the evolution of the system” (Brown, 2004).
Model-driven architecture is considered a
“model-driven” approach in the sense “code
is (semi-) automatically generated from more
abstract models, and which employs standard
specification languages for describing those
models and the transformations between them.”
(Brown, 2004).

MDD has the potential to offer key path-
ways that enable software developers to cope
with complexity inherent to PIS. A proper PIS
construction demands an approach that recog-
nizes particularities of PIS and that benefit from
MDD orientation.

Research has been performed (Fernandes,
Machado, & Carvalho, 2007) to bring the ap-
plication of MDD concepts and techniques to
software of PIS. Fernandes et al. (2008) suggest
a conceptual development framework able to
sustain an approach for software development
of PIS that take into account MDD potential

6 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

and PIS characteristics, particularly, heteroge-
neity and functional variability. The following
paragraphs present a brief overview of this
development framework

The development	 framework (Fernandes
et al., 2008) for PIS introduces and describes
new conceptions framed on three perspectives
of relevance to the development, called dimen-
sions. Based in these dimensions, the develop-
ment framework considers two additional main
perspectives of development: one concerning
the overall development process, and a sec-
ond concerning to individual development
processes. Figure 1 illustrates a schema of the
framework. The following paragraphs give an
overview of these dimensions and development
perspectives.

The three dimensions considered are: re-
sources, functional, abstraction. The resources	
dimension sets up the several categories of
devices with similar characteristics and capa-
bilities. The functional	dimension sets up the
different functionality needed by the system
and that can be assigned to resources in the
system for its concretization. The assignment
of a specific functional profile to a specific
resource category results in a specific func-
tional	profile	 instance that is realized by de-

vices in that resource category. Each func-
tional profile instance has a corresponding
development	structure which embodies an el-
ementary development process aiming to real-
ize that instance. The abstraction	 dimension
respects, in an MDD context, to the levels of
abstraction that elementary development pro-
cess may have (from platform-independent
model (PIM), passing by platform-specific
model (PSM), to generated code). The develop-
ment framework structures the development in
a global development process and several el-
ementary development processes. The global	
development	process is responsible for model-
ing requirements and for establishing high-
level and global system models. Based on these
models, it sets up functional profiles and cat-
egories of resources, as well as, high-level PIM
for each functional profile instance that shall
exist. The global development process has the
responsibility for making all the necessary ar-
rangements for integration of the several arti-
facts that result from elementary development
processes and for final composition, testing,
and deployment of the system. Elementary	
development	processes are responsible for the
software development of parts of the system
that realize specific functionalities for specific

Figure	1.	Development	framework	for	PIS

International Journal of Web Portals, 4(2), 1-18, April-June 2012 7

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

categories of resources. For each of the devel-
opment structures, an adequate software devel-
opment process can be chosen, as long as it
respects the principles of the approach glob-
ally adopted. MDD concepts and techniques
may be applied in order to improve the devel-
opment and the quality of those resulting parts
of the system.

The implicit strategy to this development
framework enables the adoption of development
process and techniques most suitable to develop-
ment of that individual development structure.
It also eases the assignment of those structure
units to different collaborating teams and,
eventually, the outsourcing of the development.

Besides the traditional documentation,
the development approach should provide
documentation for each development structure.
Among this documentation, it is expected to
be found information about the platform inde-
pendent models (PIMs) at the top model-level,
the PSMs at the intermediate model-level, the
PSM at the bottom model-level, the mappings
(either vertical or horizontal) and inherent
transformation techniques used on the model’s
transformations, as well as information regard-
ing to code generation. It becomes clear that it
is convenient the use of suitable CASE tools
to support global and individual development
process developments as herein proposed. It is
also expected the use of well-established stan-
dards on languages and techniques for modelling
(models and transformations models), support
for code generation, change management,
and documentation of all artefacts and design
decisions.

The global process and the elementary
process are not prescribed to be performed by
any particular existent development process,
being the choice of process development left
to the developer.

In Booch et al. (2007), the concepts of
“macro process” and “micro process” are used
in the framework proposed for the software de-
velopment process. They represent perspectives
of the overall software development cycle (the
macro process) and of the analysis and design
process (the micro process). Whilst the macro

process aims to guide the overall develop-
ment of the system and its scope is “from the
identification of an idea to the first version of
the software system that implements that idea”
(Booch et al., 2007), the micro process cover
the analysis and design activities. Activities of
analysis focus on behaviour and not on form,
and produce an initial solution from system
requirements. In the develomnet framework for
PIS, the global process can be see can be seen
as being similar to macro process, as it respect
to the overall development process, and feeds
the elementary processes as the macro also does
for the micro process. The elementary process
is somehow different from the micro process
as it has a distinct scope: it respects to a whole
development structure, which can be seen by
itself as a system for which it can be applied
a development process that can inclusively
include the strategy of development associated
with the macro and micro concepts presented.

PROFILING AND FRAMING
STRUCTURES

In the context of the previously presented devel-
opment framework, this section aims to provide
a way to effectively and consistently apply it in
PIS development projects, independently of its
size. The section starts by taking some consider-
ations regarding functional profile instantiation,
modeling levels in development structures; then
it illustrates the concept of framing structure,
giving emphasis on the way of using it in the
context of large projects.

The assignment of a functional profile to
a resource corresponds to an instantiation of
the functional profile, carrying the meaning
of responsibility assignment to that resource.
Figure 2 illustrates an example of instances
resulting from the assignment of functional
profiles to resource categories.

The result of an instantiation process is an
instance profile that has subjacent a kind of
platform independent model (or depending of
the perspective, it may be seen as a PSM) as it
is expected to be later subject of possible

8 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

model transformations into intermediate plat-
form specific models (or eventually directly
subject to code generation). Further develop-
ment takes place based on this model, giving
origin to a specific development structure re-
lated to that specific functional profile instance.
Each development structure reflects a pathway
of software development in order to realize a
functional profile assigned to a category of
resources. Figure 3 illustrates these development
structures as well, as the modeling levels that
can be found inside them. These modeling
levels respects to the abstraction dimension,
one of the three dimensions previously exposed.
Depending from the point of view, an interme-
diate model can be seen as a PIM or a PSM: a
model can be seen as a PSM when looking from
a preceding higher abstraction model level, and
can be seen as a PIM when looking from
lower abstraction model level. For some devel-
opment structures these levels may eventually
not exist, as it is possible to directly generate
the bottom-level PSM or even the code itself.

Considering the schema of the development
framework and the schemas related to func-
tional profiles instantiation, an overall concep-
tual representation of conceptions involved in
the development framework can be schematized
into a conceptual framing structure that allows
the definition and framing of functional profile

instances. This conceptual structure can be
expressed by a schema similar to the one pre-
sented in Figure 4.

Figure 4 illustrates the high-level and low-
level models/specifications/artifacts produced
by starting and ending activities of the global
development process (it is important to notice
that in parallel with the elementary development
process activities, there may be in course other
global development processes activities). All
relevant functional profiles are listed at the left
side of the framing structure, and the resources
categories identified are listed at the middle
top. The definition of functional profile in-
stances are signaled in the proper intersections
of lines of functional profile with the columns
of resource categories. For each functional
profile instance there is an associated develop-
ment framework (as depicted in Figure 3); for
each of these development frameworks there
will be a corresponding elementary develop-
ment process (as depicted by Figure 1).

Considering that systems vary in size and
complexity, there may be large projects of
systems involving the definition of large sub-
systems, for which there is the interest to define
their own functional profiles and resources
categories. For such cases, the framing structure
has an extended way of use. A framing structure
is defined for the system and, for each of the

Figure	2.	Functional	profile	instances

International Journal of Web Portals, 4(2), 1-18, April-June 2012 9

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

identified subsystems, there is an additional
framing structure; this will bring to existence
nested framing structures.

The system framing structure will contain
elements (functional and resources) with a
system level granularity, while each of the
subsystem framing structures will have its own
suitable subsystem level granularity. This situa-
tion may be recursive and a subsystem may be

composed by its own subsystems; is this case,
for each of the subsystems, there will be again
a corresponding framing structure that, at a
certain point, will be a leaf framing structure
containing final functional profiles and resource
categories.

The recursive nesting of framing structures
allows dealing with any system size. In this
process, each of the framing structures implicitly

Figure	3.	Modeling	levels	in	development	structures	(abstraction	dimension)

Figure	4.	Framing	structure	for	a	project

10 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

defines its own namespace for naming its con-
stituent elements. Figure 5 shows an example
of the nesting of the framing structures to deal
with the size of large projects.

CASE STUDIES

This section starts by briefly introducing the
USE-ME.GOV (USability-drivEn open plat-
form for MobilE GOVernment), a project that
aimed to create an open platform for mobile
government services, and the uPAiN (Ubiqui-
tous Solutions for Pain Monitoring and Control
in Post-Surgery Patients) project, conceived to
create a an information system for anaesthesi-
ology services of healthcare centres. Then, it
illustrates the application of the development
framework on these projects. Attending to the
project dimensions, only a part of the model
(where appropriate) will be used for illustration
purposes (this does not affect the rationale to be
taken for the whole model). This section ends

by exposing some issues pertinent to a proper
project definition for PIS.

The USE-ME-GOV Case Study

The USE-ME.GOV project (USE-ME.GOV,
2003) focused on the development of an open
platform for mobile government services. This
platform facilitates the access of authorities to
the mobile market by allowing them to share
common modules of the platform and to deal
with multiple mobiles operators independently
of each one’s interface. USE-ME.GOV system
general architecture is illustrated by Figure 6.

The USE-ME.GOV Platform basically
consists of two separate application system: (i)
Core Platform, which is responsible for user’s
platform access, user and terminal management;
(ii) Service Repository, which is a central reg-
istry of services. The USE-ME.GOV system
also contains what is designated by “platform
services”. Platform services included in the
USE-ME.GOV system are: (i) Context Provi-

Figure	5.	Nesting	of	framing	structures	for	large	projects

International Journal of Web Portals, 4(2), 1-18, April-June 2012 11

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

sion and Aggregation Services; (ii) Localization
Service; and (iii) Content Provision and Ag-
gregation Service. These services enable the
use of user’s context, user’s localization, and
access and aggregation of data form external
sources.

The USE-ME.GOV project is extensive
and includes several subsystems services.
In the light of the approach proposed, these
subsystems can be seen as a system for which
a whole development process can be applied.
As such, the project will have a contextual
system framing structure identifying the major
subsystem’s functional profiles and subsystem’s
resource category groupings. Then, for each of
the subsystem functional profile instances (the
crossing of subsystem’s functional profile with
subsystems’ resources category grouping) is de-
veloped a new framing structure, at a subsystem
level. In this framing structure the high-level
model corresponds to the one regarding to the
specific subsystem’s functional profile instance
in the preceding framing structure. In each
subsystem’s functional profile instance related
framing structure, there will be functional
profiles and resources categories, as expected
(unless there is another level of subsystems,
in which case, the rationale is applied again).

The following paragraphs show the system
framing structure of USE-ME.GOV. For one of
the identified subsystem’s functional profile in-

stances, the respective nested framing structure
is illustrated. Further nested framing structures
of this last one will not be presented here.

Figure 7 illustrates the framing structure
at the system level. It shows the subsystem’s
functional profile instances that get existence
in the project. As it can be seen in Figure 7, the
framing structure has two major subsystem func-
tional profiles: “Platform” and “Pilot Services”.
The resource categories related to subsystem
functional profiles (as it also happens at the sys-
tem level), have symbolic names of “Category
group A”, “Category group B”, and so on. In
these cases, it is acceptable to make no explicit
identification/characterization of the resources
categories. The framing structure assigns each
of the subsystem functional profiles to only
one resource group, giving origin to a single
subsystem functional profile. The “Platform”
and “Pilot Services” functional profile instances
have also corresponding framing structures.

Figure 8 illustrates the framing structure
related do “Pilot Services”. The Pilot Services
has several subsystems, one for each of the
services of “Complaint Information Broadcast-
ing”, “Mobile Student”, “Healthcare Informa-
tion”, and “Citizen Complaint”. Again, as before
in the preceding framing structure, there are
resource category groups; for each of the sub-
systems, there will be again a corresponding
framing structure. Symbolic names identify the

Figure	6.	USE-ME.GOV	system	general	architecture	(USE-ME.GOV,	2006)

12 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

several elements of the framing structure. Note
that there is no conflict on the names used for
resource categories groupings, functional pro-
files, or functional profiles instances as the
framing structure implicitly defines a namespace.

The uPAIN Case Study

The uPAIN project was conceived with the
purpose to create a networked informational
computing system (see Figure 9) that, making
using of current wireless and mobile communi-
cation technologies, allowed to enhance hospi-

tal’s anaesthesiology services on the control and
monitor at pain level on post-surgery (uPAIN,
2003). It aimed to enable for better assessment
and treatment of the pain phenomena by the
hospital staff.

The uPAIN project was developed for the
anaesthesiology services of hospitals. It con-
sisted of an information system conceived to
assist in monitoring and controlling pain of
patients that stay in a relatively long period of
recovery after being submitted to a surgery.
During this period, analgesics are administered
to them in order to minimize the pain that in-

Figure	7.	Framing	structure	at	system	level	for	USE-ME.GOV	project

Figure	8.	Framing	structure	for	Pilot	Services	subsystem	of	USE-ME.GOV

International Journal of Web Portals, 4(2), 1-18, April-June 2012 13

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

creases as the effects of the anaesthesia gradu-
ally disappear. This administration of analgesics
is controlled by means of specialized devices
called PCAs (patient controlled analgesia) based
in the personal characteristics of the patient and
the kind of surgery to which the patient has
been submitted. The PCA can be described as
“a medication- dispensing unit equipped with
a pump attached to an intravenous line, which
is inserted into a blood vessel in the patient’s
hand or arm. By means of a simple push-button
mechanism, the patient is allowed to self-ad-
minister doses of pain relieving medication
(narcotic) on an ‘as need’ basis” (Machado,
Lassen, Oliveira, Couto, & Pinto, 2007).

Regarding to the framing structures, this
system did not required the consideration of
subsystems. Figure 10 shows the framing
structure for uPAIN. It shows the functional
profiles instances that come to existence in the

project. Related to each of these intances exists
an elementary process development structure.

Synopsys of the Case Studies
Analysis

The case studies USE-ME.GOV and uPAIN
promoted the reasoning about the design of
project structures for the model-driven devel-
opment of PIS. In this context, several factors/
needs emerged as being pertinent to the design
of project structures to accommodate MDD for
PIS in order to achive a proper, efficient, and
resilient development and final system. The
following paraghaps state some of these factors/
needs of influence.

Project structures should be designed to
support PIS. The way the elements are struc-
tured can have a positive impact in coping with
heterogeneity in devices and in functionalities

Figure	9.	General	architecture	for	the	uPAIN	system

14 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of PIS. The development structure approach,
jointly with the profiling and framing structures
herein presented, provides assisting techniques
to deal with pervasive characteristics such as
heterogeneity of devices and changing func-
tionalities.

Projects need an explicit manifestation of a
model-driven approach. The projects must have,
in the project design, a clear strategy to accom-
modate a model-driven approach making use of
models beyond of schematic or documentatinal
purposes in the several phases of the project.

Project elements must be properly de-
fined. It is important to pay attention to sev-
eral issues that may occur in the definition of
project elements. Among these, are the lack of
explicit artefacts, activities, or relationships;
the inconsistent or improper naming; the in-
coherent sequence activities; or the misused
of conceptions. The attention given to them is
important as they are at a core level where it is
fundamental to assure its correctness in order
to pursuit, at higher levels of abstraction, the
goals of model-driven development.

Projects should formalize activites as
model transformations and other elements with
semantic correcteness. Without having a coher-
ent, consistent, and clear formalization of the
several projects constituents’ elements, it will
not be possible to establish, with an acceptable

quality, a model-based/driven process devel-
opment. Without the existence of coherently
interconnected and precise process elements,
it is hard, even impossible, to achieve a model-
based/driven development orientation at a large
extent and depth of the process. This is the con-
sequence of the difficulties in: (i) incorporating
new activities or optimizing the existing ones
with model transformations techniques; (ii)
reorganizing or redefining the process in order
to pursuit a clearer and enhanced model-based/
driven quality.

Projects should seek for model-driven
semantic continuity/visibility. How much
model-based/driven is a software development
process? When does a software development
project go from being model-“based” to being
model-“driven”? It is important to reason about
the robustness of process and the suitability of
activities and artefacts regarding its use on a
model-based/driven orientation. The usability
of an artefact is related to its expression and
ability to be consumed/reused on subsequent
modelling tasks. The suitability of an activity
is related to its ability to incorporate formal/
explicit model transformation techniques that
(optionally) consume models and produce mod-
els. The robustness of the process is related to
the degree of the modelling semantic continuity
provided by the chains of activities, from the

Figure	10.	Framing	strcuture	for	uPAIN

International Journal of Web Portals, 4(2), 1-18, April-June 2012 15

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

beginning to the end of the development process.
The links among model artefacts and model
transformation activities (or well-structured
and formalized activities) of the process define
the visibility. The longer the path, the more
model-driven is the development process. So,
to enhance model-based/driven visibility, it is
needed to pay attention to activities (or tasks)
and the realization and flow of models.

The activities and artifacts of development
process, either at global of elementary process,
can be described using the Software & Systems
Process Engineering Meta-model Specification
(SPEM) 2.0 (OMG, 2008). SPEM provides to
process engineers a conceptual framework for
modelling method contents and processes, and
as such, it is used to define software and systems
development processes and their components.
SPEM can be an important auxiliary tool for
the definition (or diagonosis or optimization)
of processes. SPEM 2.0 specification provides,
not only the metamodel, but also a set of
corresponding stereotypes of the metamodel
concepts that can be used to easier illustrate
the process elements.

CONCLUSION

Pervasive forms of information system are
increasingly predominating on landscape of
software systems development. Among oth-
ers, resources heterogeneity, increased number
of functionalities that may be simultaneously
accomplished by distinct resources, high pace
of changes on resources and requirements
characterizes PIS. These have to be taken into
account by a suitable approach to software de-
velopment for PIS. Some properties of process
structures should be seek in order to achieve
robustness of a development process definition,
such as the comprehensiveness and depth of the
structure of the process, semantic correctness,
naming coherency and consistency, activity
flows and input/output clearness, work unit’s

robustness, overall rationale, and model-based/
driven visibility. Satisfaction of these properties
contributes for the perception of a solid ground
for project development.

This paper presents a profiling and framing
structure approach for the development of PIS.
This profiling and framing structure allows the
organization of the functionality that can be as-
signed to computational devices in a system and
of the corresponding development structures
and models. The proposed approach allows
accommodating the profiling of functionalities
that can be assigned to several resource catego-
ries and enables a structural approach to PIS
development. Analysing two real cases studies,
we have concluded that the strategy inherent to
this profiling and framing structure reveals as
being able to cope with systems composed of
several subsystems, while keeping the capac-
ity to deal with heterogeneous devices and to
accommodate model-based/driven approaches.

SPEM, besides being useful for the analysis
and design of processes, can also be extended
to represent the concepts used in this profiling
and framing structure, and can also be used to
represent a process structure pattern for appli-
cation of these concepts. These developments
shall be subject of further work.

REFERENCES

Appukuttan, B., Clark, T., Reddy, S., Tratt, L., &
Venkatesh, R. (2003). A model driven approach
to model transformations. In Rensink, A. (Ed.),
Proceedings	of	Model	Driven	Architecture:	Founda-
tions	and	Applications. Enschede, The Netherlands:
University of Twente.

Ark, W. S., & Selker, T. (1999). A look at human
interaction with pervasive computers. IBM	Systems	
Journal, 38(4), 504–507. doi:10.1147/sj.384.0504

Atkinson, C., & Kuhne, T. (2003). Model-driven
development: a metamodeling foundation. IEEE	Soft-
ware, 20(5), 36–41. doi:10.1109/MS.2003.1231149

16 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Benincasa, G. P., Daneels, A., Heymans, P., & Serre,
C. (1985). Engineering a large application software
project: The controls of the CERN PS accelerator
complex. IEEE	Transactions	on	Nuclear	Science,
32(5), 2029–2031. doi:10.1109/TNS.1985.4333804

Bohn, J., Coroamã, V., Langheinrich, M., Mattern,
F., & Rohs, M. (2004). Living in a world of smart
everyday objects - social, economic, and ethical im-
plications. Human	and	Ecological	Risk	Assessment,
10(5). doi:10.1080/10807030490513793

Booch, G., Maksimchuk, R. A., Engle, M. W., Young,
B. J., Conallen, J., & Houston, K. A. (2007). Object-
Oriented	 Analysis	 and	 Design	 with	 Applications.
London, UK: Addison-Wesley.

Brown, A. W. (2004). Model driven architecture:
Principles and practice. Software	&	Systems	Model-
ing, 3, 314–327.

Ciarletta, L., & Dima, A. (2000). A conceptual
model for pervasive computing. In Proceedings	of	
the	International	Workshops	on	Parallel	Processing.

Davies, N., & Gellersen, H.-W. (2002). Beyond pro-
totypes: Challenges in deploying ubiquitous systems.
IEEE	Pervasive	Computing, 1, 26–35. doi:10.1109/
MPRV.2002.993142

Fano, A., & Gershman, A. (2002). The future of
business services in the age of ubiquitous comput-
ing. Communications	of	the	ACM, 45(12), 83–87.
doi:10.1145/585597.585620

Fernandes, J. E., Machado, R. J., & Carvalho, J. Á.
(2004). Model-Driven Methodologies for Pervasive
Information Systems Development. In Proceedings	
of	the	MOMPES’2004, Hamilton, CA.

Fernandes, J. E., Machado, R. J., & Carvalho, J. Á.
(2007). Model-Driven Software Development for
Pervasive Information Systems Implementation. In
Proceedings	of	the	QUATIC	2007	(SEDES)	Work-
shop, Lisbon, Portugal.

Fernandes, J. E., Machado, R. J., & Carvalho, J.
Á. (2008). Model-Driven Development for Per-
vasive Information Systems. In Mostefaoui, S. K.,
Maamar, Z., & Giaglis, G. M. (Eds.), Advances	in	
Ubiquitous	Computing:	Future	Paradigms	and	Di-
rections (pp. 45–82). Hershey, PA: IGI Publishing.
doi:10.4018/978-1-59904-840-6.ch003

Gorton, I., & Liu, Y. (2010). Advancing software
architecture modeling for large scale heterogeneous
systems. In Proceedings	of	the	FSE/SDP	Workshop,	
FoSER	2010. Santa Fe, NM.

Hansmann, U., Merck, L., Nicklous, M. S., & Stober,
T. (2003). Pervasive	computing (2nd ed.). New York,
NY: Springer.

Heijstek, W., & Chaudron, M. R. V. (2009). Empirical
investigations of model size, complexity and effort in
a large scale, distributed model driven development
process. In Proceedings	of	the	SEAA	‘09	Conference.

Kay, R. H. (1969). The management and organiza-
tion of large scale software development projects. In
Proceedings	of	the	AFIPS	‘69	(Spring), Boston, MA.

Laine, P. K. (2001, August 28-31). The role of SW
architecture in solving fundamental problems in
object-oriented development of large embedded SW
systems. In Proceedings	of	the	Working	IEEE/IFIP	
Conference	on	Software	Architecture.

Langheinrich, M., Coroama, V., Bohn, J., & Rohs,
M. (2002). As	we	may	live:	Real-world	implications	
of	ubiquitous	computing. Zurich, Switzerland: Dis-
tributed Systems Group.

Lyytinen, K., & Yoo, Y. (2002). Introduction [is-
sues and challenges in ubiquitous computing].
Communications	 of	 the	 ACM, 45(12), 62–65.
doi:10.1145/585597.585616

Machado, R. J., Lassen, K. B., Oliveira, S., Couto,
M., & Pinto, P. (2007). Requirements validation:
Execution of UML models with CPN tools. [STTT].
International	Journal	on	Software	Tools	for	Technol-
ogy	Transfer, 9(3), 353–369. doi:10.1007/s10009-
007-0035-0

Mattsson, A., Lundell, B., Lings, B., & Fitzgerald,
B. (2007). Experiences from representing software
architecture in a large industrial project using model
driven development. In Proceedings	of	the	SHARK-
ADI’07	Conference.

Medvidovic, N. (2005). Software architectures and
embedded systems: A match made in heaven? IEEE	
Software, 22(5), 83–86. doi:10.1109/MS.2005.136

Mellor, S. J., Clark, A. N., & Futagami, T. (2003).
Model-driven development - Guest editor’s intro-
duction. IEEE	Software, 20(5), 14–18. doi:10.1109/
MS.2003.1231145

Miller, G., Ambler, S., Cook, S., Mellor, S., Frank,
K., & Kern, J. (2004). Model driven architecture:
the realities, a year later. In Proceedings	of	the	19th	
Annual	ACM	Sigplan	Conference	on	Object-Oriented	
Programming	Systems,	Languages,	and	Applications,
Vancouver, Canada.

International Journal of Web Portals, 4(2), 1-18, April-June 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Mirakhorli, M., Sharifloo, A. A., & Shams, F. (2008).
Architectural challenges of ultra large scale systems.
In Proceedings	of	the	2nd	International	Workshop	
on	 Ultra-large-scale	 Software-Intensive	 Systems,
Leipzig, Germany.

OMG. (2003). OMG’s	MDA	Guide	Version	1.0.1.
Retrieved from http://www.omg.org/docs/omg/03-
06-01.pdf

OMG. (2005). OMG’s	Home	Page. Retrieved from
http://www.omg.org

OMG. (2008). SPEM	 v2.0	 -	 software	 &	 systems	
process	engineering	meta-model	specification	v2.0.
OMG.

Ruparelia, N. B. (2010). Software development
lifecycle models. SIGSOFT	Software	Engineering	
Notes, 35(3), 8–13. doi:10.1145/1764810.1764814

Sage, A. P., & Rouse, W. B. (1999). Information
systems frontiers in knowledge management.
Information	 Systems	 Frontiers, 1(3), 205–219.
doi:10.1023/A:1010046210832

Saha, D., & Mukherjee, A. (2003). Pervasive com-
puting: A paradigm for the 21st century. Computer,
36(3), 25–31. doi:10.1109/MC.2003.1185214

Seidewitz, E. (2003). What models mean. IEEE	Soft-
ware, 20(5), 26–32. doi:10.1109/MS.2003.1231147

Selic, B. (2003). Model-driven development of real-
time software using OMG standards. In Proceed-
ings	of	the	Sixth	IEEE	International	Symposium	on	
Object-Oriented	Real-Time	Distributed	Computing	
(ISORC’03).

Sendall, S., & Kozaczynski, W. (2003). Model
transformation: The heart and soul of model-driven
software development. IEEE	Software, 20(5), 42–45.
doi:10.1109/MS.2003.1231150

Thomas, D. (2004). MDA: Revenge of the model-
ers or UML utopia? IEEE	Software, 21(3), 15–17.
doi:10.1109/MS.2004.1293067

uPAIN. (2003). uPAIN	-	Candidatura	de	Submissão.

USE-ME.GOV. (2003). Consortium	 Agreement	 -	
Annex	I	-	Description	of	Work.

USE-ME.GOV. (2006). D3.1	Recommendations.

Want, R., Pering, T., Borriello, G., & Farkas, K. I.
(2002). Disappearing hardware [ubiquitous com-
puting]. IEEE	 Pervasive	 Computing, 1, 36–47.
doi:10.1109/MPRV.2002.993143

Weiser, M. (1993a). Hot topics-ubiquitous comput-
ing. Computer, 26(10), 71–72. doi:10.1109/2.237456

Weiser, M. (1993b). Some computer science issues
in ubiquitous computing. Communications	 of	 the	
ACM, 36(7), 75–84. doi:10.1145/159544.159617

Weiser, M., Gold, R., & Brown, J. S. (1999). The
origins of ubiquitous computing research at PARC in
the late 1980s. IBM	Systems	Journal, 38(4), 693–696.
doi:10.1147/sj.384.0693

José	Eduardo	Fernandes	is	adjunct	professor	at	the	Department	of	Informatics	and	Communica-
tions,	Polytechnic	Institute	of	Bragança,	Portugal.	He	holds	a	PhD	in	Information	Systems	and	
Technology,	a	master	degree	in	Information	Systems,	and	a	degree	in	Informatics	and	Systems	
Engineering	from	University	of	Minho.	He	is	a	researcher	at	the	SEMAG	research	group	at	the	
Algoritmi	Research	Centre.	His	research	and	publications	focus	on	software	engineering,	par-
ticularly	model-driven	development	approaches	for	pervasive	information	systems.	Currently,	
his	interests	include	analysis	and	development	of	project	structures	for	pervasive	information	
systems,	ontologies,	standards	in	software	engineering,	and	also	software	engineering	education.

18 International Journal of Web Portals, 4(2), 1-18, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Ricardo	J.	Machado	is	associate	professor	at	the	Department	of	Information	Systems,	University	
of	Minho,	Portugal.	He	is	the	coordinator	of	the	University	of	Minho	scientific	activities	within	
the	CMU-Portugal	Program.	His	 research	 focuses	on	software	engineering	&	management,	
namely	on	model-driven	development,	requirements	engineering,	and	software	quality.	He	has	
lead	several	research	projects	resulting	in	more	than	100	publications.	His	current	research	
projects	 focus	on	 the	development	of	multi-staged	approaches	 in	software	product	 lines	and	
on	the	integration	of	multi-standard	models	in	software	high	maturity	levels.	He	is	associate	
director	of	the	Algoritmi	Research	Centre	and	leads	the	SEMAG	research	group.	He	has	been	
involved	in	the	organization	of	various	international	events,	including	ACSD	2003,	DIPES	2006,	
QUATIC	2007,	IEEEXtreme	2008	and	he	is	the	chair	of	the	steering	committee	of	the	MOMPES	
workshops	series.

João	Á.	Carvalho	is	Full	Professor	at	Department	of	Information	Systems,	School	of	Engineer-
ing,	University	of	Minho,	Portugal.	He	holds	a	PhD	in	Information	Systems	from	the	UMIST	
(University	of	Manchester	Institute	of	Science	and	technology),	UK	(1991).	His	research	and	
teaching	interests	include:	the	foundations	of	information	systems,	information	systems	develop-
ment,	meta-modelling,	requirements	engineering,	knowledge	management	and	R&D	methods.	He	
currently	is	Head	of	Department	and	Director	of	the	Doctoral	Program	in	Information	Systems	
and	Technology	at	University	of	Minho.

