

Model-based Transformations for
Software Architectures:

a pervasive application case study

Paula Alexandra Fernandes Monteiro

Dissertação submetida à Universidade do Minho para obtenção do grau de
Mestre em Informática elaborada sob a orientação do

Doutor João Miguel Lobo Fernandes
e do

Doutor Ricardo Jorge Silvério de Magalhães Machado

Departamento de Informática
Escola de Engenharia
Universidade do Minho

Braga, Dezembro de 2005

ii

Acknowledgements

I would like to express my gratitude to all people that directly or indirectly

contribute to the execution of this work.

Special thanks to my supervisors Doutor João Miguel Fernandes and Doutor

Ricardo Machado for creating the environment for doing this research and for the

review of this document.

I would like to thank Doutora Helena Rodrigues, of the Information Systems

Department for creating the environment needed to this research.

iii

iv

Model-based Transformations for Software
Architectures: a pervasive application case study

Abstract

The software architecture is a representation of the software system structure

that should capture the system requirements and that comprises the software

components and the relations between them. It is of obvious importance that the system

requirements can be derived from the user requirements so that software engineers can

more easily relate and trace them. If both types of requirements are models this

transformation is a model-based technique. User requirements are typically described

with informal models and focused to the problem domain. System requirements are

described with abstract models of the system with a high-level of detail, and correspond

to the first representation of the system’s structure or architecture.

To identify the system components the software engineer should start the

development by defining the functional model that reflects the system functionalities

offered to the users represented through a use case diagram. Object diagrams can be

used to show the objects that the system is composed of. This transformation can be

made with the usage of Four-Step Rule Set (4SRS) technique [11, 13] which is

essentially based on the mapping of use case diagrams into object diagrams.

The main aim of this thesis is to present a proposal on how to transform in a

systematic and sustained way user requirements models into software architectures by

proposing some improvements on the original version of the 4SRS technique. The

application of this technique is illustrated within two different usages on a pervasive

case study. In the second usage we also present how to refine the software logical

architecture by recursively applying recursively the 4SRS.

v

vi

Transformações Baseadas em Modelos para
Arquitecturas de Software: caso de estudo de
uma aplicação intrusiva

Resumo

Uma arquitectura de software é uma representação da estrutura do sistema de

software que captura os requisitos do sistema e que compreende os componentes de

software e as relações entre eles. É importante que os requisitos do sistema possam ser

derivados dos requisitos do utilizador de modo a que os engenheiros de software os

possam relacionar e seguir. Se ambos os tipos de requisitos forem modelos esta

transformação diz-se baseada em modelos. Os requisitos do utilizador são descritos

tipicamente com modelos informais e com foco no domínio do problema. Os requisitos

do sistema são descritos com modelos abstractos do sistema com um elevado grau de

detalhe, constituindo a primeira representação da estrutura ou arquitectura do sistema.

Para identificar os componentes do sistema o engenheiro de software deve

iniciar o desenvolvimento definindo o modelo funcional, que reflecte as funcionalidades

do sistema disponibilizadas aos utilizadores, representando-o através de um diagrama de

use cases. Os diagramas de objectos podem ser usados para mostrar os objectos que

compõem o sistema. Esta transformação pode ser feita através da utilização da técnica

Four-Step Rule Set (4SRS) [11, 13] que se baseia essencialmente no mapeamento de

diagramas de use cases em diagramas de objectos.

O principal objectivo desta tese é apresentar uma proposta de como transformar

de um modo sistemático e sustentado os modelos de requisitos do utilizador em

arquitecturas de software propondo melhoramentos à versão original da técnica 4SRS.

A aplicação desta técnica é ilustrada com duas diferentes utilizações de uma aplicação

intrusiva. Na segunda utilização é também apresentado como refinar arquitecturas

lógicas de software utilizando recursivamente o 4SRS.

vii

viii

Contents
Acknowledgements iii

Abstract v

Resumo vii

List of Figures xi

Introduction 1

1.1. Motivation 1

1.2. Research Goals 4

1.3. Dissertation Roadmap 4

Model-Based Transformations 5

2.1. Introduction 5

2.2. Model-driven Software Development 6

2.3. Related Work 9

2.4. Conclusions 12

Transforming Use Cases into Objects 15

3.1. Introduction 15

3.2. Four Step Rule Set original version 16

3.3. Four Step Rule Set improved version 18

3.3.1. Step 1: object creation 20

3.3.2. Step 2: object elimination 20

Micro-step 2i: use case classification 21

ix

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Micro-step 2ii: local elimination 21

Micro-step 2iii: object naming 22

Micro-step 2iv: object description 22

Micro-step 2v: object representation 22

Micro-step 2vi: global elimination 23

Micro-step 2vii: object renaming 23

3.3.3. Step 3: object packaging & aggregation 24

3.3.4. Step 4: object linkage 24

3.4. Tabular Transformation 25

3.5. Conclusions 29

Validation of the 4SRS 31

4.1. Introduction 31

4.2. Platform Specification 32

4.3. Recursive Refinement 43

4.4. Service Specification 47

4.5. Conclusions 54

Conclusions 55

5.1. Results Analysis 55

5.2. Future Work 56

Bibliography 59

x

List of Figures
Figure 1. Top-level use case diagram 18

Figure 2. Refinement of use case {U1.2} make complaint 20

Figure 3. 4SRS tabular representation 26

Figure 4. Example of an object description 27

Figure 5. Micro-step 2v tabular execution 28

Figure 6. Level zero use case diagram of USE-ME.GOV 32

Figure 7. Level one use case diagram of send alert use case 33

Figure 8. Step 1 execution – object creation for platform specification 34

Figure 9. Micro-step 2i execution for platform specification 35

Figure 10. Micro-step 2ii execution for platform specification 36

Figure 11. Micro-step 2iii execution for platform specification 36

Figure 12. Micro-step 2iv execution for platform specification 37

Figure 13. Micro-step 2v execution for platform specification 37

Figure 14. Micro-step 2v execution for platform specification 38

Figure 15. Micro-step 2v execution for platform specification 38

Figure 16. Micro-step 2vi execution for platform specification 39

Figure 17. Micro-step 2vii execution for platform specification 39

Figure 18. Step 3 execution for platform specification 40

Figure 19. Step 4 execution for platform specification 41

Figure 20. Step 4 execution for platform specification 41

xi

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Figure 21. Step 4 execution for platform specification 42

Figure 22. Step 4 execution for platform specification 42

Figure 23. USE-ME.GOV Raw Object Diagram 43

Figure 24. USE-ME.GOV Collapsed Object Diagram 44

Figure 25. USE-ME.GOV Filtered Object Diagram 44

Figure 26. Execution of the filtering process 45

Figure 27. Use case Diagram: USE-ME.GOV’s AVAccess service 46

Figure 28. Execution of step 1- object creation for Service specification 47

Figure 29. Execution of micro-step 2i – use case classification for Service

specification 48

Figure 30. Execution of micro-step 2ii – local elimination for Service specification 48

Figure 31. Execution of micro-step 2iii – object naming for Service specification 49

Figure 32. Execution of micro-step 2iv – object description for Service specification 50

Figure 33. Execution of micro-step 2v – object representation for Service

specification 50

Figure 34. Execution of micro-step 2vi – global elimination for Service specification 51

Figure 35. Execution of micro-step 2vii – object renaming for Service specification 52

Figure 36. Execution of step 4 – object linkage for Service specification 53

Figure 37. USE-ME.GOV’s AVAccess service object diagram 53

xii

Chapter

1
Introduction

Summary
This chapter presents the motivation of this thesis.
The main motivation is the extension of the Four-Step Rule
Set (4SRS), which is a technique to transform user
requirements models into software architectures, and in
particular for pervasive applications.

1.1. Motivation

Although several definitions were already proposed [27, 33] a pervasive system

can be defined in a simple way as a system that lives around us providing services

everywhere. In this context a mobile application, i.e. an application that can be on a

mobile phone and that enables the access to the system functionalities, is a pervasive

system. It is an application that can follow a service-oriented approach.

In the last years, the widespread availability of mobile communications makes

the information available at any time and everywhere. In a mobile information

environment, the users can interact with a mobile information space with context-aware

services. A context-aware service is a service that gives information that is useful to the

user in a given context [4, 28].

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Mobile applications must be aware of the physical environment that is

surrounding the user in a certain moment. It must change automatically its behaviour in

order to satisfy the new situation of the user. So a software infrastructure for mobile

applications must be capable to dynamically find and deliver the services that best fit

the user needs based on his context [7].

The software architecture is the high-level structure of a software system that

includes the software components and the relations between those components. It is a

representation of the software system structure and it should capture the system

requirements.

The identification of the system components of an architecture requires the

definition of the functional model that captures the functionalities available to the user

[11, 13]. Those functionalities available to the users should represent the user

requirements. The system requirements are supposed to be derived from the user

requirements. With this derivation it is assured that the design phase is really (or at least

strongly) based on the users needs. One of the tools that is typically used in software

engineering to capture the system functionalities are use case diagrams, which are

simple and easy to read by non-technical stakeholders. This fact implies that they are

suitable for discussion between analysts and users, but also between analysts and

designers.

Developing mobile applications may include the use of a service-oriented

approach. A service is a software entity that runs in one or more machines and provides

a specific type of function to clients. Those services have to communicate among them

and their combination constitutes a service-oriented architecture. So, in a mobile

application, the definition of the service-oriented software architecture must take into

account the services as user requirements, as well as the mobile operators and the final

clients interfaces, that will be used to characterize the platform; i.e., in use case

diagrams, the services must be represented as use cases (functionalities) and the mobile

operators and the final clients interfaces should be represented as actors.

An object model can be a design level notation. In this case, it represents a

technology-independent architecture, in which the system requirements are considered.

2

I N T R O D U C T I O N

The object model is a design level model, is the first architecture that captures the

system requirements. This model shows the objects that the software system is

composed of. Objects can be obtained from the use cases that represent the system

functionalities. It implies a transformation technique to transform the use case diagram

into an object diagram, i.e., to transform the system requirements into the first

architecture of the system.

The transformation of a use case diagram into an object diagram is a complex

and critical task, since there is not an evident mapping from use cases to objects. To

perform this transformation the behaviour specified by a use case must be distributed

into several objects.

One technique to guide this transformation is the Four-Step-Rule Set (4SRS)

[11, 13]. This technique is divided, as the name indicates, in four steps that guide the

transformation of the use cases into objects and its main idea is to ensure a strong

continuity of the models.

However, this technique is only a partial solution to the transformation of the use

case model into an object model. The interpretation of the steps that compose this

technique can be subjective since they are presented in a textual format and the

description of each step is made in a somehow abstract way.

The main motivation of this thesis is to contribute to extend and improve the

4SRS technique that helps on transforming use case diagrams into object diagrams. The

contribution of this thesis is to present a more detailed and easy-to-apply version of the

4SRS technique. To validate the proposal made here, the “new” 4SRS is used to

transform user requirements models into the first logical architecture of the system for a

pervasive application case study. However, we believe that this technique is sufficiently

generic that it can be used in other application domains. To support the execution of the

4SRS transformation a tabular representation was defined to make the usage of the

technique easier for software engineers. This tabular representation was created with the

purpose of defining in the future the mechanism to automate at least partially the 4SRS

technique.

3

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

This work has been developed and applied in the European Sixth Framework

project USE-ME.GOV (USability-drivEn open platform for Mobile GOVernment - IST-

2002-002294). The aim of USE-ME.GOV project is to develop a new open platform for

mobile e-government services. The platform must support interoperability, openness

and scalability. It must also facilitate the service deployment and access. In other words,

the main goal is to provide an open platform for mobile services provided by the public

authorities. USE-ME.GOV offers new types of services for a specific user group. The

services must be configurable and personalised [9].

1.2. Research Goals

The main goals of this work are the following:

1. To improve the original version of the 4SRS technique to allow its

application in the architectural refinement of software systems, after the

first architectural specification;

2. To apply and to validate the new version of the 4SRS technique with the

pervasive application taken from the case study of the USE-ME.GOV

project.

1.3. Dissertation Roadmap

In chapter 2, a generic description of the model-driven approach and the existent

model-based transformation techniques are presented. Chapter 3 presents the original

4SRS technique and discusses how this technique was extended and improved to better

support the transformation of use case diagram into object diagrams. This constitutes

the main contribution of this thesis. In chapter 4, the 4SRS is applied in a case study for

a pervasive application, with the aim of exemplifying its usage and utility. The thesis

ends in chapter 5 with conclusions and some pointers for future work.

4

I N T R O D U C T I O N

Chapter

2
Model-Based Transformations

Summary
A model-driven approach is a software development
process that uses models during its execution. With
model-driven approaches, the development of a software
system is made by successively transforming models into
other models, until the final system is obtained.
One of the open issues related to model-driven approaches
is on the transformation of a model into another one. To
tackle this problem, several methodologies were proposed.
In this chapter the model-driven approach as a paradigm
to develop software systems and some model-driven
methodologies are introduced.

2.1. Introduction

One important factor that must be considered during the development of a

system is modelling. The Unified Modeling Language (UML) is a language proposed

by the Object Management Group (OMG) that can be used to express the models

created during the system development.

A software system development approach could use models during the process

and in this case the approach is called model-driven.

A problem to the model-based approaches for software development is the

transformation from one model to the other. The use of a technique to guide in this

transformation is very important in the model-driven approaches, since the

transformation techniques should describe which artefacts must be produced, which

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

notation must be used to create the artefacts and which tasks must be executed and in

what sequence, to guarantee that the artefacts are created with the correct mapping from

one model to another and the correct purpose of this transformation.

The OMG definition of model transformations says that “Model transformation

is the process of converting one model to another model of the same system” [23]. In

model transformations the (sub-)system defined by the input model must be the same

(sub-)system that is defined by the output model that is generated by the application of

the transformation rules defined in the selected methodology [18].

In this chapter the model-driven development is introduced as well as some

model-based transformation techniques used in model-driven approaches.

2.2. Model-driven Software Development

A system development approach is model-driven if it provides means for use

models to guide the course of understanding, design, construction, deployment,

operation maintenance and modification [23]. The main idea of a model-driven

approach is the usage of well-defined models, which are built following the rules

specified by the modelling language, and that represents abstract specifications of the

system

The Unified Modeling Language (UML) is a standard language to specify the

structure and the behaviour of a system. It is a graphical language for visualizing,

specifying, constructing, and documenting the artefacts of distributed object systems

[1], which can be used to design the models in a model-driven approach.

Despite actual system development approaches that use code in the software

development, the approaches that use models as the main artefact in the software

development are significantly increasing. These approaches can be named as model-

driven approach [3].

6

M O D E L - B A S E D T R A N S F O R M A T I O N S

One of these approaches is presented in [15]. In this approach the functional

requirements of the system are captured by use cases (the set of all use cases is a use

case model). The use case model describes the complete functionality of the system.

However, use cases do not only specify the system requirements but also drive the

development process. With this development process and based on the use case model,

a set of design and implementation models that accomplish the functional requirements

are created.

Another approach that can be claimed as model-driven is presented in [16]. In

this approach, the system development is made with several kinds of models. The

functional requirements are captured by the requirements model, which is composed by

a use case model and with the interface descriptions. After the approval of the

requirement model, the analysis model is developed, by specifying all the logical

objects of the system, the relation between them and how they are grouped. Using the

requirements and the analysis model the design model is developed and based on this

the implementation model is created. The implementation model aims to implement the

system and consists mainly in the source code written by the programmers. Another

model can be created, the test model with which the system is verified.

A recent model driven approach, promoted by the OMG, is the Model Driven

Architecture (MDA) [23]. MDA is a framework that uses models in the software

development process and transforms input models into output models sharing the idea

of separate the specification of the functionality of a system from the specification of its

implementation on any specific platform. This separation is made by dividing the MDA

in two model families: Platform Independent Model (PIM) and Platform Specific Model

(PSM). The software is developed by transforming the PIM into a PSM (that is closer to

code than the PIM) using a series of transformations called model transformations [18,

19, 25].

The Model-Driven Development (MDD) of software applications tackles the

problem of developing a software system by promoting the usage of models as the main

artefact to be developed. Like MDA, the MDD is based on the idea of PIMs that can be

transformed into PSMs, using several technologies and languages. A MDD

7

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

methodology has to define which models are to be used by the developers and which

modelling tasks have to be performed during a software project.

In MDA, the first model to be defined is typically a PIM which is the input

model to the model transformations. It is a model independent from any implementation

technology and with a high level of abstraction and it can provide the specification of

the system structure as well as the specification of the system functionality (the

implementation details are not presented).

The PIM is created in the analysis phase of the software development usually

described in a platform independent modelling language, like UML. A PIM can be

transformed into one or more PSMs. A PSM can be called output model (it is the output

model of the model transformations) that is created to specify the implementation of our

system in a specific implementation technology. The output model can provide different

levels of details depending on its purpose: if the output model of the model

transformation provides all the information required to specify the system

implementation this model is a PSM; otherwise, the output model is a PIM that will be

refined in order to get a PSM. The output model must describe the same system as the

input model. So the model transformation must preserve the meaning of the models that

are being transformed.

Another proposed definition of model-driven [25] extends the OMG definition.

In this case a system development approach is model-driven if the development is

accomplished with the usage of conceptual models in the distinct levels of abstraction;

the difference between a PIM and a PSM is clear; models are very important not only in

the initial phases of the development process but also in maintenance and reuse; and

models provide a precise structure for transformation and refinement.

The Model Driven Engineering (MDE) deals with the problem of a system

development promoting the usage of models as a principal artefact to construct [5].

MDE is a wide term comparing with MDA. It includes all models and modelling tasks

needed to perform a software project from the beginning to the end. In a MDE

development project, the transformations from a source model to a target model are

necessary, like in the MDA projects, but a transformation from a PIM to another PIM

8

M O D E L - B A S E D T R A N S F O R M A T I O N S

could be necessary. The importance of this transformation from a PIM to a PIM is, for

example, the possibility of transforming a model that represents the user requirements

into another model describing the system architecture that supports the user

requirements.

The description of a MDE method has to define the artefacts that have to be

produced, the language used to create them and the tasks that must be executed (to

better the process model) to guarantee the creation of the required artefacts. An MDE

method has two main differences comparing with a traditional development method: all

the artefacts created are represented using a well-defined modelling language and as a

consequence, tools can be created. These tools analyse and transform all the artefacts of

the project [5].

The 4SRS technique [11-13], which is the basis of this thesis, starts the

development with the definition of the functional model. The functional model is

defined with UML use case diagrams. This diagram reflects the system functionalities

that are available to the users. After the definition of the use case diagrams, the system

objects will be obtained based on the use cases and their respective textual descriptions.

2.3. Related Work

The transformation from one model to another is one of the main ideas of the

model-driven approaches. There are several approaches that guide the developer in the

model transformation during the software development process.

In the last years UML has become a standard language for modelling software

requirements and design and by this the majority of the model transformation

approaches are used to transform UML models into other UML models [6, 21].

However, there are also approaches to transform UML models into other type of models

like Colored Petri Nets [10, 14], and even approaches to transform UML models into

code (like Jamba which is an object-oriented framework that provides a set of classes to

represent UML models and a mechanism to generate code [2]).

9

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

In the group of the available techniques to transform UML models into other

UML models, there are several works that propose a solution for the transformation of

the UML use case models into objects or class models [6, 8, 16, 21] by identifying

objects or classes through the description of the use cases [11, 13, 17] or through the use

case goals [21, 26]. Some of those transformation methodologies identify the objects or

classes based on the descriptions of use cases [17, 21], but exists also transformations

methods that identify the classes from the use case goals [8, 26].

In the methodology defined in [8] it is needed to find the external actors and

objects that interact with the system. The system functionality, like in the 4SRS, is

described using the UML notation, in particular, the use case diagrams. However, the

next step is different from the 4SRS. The resulting model is mapped in a graph

description. The partition of the graph according to different criteria gives origin to the

identification of different objects.

The work presented in [21] takes into account the use case goals to identify the

classes. This approach transforms the source model into the target model, using the use

case goal identification instead of the use cases and their descriptions as in 4SRS. The

classes are identified based on the use case goals instead of the information kept in the

use case description. For each use case, the respective goal must be found. After finding

the goals, it must be identified which entity uses each goal. Each entity will be specified

as classes from a class diagram.

The approach presented in [26] uses goals to elicit functional and non-functional

requirements and specify the relations between them.

The last two approaches presented [21, 26] give support for the transformation

of an analysis model into an architectural design model. But these approaches do not

have a framework defined that helps to capture of the semantic of the use cases. This

can be solved with the use of a scenario based requirements engineering technique [20,

31].

The current methods used to transform the use cases in objects or classes can be

divided in two groups. The first group includes the methods based on the analysis of the

10

M O D E L - B A S E D T R A N S F O R M A T I O N S

textual requirements; the second group contains the tools which automate the

transformation from the use cases to the objects/classes models. The 4SRS is a

technique of the first group.

Another approach to model transformation uses activity diagrams [17]. The use

case model obtained in the analysis phase is complemented with an activity diagram, in

other words, the use case description is converted into the activity diagram. The

ambiguities and the inconsistencies can be removed during this conversion of the textual

description into the activity diagram. Next the objects and the classes are identified.

Using the same idea of complementing the use case model with other artefacts,

another work is proposed [6]. In this work the use case diagrams are complemented

with a formal document, which is called contracts. It is described in a language with a

precise semantic and the main idea of the use of this artefact is to describe the behaviour

of the actors. Contracts are used as a step between the use case diagrams and the class

diagrams.

Like the last two approaches, the 4SRS can complement the use case diagrams

with other software artefacts, like sequence, activity and state diagrams.

A proposed model based approach combines the data-flow diagrams (DFD) with

the UML object-oriented diagrams [22, 32]. The main idea of this combination is to

help the development of complex embedded systems. This approach is based on the

4SRS, the requirements are captured and a use case model is built. The initial object

diagram is transformed from the use case diagrams. Finally, after the development of

the object diagram, a DFD is constructed following a set of defined steps.

The UML model-to-model transformations can also be made with the usage of

XMI (XML Metadata Interchange), which is an XML-based standard for interchange of

UML models [24]. The model is converted into XMI and the transformation from one

model to another is made with the usage of existing XML tools like XSLT, which

transforms the converted XMI model into another XMI model. This type of

transformations is not simple because it is required some experience and effort to define

the XSLT transformations.

11

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

As said before there are some approaches that transform UML diagrams into

other type of diagrams, for instance into CPNs [10]. The idea of this approach is to

generate a prototype of the user interface and a formal specification of the system. Such

as the other approaches discussed before, this starts with the creation of the use case

diagram of the system. Beside the creation of the use case model, for each use case it

will be created a sequence diagram describing its scenario. The next step is the

transformation of the use case and sequence diagrams into CPNs. If there are different

CPNs that correspond to the same use case are joined in a unique CPN. After this step

the CPNs will be linked into a global one, capturing the system behaviour.

There is another proposal to transform UML models into Colored Petri Net

models [14] in which the primary artefacts considered are the statechart and the

collaboration diagrams. The statecharts are converted in colored Petri nets and the

collaboration diagrams are used to connect the models, in order to get a single Petri net.

This approach is used to modelling behaviour. The transformations can be done

manually or using a tool. To help the manual transformation an algorithm was devised

to support the transformations between scenarios and behavioural models. It guides the

transformation between UML collaboration diagrams and state transition diagrams [29].

There are also model transformation approaches, which propose visual

languages to make these transformations. One of these works is the Visual Model

Transformation (VMT) approach [30]. If offers a transformation language and a tool

that allows the UML model transformations. The rules used in this language, like others

works, uses the Object Constraint Language (OCL) in the model transformation.

2.4. Conclusions

In this chapter it was presented the concept of “model-based transformation”. To

make this brief description, it was generically explained some of the model-driven

approaches that are used in software system development.

12

M O D E L - B A S E D T R A N S F O R M A T I O N S

A brief description of the model-driven techniques that could be used to make

the model transformations was also presented.

There are several approaches that use models in the system development

process, so they are model-driven. A model-driven approach has to use a model

transformation technique to guide the transformation of the models during all the

development process.

There are model transformations approaches used to transforms models into

models, but there are also approaches to transform models into code (not presented in

this thesis). Some of the model-to-model transformation approaches make this

transformation by converting the graphical model into text (XML/MOF/XMI) and

transform it into another model also represented in XMI. These model–to–model

transformations approaches can transform UML models into UML models (for instance,

transform a use case model into a class model), but can also transform UML models

into other kind of models (like Petri Nets).

13

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

14

 Chapter

3
Transforming Use Cases into Objects

Summary
This chapter presents the original 4SRS technique that
guides the designers on the seamless transformation of use
cases into objects. The extensions and improvements of
that technique, proposed in this thesis, are also described.
In particular the steps and micro-steps that constitute this
technique are described and applied to an example to
illustrate the rationale of the method.
In order to give automatic support to the 4SRS
transformation steps, a tabular representation is also
presented in this chapter.

3.1. Introduction

Transforming an analysis model into an architectural model is not simple and

presents a considerable number of difficulties. This transformation has many decisions

that cannot be executed by a method or a tool since there is a discontinuity between

functional and structural models. The transformation of the use cases into objects is a

crucial task in any model-driven development project, because there is not a direct

mapping between them.

The object diagram can have different intentions. It can be used to enrich the

user requirements, to complement use cases describing requirements. But it can also be

used to provide an ideal architecture that captures the system requirements. In the

technique defined in this chapter it will be used the last purpose because the object

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

diagrams resulting from the application of the 4SRS are used to present the components

of the system under development.

In order to identify the system components it is recommended to start the

development process by capturing the functionalities of the system that are offered to

the users, in such way that the components can take into consideration the user

requirements. The technique used to capture the system functionalities are use case

diagrams.

Use case diagrams are readable and simple to understand because it has only

three concepts: use cases, actors and relations. This simplicity allows the participation

of clients and users in the requirements capture. Despite being used in object-oriented

projects, use cases do not hold any intrinsic object-oriented property. Although using

use cases for capturing the user requirements is a suitable technique we are faced with

the problem of transforming use cases into objects.

In this chapter it will be presented a technique called 4SRS that helps the

transformation task from use cases into objects. This technique solves the problem of

define the system objects based on the use cases and their respective textual

descriptions.

3.2. Four Step Rule Set original version

The 4SRS is a model-driven technique that offers some guidelines and

techniques to transform use cases into objects, which consists basically in distributing

the behaviour specified by the use cases to a set of objects. The original version of the

4SRS was introduced in [13] and [11].

By applying this technique, the designers are supposed to obtain a holistic set of

objects, so that the inter-relations amongst the objectified use cases can be successfully

simplified in order to obtain a reduced number of relevant system-level objects.

This original version of the technique is divided in the following 4 steps:

16

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

1. Step 1 - object creation: Transform each use case into three objects

(one interface, one data, and one control). Each object receives the

reference of its respective use case appended with the suffix (i, d, c)

that indicates the object's category;

2. Step 2 - object elimination: Based on the textual description for each

use case, it must be decided which of the three objects must be

maintained to fully represent, in computational terms, the use case,

taking into account the whole system and not considering each use

case per si, as happens in a non-holistic approach;

3. Step 3 - object packaging & aggregation: The survival objects (those

that were maintained after the execution of step 2), for which there is

an advantage in being treated in an unified way, should give origin to

aggregations or packages of semantically consistent objects;

4. Step 4 - object association: The obtained aggregates must be linked to

specify the associations among the existing objects.

This technique can be considered a partial solution to the problem of

transforming use cases into objects, because the execution of the second step has a

subjective interpretation since the object elimination is accomplished based only in the

textual description of the use cases which are written in a natural language and thus

subject to ambiguities. This problem was tackled and solved in the improved version of

the 4SRS, by dividing this step in several micro-steps, which is the main aim of this

work.

One weakness of the original version is the huge number of objects that can

appear at the time when the objects are created in the first step, a problem that will not

be solved in this work. All the objects for each use case are created even if some of

them will be eliminated in a later step.

The technique is risk-driven. When the use case model has refinements it can

reduce risk. Refining a use case model increases the information since it introduces

more detail and gives origin to a decrease of the risk because there is less probabilities

of having a lack of information.

17

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

3.3. Four Step Rule Set improved version

The 4SRS technique presented in this thesis is based on the general technique

presented before. It is divided in some steps and micro-steps. The main steps are:

• Step 1: object creation

• Step 2: object elimination (this step is divided in some micro-steps):

 Micro-step 2i: use case classification

 Micro-step 2ii: local elimination

 Micro-step 2iii: object naming

 Micro-step 2iv: object description

 Micro-step 2v: object representation

 Micro-step 2vi: global elimination

 Micro-step 2vii: object renaming

• Step 3: object packaging & aggregation

• Step 4: object link

{U1} complaint service

Local Authority

Citizen

{U1.1} insert complaint options

{U1.2} make complaint

{U1.3} process user context
{U1.4} fill complaint information

{U1.7} update information on past complaints

{U1.5} process notification request

{U1.6} receive notification
<<include>>

<<include>>

<<uses>>

Figure 1. Top-level use case diagram

To illustrate the transformation technique, is next presented the step-by-step

application of the 4SRS to a case study. The case study used in this section is the

18

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

development of a service offered by a new open platform for mobile government

applications. This platform (that is presented in the next section) is responsible for the

deployment of a set of reusable service components, which allows citizens to access

government activities at any time and anywhere. One of those activities (services)

allows the citizens to report a complaint to the local authority.

The capture of the complaint service requirements allows the identification of all

the use cases that compose the service. Figure 1 shows the use case diagram of the

service. Each use case has one textual description. As an example, it is presented the

textual description of use case {U1.2} and use case {U1.5}

{1.2} make complaint: the action of the user to issue the functionality of
make complaint.

{1.5} process notification request: This service verifies if users have
requested to be notified of a complaint status change. The complaint status
is updated via {1.4} fill complaint information. The user information was
recorded in the service via {1.2.5} send user information. The user is
informed via {1.6} receive notification.

The use case {U1.2} was refined (figure 2), and next we present examples of the

textual descriptions of the sub use cases.

{1.2.2} select complaint option: The user selects a complaint option. The
list of complaints options is received by the user through the use case
{1.2.1} get list of complaint options. The complaint option is recorded in
the system.

{1.2.5} send user information: The user sends information on terminal ID
(this information is added by the platform to user request); user name (this
information is added by the platform, if the user is registered, to user
request); user context information (this information is added by the
platform to user request). The user context is processed via {1.3} Process
user context. The user information is recorded in the service.

19

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

 citizen

{U1.2.2} select complaint option

{U1.2.3} send description

{U1.2.4} request voice call

{U1.2.5} send user information

{U1.2.1} get list of complaint option

{U1.2} make complaint

Figure 2. Refinement of use case {U1.2} make complaint

3.3.1. Step 1: object creation

In this step, each use case must be transformed into three objects. Each created

object is classified with one of the following categories: interface, data and control. All

objects receive a reference that starts with an “O” followed by the respective use case

reference and appended with the suffix i, d or c, according to the type of the object

category. In this step there is no need to take or validate any decision.

This creation step is only applied to the use cases that were not refined and to the

sub use cases of refined ones. In order words the leafs of the use case hierarchy must be

used, instead of the most hierarchical ones.

In the next steps there are only objects as design entities, but the use cases are

still used to introduce the requirements in the object model.

Applying this step to the case study and more particularly to the use case {U1.5}

three objects were created: {O1.5.i}, {O1.5.d}, {O1.5.c}.

3.3.2. Step 2: object elimination

This step is in our opinion the most important one of the 4SRS. The importance

of this step to the success of the technique results from the fact that the definitive

20

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

system-level entities are decided during its execution. We decided decompose the

second step in seven micro-steps, due to its complexity.

The aim of this object elimination step is to decide which of the objects created

during the first step must be kept in the model. The objects that are not eliminated must

fully represent the use case. This decision must take into account the whole system and

not each use case alone, and based on the textual descriptions of each use case.

Additionally this step allows also the elimination of the redundancy in the user

requirements and the discovering of missing requirements.

Micro-step 2i: use case classification

The first micro-step of the second step classifies each use case. This

classification is used to help on the transformation of each use case into objects. It gives

some hints on the object categories to use and how to connect those objects.

To understand this classification it is important to know how many combinations

of objects exist for a use case. Since the 4SRS creates as a maximum three objects (one

interface “i”, one control “c” and one data “d” objects) there are 8 different

combinations or patterns, Ø, i, c, d, ic, di, cd, icd (ignoring the links between the

objects).

As an example, the use case {U1.2.1} was classified as “di”, which means that

only the interface and the data object are to be kept and the control object is to be

eliminated in micro-step 2ii.

Micro-step 2ii: local elimination

In this micro-step, for each object created in step 1, the developer decides if it

makes sense in the problem domain. The idea to check if the objects makes sense comes

from the fact that the creation of the objects in the step 1 is executed without take into

consideration the system context.

In the case study, object {O1.5.i} (the interface component of the use case

{U1.5} process notification request) does not make sense in the problem domain. This

21

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

decision can be justified by analysing its textual description. The use case {U1.5} is

responsible to check in the database information (data component) if the user requests a

notification (control component). So, for the use case {U1.5}, the components that are

kept are the data and control, this components give origin to the inclusion in the object

model of the objects {O1.5.c} and {O1.5.d}.

Micro-step 2iii: object naming

The objects that have not been eliminated in micro-step 2ii must be named. The

name received by the object must reflect its role taking into account the main

component and reflect the use case which it comes from.

As an example, the objects {O1.5.c} and {O1.5.d} receive the name

“notification processor” and “request notification data”, respectively, since they both

originate from use case {U1.5} process notification request.

Micro-step 2iv: object description

After naming the objects, they need to be described. The idea of this description

is to include in the object model the system requirements represented by the objects.

The descriptions must be based in the original use case textual descriptions and

introduce requirements in this stage is not recommend except if they are classified as

non-functional requirements (NFR) or as design decisions (DD). One example of an

object description is the description of {O1.5.c}.

{O1.5.c} notification processor: this object is responsible to check if the
user has request a notification when a complaint status has been changed.

Micro-step 2v: object representation

The fifth micro-step is the most critical of the 4SRS technique. In this micro-step

the redundancy of the user requirements elicitation is eliminated and the missing

requirements are supposed to be detected.

22

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

In this step, it must be checked for each object if it can be represented by other

one, in order to reduce redundancy. This means that the representative object can

represent its own system requirements and the requirements of the represented objects.

In the example, object {O1.2.2.i} select option interface that result from use

case {U1.2.2} select complaint option is represented by object {O1.2.1.i} user options

interface. This representation means that object {O1.2.1.i} can represent a system-level

entity within the object model that is able to accommodate its own system requirements

and the requirements of {O1.2.2.i}. This is an example of elimination of functional

redundancy, since, from the functional point of view, it is simpler and more correct to

support and justify the existence of a unique data repository for all kinds of registered

services.

Micro-step 2vi: global elimination

This micro-step is straight forward (and thus is easy to automate), since it only

consists on the application of the results of the last micro-step. The objects that are

represented by others must be eliminated because their system requirements are now

part of the representative object. This micro-step is called “global elimination” due to its

global awareness for generating a coherent and cohesive object model, from the system

requirements point of view.

In the case study object {O1.2.2.i} must be eliminated because it is represented

by object {O1.2.1.i}.

Micro-step 2vii: object renaming

This is the last micro-step and its idea is to rename the objects that were not

eliminated in micro-step 2vi and that represent other objects. The new name must reflect

all the represented system requirements.

In the case study, object {O1.2.1.i} was renamed, because it was not eliminated

in micro-step 2vi and it represents not only itself but also objects {O1.2.2.i}, {O1.2.3.i},

{O1.2.4.i} and {O1.2.5.i}. The new name is “complaint interface”.

23

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

3.3.3. Step 3: object packaging & aggregation

In this step, the remaining objects (i.e., the objects that survive in step 2), for

which there is some advantage in being treated in a unified way, should be aggregated

or packaged. These aggregations or packages should include semantically consistent

objects. In this step a truly coherent object model is created, since it allows the

introduction of another semantic layer in a higher abstraction level which works like

“functional glue” for the objects.

The packing technique is still a relatively immature technique (that requires

further work). It introduces a very light semantic cohesion among objects that can be

easily reversed in the design phase if needed. It can be used to make a more

comprehensive and understandable object model.

The aggregation imposes a strong semantic cohesion among objects that is more

difficult to reverse in the design phase. Aggregation should only be used when it is

explicitly assumed that the set of considered objects is affected by a design decision. It

is only used when there is a part of the system that constitutes a legacy sub-system, or

when the design has a pre-defined reference architecture that restricts the object model.

As an example, objects {O1.2.i}, {O1.3.2.i} and {O1.7.1.i} were all obtained

from different use cases, and are all packaged inside package {P1} user interface. In the

case study, no aggregation was used.

3.3.4. Step 4: object linkage

The fourth and final step of the 4SRS introduces the links in the object model.

These links are strongly based on the textual information of the use cases and the

information generated in micro-step 2i.

The textual descriptions of the use cases can give some hints on the links to

introduce in the object model namely if there is some care in relating use cases. As an

example, the textual description of the use case {U1.5} includes the next sentence “The

complaint status is updated via {1.4} fill complaint information. The user information

was recorded in the service via {1.2.5} send user information”. With this information,

24

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

the object model can include the links from object {O1.5.c} to object {O.1.4.d} and to

object {O1.2.5.d}. These links are a pre-design decision related to the sequence of the

execution of use cases.

The use case model can include other type of information that gives support to

the links. It is the case of UML relations between use cases which can be used in the use

case diagrams and express the relationships among them. As an example, use case

{U1.3} <<uses>> use case {U1.2}, which means that use case {U1.3} can execute use

case {U1.2}which justifies the link between {O1.2.5.d} and {O1.3.1.c}.

Using the information generated in micro-step 2i, links originally obtained from

the same use case must be included in the object model. As an example, in step 2i, use

case {U1.2.1} was classified as “di”, which implies that objects {O1.2.1.i} and

{O1.2.1.d} must be linked.

3.4. Tabular Transformation

To better help the designers with the usage of the 4SRS a tabular representation

was conceived to guide on the execution of the transformation steps. The table structure

(namely the contents to put in the rows and columns) is explained in this section

through 3 instances of tables (figure 3-5). Section 4 presents the full usage of the tables

in two examples, that better illustrate the utility of this tabular transformation. During

the execution of each step the information and decisions taken will be stored in the table

(figure 3). In the table there is one column for each step or micro-step and there is one

row for each use case.

The first column corresponds to the execution of Step 1 of the 4SRS. The first

row contains the reference and the name of the use case. The next three rows are

inserted for recording the information related to one control, one data and one interface

object for the corresponding use case. This set of 4 rows is repeated for each use case.

Figure 3 depicts 4 different rows for each of the 5 use cases exemplified (in total there

are 20 rows).

25

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Micro-Step 2i is represented in the second column. In the first row of each use

case, the classification of the use case is inserted. As depicted in the example (figure 3)

use case {U1.2.1} get list of complaint option was classified as “di”.

Figure 3. 4SRS tabular representation

The third column corresponds to the local elimination step (micro-step 2ii). The

objects that do not make sense in the problem domain must be eliminated, which is

signalled by putting an “ ” in the corresponding cell. The objects that are to be kept

(objects that make sense in the problem domain) are marked with a “–”. In figure 3, for

{U1.2.1} the control object must be eliminated, because it does not make sense in the

problem domain. So objects {O1.2.1.d} and {O1.2.1.i} are marked with “–” and object

{O1.2.1.c} is marked with “ ”.

26

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

The fourth column corresponds to micro-step 2iii. The objects that have not been

eliminated in the previous micro-step must receive a proper name. In the case study

(figure 3), for instance, object {O1.2.1.d} was named complaint option information.

The fifth column corresponds to micro-step 2iv. In this step each named object

in the previous micro-step has to be described. The description is inserted in the table as

depicted in the figure 4, using typically text written in a natural language.

Figure 4. Example of an object description

The next step is the most complex step of the technique. This micro-step is

divided in two columns: the “is represented by” column (sixth column) and the

“represents” column (seventh column).

In the “is represented by” column the reference of the object that represents the

object being analysed is stored. If the object that is being analysed is represented by

itself, then its “is represented by” column must refer to itself (by writing “itself”).

In the “represents” column, the references of the objects that the object in

analysis represents are stored.

As an example, in figure 5, we can see that object {O1.5.c} is represented by

itself, and that object {O1.5.d} is represented by object {O1.6.d}. However, object

{O1.6.d} is represented by object {O1.6.i} (and represents object {O1.5.d}) and object

{O1.6.i} is represented by itself and represents object {O1.6.d}.

27

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

In another example (figure 3) we can see that object {O1.2.1.i} is represented by

itself and represents objects {O1.2.2.i}, {O1.2.3.i}, {O1.2.4.i} and {O1.2.5.i}.

Figure 5. Micro-step 2v tabular execution

Micro-step 2vi is represented in the eighth column. The objects that are

represented by another object must be eliminated. These objects must be marked with

an “ ”. The objects that are represented by themselves remain in the model and should

be marked with an “–”. As an example, figure 5, shows that object {O1.5.c} is kept and

is marked with an “–”, while object {O1.5.d} is eliminated and is marked with an “ ”.

The ninth column corresponds to micro-step 2vii. The objects that have not been

eliminated and represent other objects must be renamed. Figure 5 shows that object

{O1.6.i} notification interface represents object {O1.6.d} and that it was renamed to

user notification interface.

The tenth column corresponds to step 3 - object packaging & aggregation. If an

object is packaged or aggregated, the reference of the corresponding package or

aggregation must be inserted in the corresponding cell of the tenth column. As depicted

in figure 5, object {O1.6.i} is included (i.e. packaged) into {P1}.

Step 4 is represented by the eleventh column. If an object has any links with

other objects, the references of the associated objects must be inserted in this column.

28

T R A N S F O R M I N G U S E C A S E S I N T O O B J E C T S

Figure 5 shows that object {O1.5.c} has links with objects {O1.6.i}, {O1.2.5.d} and

{O1.4.d}.

3.5. Conclusions

In this chapter, the new version of the Four-Step Rule Set is presented. This

technique is used to build object diagrams which accommodate the user requirements

acquired in previous development stages. It is a mechanism that helps software

engineers to transform user requirement models into the first logical architecture of the

system.

The improved version of the 4SRS technique tries to tackle the problem of the

subjective interpretation by dividing the elimination step in several micro-steps. It helps

also to solve the complexity of this step with this micro-step division.

To help the software engineers executing the 4SRS technique it a table where the

information of each step is stored was also presented. During the execution of the technique,

all decisions and the significant information is stored in the table. Having the information in

the table helps the software engineer since it allows the trace of the decisions taken and

stored in a structured way. In order words, it allows the software engineers to relate each

object with the use case that originates it. The software engineer after executing all steps

must build the object diagram and to accomplish that purpose he has only to use information

in the table.

29

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

30

 Chapter

4
Validation of the 4SRS

Summary
To illustrate the usage of the 4SRS technique, its
application to one case study is explained in this chapter.
The two different usages that are considered for analysis
are both taken from the USE-ME.GOV project (a new open
platform for mobile government applications responsible
for the deployment of a set of reusable service components
that facilitates user context-aware application): (1) the
USE-ME.GOV platform specification; and (2) the
USE-ME.GOV AVAccess service specification. The second
usage (service specification) corresponds to the recursive
application of the 4SRS technique to the first one (platform
specification).

4.1. Introduction

The USE-ME.GOV is a new open platform for mobile government applications,

supporting usability, openness, interoperability and scalability. It is responsible for the

deployment of a set of reusable service components that facilitates user context-aware

application development that allow citizen to perform a set of high-level government

related activities, allowing citizens to access the most appropriate services at any time,

anywhere. Those activities include spontaneous community interactions such as

reporting anomalies and making suggestions or getting thematic information on local

events, city information, healthcare or education.

The USE-ME.GOV’s AVAccess service is a refinement of a package obtained

in the object diagram of the USE-ME.GOV platform specification. The AVAccess

service is the platform component where all user requests are redirected when the

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

request does not specify any Service. This component is a single point of contact and

should redirect the user to the appropriate end-service. In most cases user starts the

interaction with the system by contacting this component. The AVAccess component

should serve as the single point for user data management, user profile management,

subscription management, as well as navigation among Services.

4.2. Platform Specification

The first usage of the 4SRS technique analysed in this document is the USE-

ME.GOV platform specification.

To capture the functional view of the system, according to the users perspective,

several use case diagrams were created. Figures 6 represent the top-level view of the

system. After identifying all the use cases of the system, the next step is to describe their

behaviour. Next, the description of the top-level use case {U0a.1} with informal text is

presented as an example. Similar descriptions were created for the other top-level use

cases.

{0a} Use_Me.GOV

{0a.1} send alert

{0a.2} receive anomaly notification

{0a.3} provide thematic information

{0a.4} user profile and e-service subscription

{0a.5} receive external information

User

Local Authority

External Provider

Figure 6. Level zero use case diagram of USE-ME.GOV

32

V A L I D A T I O N O F T H E 4 S R S

{0a.1} send alert: Send domain alert or disseminating domain information
to the users informing of domain related events and situations or
unexpected domain situations that are happening in the region. Only users
that have previously subscribed this e-service will receive the alert
messages (subscription made via {0a.4.} user profile and e-service
subscription). This is an asynchronous e-service. If technically possible,
the system acquires user context raw information (location, time, activity,
preferences, etc) from external context sources. Also, a contextualisation
process will assist the system in making the level of granularity of the
information adequate to the geographic location of the user context
(geographic location context, time context and activity context): For
example: ((#1) an alert of a dangerous hole in a street should only be send
to the users geographically located in that street; (#2) an alert of a street
obstructed should be send to the users geographically located in that
street or in any of the incident streets; (#3) an alert of weather storm
should be send to all the users geographically located in the region). The
information associated to the alert should always be updated and match
the user-specific request, excluding any extra information or undesired
advertisements. For those users that require personalised information, a
subscription must be made via {0a.4.} user profile and e-service
subscription.

Some use cases were refined due to their complexity. The refinements are next

presented and discussed.

{0a.1} send alert

{0a.1.1} request external information

{0a.1.2} process user context

{0a.1.3} disseminate information

{0a.1.4} adjust information presentation

{0a.1.5} register alert service

User

External Provider

Local Authority <<uses>>

<<uses>>

Figure 7. Level one use case diagram of send alert use case

{0a.1.1} request external information: The system explicitly requests for
appropriate domain information, from the known external content

33

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

providers (registered via {0a.1.5} register alert service, for example),
based on user context (location, time and activity), acquired and
processed via {0a.1.2} process user context, and/or based on user profile,
processed via {0a.4} user profile and e-service subscription.

{0a.1.5} register alert service: the system registers domain alert services.
When a local authority wants to offer an alert service, it registers it in the
system providing the alert conditions and source of information. This
registration will allow the execution of the following use cases: {0a.1.3}
disseminate information and {0a.1.1} request external information.

After defining the use cases, it is now time to start the model transformations. In this

case study the model transformations of the 4SRS were applied to the 2nd level of the use

case refinement. So, the application of the first step is applicable to all the 22 2nd level use

cases (5 from {U0a.1}, 7 from {U0a.2}, 8 from {U0a.3} and 2 from {U0a.4}) and to use

case for {U0a.5} that has no refinements. This first step gives origin to 69 objects, since the

number of use cases to considerer is 23. Part of the tabular information for this step is

presented in figure 8.

Figure 8. Step 1 execution – object creation for platform specification

After creating a set of 3 objects the next step is to execute step 2 - object elimination.

As explained before, this step is divided into several micro-steps. The first micro-step

(micro-step 2i) classifies the use cases. So for each considered use case, we have to classify it

34

V A L I D A T I O N O F T H E 4 S R S

with one of the 8 patterns (Ø, i, c, d, ic, di, cd, icd). To illustrate this micro-step, figure 9

shows one example of classification to use case {U0a1.5}. This use case was classified has

being of the type “id” because to represent it only the interface and the data object are

needed. The same reasoning was taken for the other use cases.

Figure 9. Micro-step 2i execution for platform specification

After classifying all the use cases, we must proceed to micro-step 2ii, which

eliminates, within the 3 objects for each use case, those that are not considered by the

classification of the use case. For the example we have to check, for each of the 69 objects

created in step 1, if it makes sense in the problem domain, i.e., check if the object is needed

taking into account the problem domain. In this case study we decided to eliminate 13

objects, because they do not make sense. As an example of this elimination let us look to the

objects of use case {U0a1.5}. In this use case the control object ({O0a.1.5.c}) does not make

sense. This decision was taken analyzing the textual descriptions. From the textual

description of use case {U0a.1.5} we can extract the information that this use case is only

responsible for allowing the registration of services by the local authority (this corresponds

to the interface object) and the maintenance of the data repository of registered services (this

corresponds to the data object). So, to this use case only objects {O0a.1.i} and {Oa0.1.5.d}

have been kept. In figure 10 we can see that the object that we decided to eliminate is

marked with an “ ” and the objects that we decide to keep are marked with an “–”. Similar

decisions were taken to the remaining objects.

35

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Figure 10. Micro-step 2ii execution for platform specification

Now we only have 56 objects, which are the ones that apparently make sense in the

problem domain. For all of these objects we have to give a name (execution of the micro-

step 2iii). Taking the example of objects {O0a.1.5.i} and {O0a.1.5.d} we named these

objects as “registered alert services” and “alert service registration”, respectively.

Figure 11 shows the table filled with this information.

Figure 11. Micro-step 2iii execution for platform specification

The same objects that were named must now be described (micro-step 2iv). Using

again objects {O0a.1.5.d} and {O0a.1.5.i} as an example, we must present their descriptions.

{O0a.1.5d} registered alert services: This object stores the attributes
about the services registered in the system (by “service” in this context we
refer to the application functionalities that the system will offer to its
users). This object must store the attributes that will enable service
discovery, service aggregation, service automatic activation (when
applied) and service access. A proper service description mechanism
should be introduced. NFR1: This mechanism should be extensible,
manageable, self explaining and semantically uniform. For service
automatic activation purposes, this object must store information about
internal and external alert conditions. This object must store information

36

V A L I D A T I O N O F T H E 4 S R S

about the dependencies between registered services and external content
providers. For context-aware service discovery, this object must store
attributes defining the service context of use. NFR2: For scalability
constraints, this must be a distributed object, mainly in a regional,
national or international setting.

{O0a.1.5i} alert service registration: This object defines the system
interface for service registration, deregistration, dynamic configuration
and service attributes query. NFR1: For security constraints this interface
must only be provided to the system components (not to the users).

Figure 12 shows the description for objects {O0a.1.5.d} and {O0a.1.5.i}. For

readability purposes only a small fraction of the text is shown.

Figure 12. Micro-step 2iv execution for platform specification

The next micro-step to execute is 2v (object representation) which is considered as

the most critical one. In this case study after analysing the requirements it was decided that

several objects can be represented by others. For example object {O0a.1.5.d} registered alert

services can represent a system-level entity in the object model that is able to accommodate

its own requirements, and it was decided that this object must be represented by itself. So, in

the table (figure 13) the cell “is represented by” for object {O0a.1.5.d} is marked with

“itself”.

Figure 13. Micro-step 2v execution for platform specification

37

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Carrying on with the object representation step, it was decided that object

{O0a.2.1.d} registered anomaly services was represented by object {O0a.1.5.d}. This means

that object {O0a.1.5.d} includes not only its own system requirements, but also the

requirements of object {O0a.2.1.d}.In this case, we need to fill the cell “is represented by”

for object {O0a.2.1.d} with “{O0a.1.5.d}” (figure 14) and to make the table complete and

traceable fill also the cell “represents” for object {O0a.1.5.d} with “{O0a.2.1.d}”

(figure 15).

Figure 14. Micro-step 2v execution for platform specification

In figure 15 we can also see in the “represents” cell for object {O0a.1.5.d} the

reference to object {O0a.3.1.d}, since this object, like {O0a.2.1.d}, is represented by

{O0a1.5.d}.

Figure 15. Micro-step 2v execution for platform specification

We have here an example of elimination of functional redundancy, since it

seems more correct and simpler from an architecture point of view to justify and support

the existence of a unique database for all kinds of registered services.

After finding out all the object representations we must execute the global

eliminations. This global elimination is executed based on the results of the last step. The

38

V A L I D A T I O N O F T H E 4 S R S

objects that are represented by other object can be easily eliminated. The objects to be

eliminated are marked in the table with an “ ”. The objects that are represented by

themselves must be kept and are marked with an “–”. In figure 16, the execution of this step

to the objects presented in the last step({O0a.1.5.d}, {O0a.2.1.d}) is shown.

Figure 16. Micro-step 2vi execution for platform specification

The next step to execute is the object renaming. This step is only applicable to the

objects that represent other objects. In the examples that we have used to illustrate this

technique the object that can be considered for renaming is object {O0a.1.5.d}. The chosen

name was registered services, since this object now represents the objects “registered alert

services”, “register anomaly services” and “registered thematic services”. In the table, this

step inserts into the respective cell the new name (figure 17).

Figure 17. Micro-step 2vii execution for platform specification

39

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

All the micro-steps of the object elimination were executed, so we can proceed to

step 3 (object packaging & aggregation). In this case study no aggregation was used, because

there was no reference architecture, nor any kind of legacy sub-system. As an example of

packaging, objects {O0a.4.1.d}, {O0a.2.2.d} and {O0a.3.2.d}, all obtained from different

use cases, are kept together in package {P7} user data. Transposing this information to the

tabular transformation we have to insert in the line of the object the reference of the

correspondent package (figure 18, to turn the image readable only the objects of the package

are in the table image).

Figure 18. Step 3 execution for platform specification

The final step of the 4SRS is the object linkage. In the case study, use case

{U0a.1.5} includes in its textual description the next information “This registration will

allow the execution of the following use cases: {U0a.1.3} disseminate information and

{U0a.1.1} request external information”. This sentence gives us enough information to

include links from object {O0a.1.5.d} to objects {O0a.1.1.d}, {O0a.1.1.i} and

{O0a.1.3.c}. So, in the table, the column for step 4, includes references to the linked

objects, as figure 19 illustrates.

40

V A L I D A T I O N O F T H E 4 S R S

Figure 19. Step 4 execution for platform specification

Similarly, in the textual description of use case {Ua0.5} the sentence “These

external content providers must exist in some service register (service register is made

in {U0a.1.5} register alert service…” gives hints to include a link between objects

{O0a.1.5} and objects {O0a.5.i.1} and {O0a.5.i.2}.

Figure 20. Step 4 execution for platform specification

The textual description of use case {U0a.2.5} contains the next sentence: “the

system searches, from the known set of anomaly services registered (via {U0a.2.1}

register anomaly service…”. This sentence provides information that allows the

inclusion of the links between objects {Oa.2.5.c} and {O0a.2.1.d}. However object

{O0a.2.1.d} was eliminated, because it is represented by object {O0a.1.5.d}, so the link

must be between the objects {Oa.2.5.c} and {O0a.1.5.d}.

41

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Figure 21. Step 4 execution for platform specification

Concerning the information of step 2i, links between objects obtained form the same

use case must be added. As an example use case {U0a.1.5} was classified as being of type

“id”, this means that objects {O0a.1.5.d} and {O0a.1.5.i} must be linked.

Figure 22. Step 4 execution for platform specification

After completing the 4SRS execution for this case study, we can create the object

diagram using the information in the table.

The diagram in figure 23 represents the USE-ME.GOV object diagram, and it

identifies the high-level objects/components of the system and the relationships among

them. Its purpose is to direct attention at an appropriate decomposition of the system

without delving into details.

42

V A L I D A T I O N O F T H E 4 S R S

Figure 23. USE-ME.GOV Raw Object Diagram

4.3. Recursive Refinement

An object diagram can be collapsed, i.e., some details of the object diagram can

be hidden, to transform the diagram readable. The collapsed object diagram (figure 24)

43

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

is obtained from the raw object diagram (figure 23) by hiding the details of the

packages. Therefore, the links appear at a higher level of abstraction and the resulting

object diagram is easier to read (although it has less detail).

Figure 24. USE-ME.GOV Collapsed Object Diagram

Figure 25. USE-ME.GOV Filtered Object Diagram

The diagram presented in figure 25 is a filtered object diagram. The filtered

diagram was obtained from the previous one by considering the package {P5} user

interface as one sub-system to be design. Figure 26 describes the filtering process

44

V A L I D A T I O N O F T H E 4 S R S

executed over the collapsed diagram (figure 24) to obtain a {P5}-centric filtered object

diagram. During this filtering process, all the entities that are not directly connected to

package {P5} must be eliminated from the result filtered object diagram.

Figure 26. Execution of the filtering process

Package {P5} can be regarded as the system to be designed. The recursive use of the

4SRS suggests the construction of a new use case diagram which captures the user

requirements of the sub-system to refine.

The use case diagram from figure 27 was built to support the refinement of package

{P5} to get the raw object diagram of the USE-ME.GOV’s AVAccess service. All the actors

in this use case diagram are all elements connected to package {P5} in figure 25. The object

{Oa0.1.3.c} in the USE-ME.GOV Filtered Object Diagram did not give origin to any actor,

because in the package {P5} refinement the functionality associated to this object was not

considered. The user actor is present in this use case because it was already connected to the

use cases that gave origin to the objects inside package {P5} in the process explained in

45

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

section 4.2. The actors in figure 27 must be seen as external components (sub-system) from

the point of view of the AVAccess service. The actor {O0a.3.7.c} was specialized into two

different actors: Application System Context Aggregation Service and Application System

Service Repository.

Figure 27. Use case Diagram: USE-ME.GOV’s AVAccess service

Next as examples, the textual descriptions of two use cases are presented.

{0.1} Register new user: the user provides (through communication
subsystem) user personal information to the AVAccess service. Its
personal information consists of userName, password, and, optionally,
user profile information. The AVAccess service parses user personal
information and sends it to subsystem User. The AVAccess service sends
back the information on success/no success of this operation. The
information sent to the user is formatted by the subsystem Presentation.
The system must know terminal model information.

{0.5} Subscribe to service: the user provides (through communication
subsystem) service subscription information to the AVAccess service: the
user gets (through communication system) activities defined in AVAccess
service; The user gets activityID, activityName and activityDescription;
The information on activities sent to the user (through communication
subsystem) is formatted by the subsystem Presentation; The user provides
(through communication subsystem) the activityID to the AVAccess
service; The AVAccess service computes the Service type serviceType that
match the chosen activity; The AVAccess service sends back the complete
list of Services (information on name, description, cost and ServiceID
(URI)) registered in the service repository The user must be authenticated.
Service subscription information provided to AVAccess service consists of
a list of serviceID. The AVAccess service sends back the information on
success/no success of this operation. The information sent to the user
(through communication subsystem) is formatted by the subsystem
Presentation. The system must know terminal model information.

46

V A L I D A T I O N O F T H E 4 S R S

4.4. Service Specification

The requirements of the USE-ME.GOV’s AVAccess service are now completely

defined and the next stage is to apply the 4SRS to this system.

The first step, the object creation, gives origin to 30 objects. In this case study,

there is no refinement of the use cases, so this step is applicable to all 10 use cases.

Figure 28 presents 4 different rows for use cases {U0.1} and {U0.5}.

Figure 28. Execution of step 1- object creation for Service specification

The 2nd step of the 4SRS deals with the object elimination. The first micro-step is the

use case classification.

In micro-step 2i, the designer classifies each use case. Use case {U0.1} was

classified as type “i” which means that only the interface object will be kept, and {U0.5} was

classified as being of type “icd” which means that all objects remain in the model (figure 29).

47

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Figure 29. Execution of micro-step 2i – use case classification for Service specification

The next step is local elimination. Objects {O0.1.c} and {O0.1.d} do not make sense

in the problem domain, as can be seen in the textual descriptions. In figure 30, {U0.1} got

two of its originated objects eliminated (only object {O0.1.i} remains in the model), because

they do not make sense in the problem domain. {U0.1} is only responsible fot sending the

new user information from the user to other sub-systems and vice-versa, which means that

data and control dimensions are not within the scope of this use case. The objects originated

from the use case {U0.5} were all kept, since they all make sense in the problem domain.

Figure 30. Execution of micro-step 2ii – local elimination for Service specification

In micro-step 2iii, the objects that have not been eliminated from the previous step

must receive a proper name that reflects both the use case from which it is originated and the

specific role of the object taking into account the main component. Object {O0.1.i} was

named “register user interface”, and objects {O0.5.c}, {O0.5.d} and {O0.5.i} were named,

48

V A L I D A T I O N O F T H E 4 S R S

respectively, “subscribe service”, “defined activities” and “subscribe service interface”

(figure 31).

Figure 31. Execution of micro-step 2iii – object naming for Service specification

Each named object resulting from the previous micro-step must be also described, so

taht the system requirements they represent become included in the table. The following

objects descriptions were obtained and correspond to objects {O0.1.i}, {O0.5.c}, {O0.5.d}

and {O0.5.i} (figure32).

{O0.1.i} register user interface: allows the parse of the user personal
information and sends it to the destination subsystem, and sends back the
information on success/no success of the request.

{O0.5.c} subscribe service: will process the request Subscribe service.
Will request to the user all the additional information needed to perform
the request of the user.

{O0.5.d} defined activities: interface with the data of the available
activities in the system (could be a XML file).

{O0.5.i} subscribe service interface: sends the subscribe service
information to the destination subsystem, and sends back the information
on success/no success of the request

49

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Figure 32. Execution of micro-step 2iv – object description for Service specification

The next micro-step is 2v object representation. This is the most critical micro-step

of the 4SRS. In figure 33, {O0.1.i} does not delegate in other object its representation (it will

be represented by itself) and it, additionally, represents a considerable list of other objects

(each one of these objects refers to {O0.1.i} in its “is represented by” cell).

Figure 33. Execution of micro-step 2v – object representation for Service specification

After carrying out the object representation micro-step, the global elimination micro-

step is executed. This micro-step is based on the results of the previous one. The objects that

50

V A L I D A T I O N O F T H E 4 S R S

are represented by other ones must be eliminated. Figure 34 shows, for instance, the global

elimination of {O0.5.i}.

Figure 34. Execution of micro-step 2vi – global elimination for Service specification

Next, the objects that have not been eliminated from the previous micro-step and that

represent other objects must be renamed. The new name for an object must reflect the system

requirements that it represents. In the case study, objects {O0.1.i} and {O0.5.d} are renamed

to “users management interface”, “available activities”, respectively (figure 35).

51

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

Figure 35. Execution of micro-step 2vii – object renaming for Service specification

In this case study neither aggregations nor packages were used, so the corresponding

column in the table remains empty. No package is used because only 4 objects “survive” to

the transformation, and there was no evident advantage in treaty some of these objects as a

package.

The execution of step 4 is presented in figure 36. For the case study, the links were

only derived from the use case classification executed in step 1. The use case {U0.5} was

classified as being of type “icd” suggesting the existence of three (or at least two) internal

links (relative to the objects generated from the same use case). However, the link between

the interface and the data object was not allowed because, as can be seen in the textual

description, it is impossible the access to the data by the interface. Additionally, the same

transformation made before impose some constrictions to the object connectivity exercise. In

particular in micro-step 2v it was decided that {O0.5.i} is represented by {O0.1.i}; and in

micro-step 2vi {O0.5.i} was eliminated. Those decisions imply the following links (figure

36):

(1) between {O0.5.c} and {O05.d}, suggested by the “icd” classification;

52

V A L I D A T I O N O F T H E 4 S R S

(2) between {O0.5.c} and {O0.1.i}, caused by the transitivity of the association

between {O0.5.c} and {O0.5.i} through the delegation executed by {O0.5.i} in

{O0.1.i}.

Figure 36. Execution of step 4 – object linkage for Service specification

After executing all the steps, the next action is the translation of the table information

to the object diagram. Figure 37 describes the raw object diagram for the AVAccess service.

This diagram was obtained from the recursive application of the 4SRS technique over the

global logical architecture.

Figure 37. USE-ME.GOV’s AVAccess service object diagram

53

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

4.5. Conclusions

The two cases analysed in this thesis show the application of the 4SRS technique in a

real software engineering problem. It was illustrated that this technique is helpful since it

ensures the generation of a seamless specification of the architecture requirements.

It has also illustrated that this technique can be used to generate the architecture

requirements of a component that was obtained in a previous 4SRS generated object

diagram.

In both case studies the defined table, created to store the information and the

decisions of all steps, confirm that it is not only useful but also crucial for the success of the

project to keep the information updated and a trace of all decisions.

54

Chapter

5

Conclusions
Summary
The conclusions taken during this thesis are presented in
this chapter.
It is also presented the future work that will be done in
order to improve the technique presented here.

5.1. Results Analysis

In this thesis an extended version of the 4SRS technique was presented, whose aim is

to help the software engineer to seamlessly transform the user requirements of a

component-based system into its logical architecture of the system that captures de user

requirements.

This technique assumes that the user requirements are modelled by UML use case

diagrams (and the corresponding descriptions of the use cases) and the first architecture of

the system must be modelled by UML object diagrams.

Therefore, the 4SRS technique is a model-based transformation that is based on the

mapping of UML use cases into UML object diagrams. However other diagrams, like UML

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

sequence, activity and state diagrams can be also used, in order to help the software engineer

to better take his decisions. In this thesis, the usage of other models is not considered.

To give support to the execution of the 4SRS it was defined a table to store all the

decisions taken during the transformation task. When apply the 4SRS to a use requirement

model the table will be filled with the information and decision taken at each step. The

information of the table after the execution of all steps gives the necessary information to

generate the object diagram of the system that represents its structure.

The 4SRS can also be used iteratively, i.e., we can apply the 4SRS to a component of

the system’s architecture, previously obtained by the usage of the 4SRS. The recursively

usage of that technique proposes the construction of a new use case diagram that captures the

user requirements of a given sub-system. Then, the 4SRS will be applied to the new use case

model to obtain the architectural model of the sub-system.

The 4SRS technique highlights the fact that the continuity of models is an important

issue. It also shows the importance of having a well defined process to transform

requirements models.

The analysis of a real and complex case study allowed us to demonstrate that the

4SRS technique is useful for obtaining the architecture of a pervasive application from its

requirements model.

5.2. Future Work

As future work, it is planned to define some rules to allow the direct mapping of use

cases into objects without the need to unfold the use cases hierarchy. It would allow the

maintenance of the hierarchical structure in the object model analogous to the hierarchical

structure existent in the use case model refinement tree.

The 4SRS will be extended in order to enable the transformation of objects diagrams

into class diagrams.

56

C O N C L U S I O N S

It is also planned the definition of a mechanism to automate the 4SRS technique

based on the defined tabular transformation and to support it within a IDE tool like GME

(The Generic Modeling Environment http://www.isis.vanderbilt.edu/Projects/gme/) or

Eclipse (http://www.eclipse.org/).

57

http://www.isis.vanderbilt.edu/Projects/gme/
http://www.eclipse.org/

M O D E L T R A N S F O R M A T I O N S F O R S O F T W A R E A R C H I T E C T U R E S

58

Bibliography
[1] Catalog of OMG Modeling and Metadata Specifications.

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML.

[2] Jamda: The Java Model Driven Architecture 0.2. May 2003

http://sourceforge.net/projects/jamda/.

[3] J. Ø. Aagedal and I. Solheim. New Roles in Model-Driven Development. in Second

European Workshop on Model Driven Architecture (MDA) with an emphasis on

Methodologies and Transformations, September, 2004. Canterbury, England.

[4] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles.

Towards a Better Understanding of Context and Context-Awareness. in In the

Workshop on The What, Who, Where, When, and How of Context-Awareness, as part

of the 2000 Conference on Human Factors in Computing Systems (CHI 2000), April,

2000. The Hague, The Netherlands.

[5] M. Alanen, J. Lilius, I. Porres and D. Truscan. Model Driven Engineering: A

Position Paper. in 1st Int. Workshop on Model-Based Methodologies for Pervasive and

Embedded Software (MOMPES’04), June, 2004. Hamilton, Canada, p:25-29.

[6] R.-J. Back, L. Petre and I. P. Paltor. Analysing UML Use Cases as Contracts. in 2nd

Int Conf. on the Unified Modeling Language (UML'99), Oct, 1999, p:518-533,

Springer.

59

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://sourceforge.net/projects/jamda/

[7] G. Banavar and A. Bernstein, Software Infrastructure and Design Challenges for

Ubiquitous Computing Applications. Communications of the ACM. 45(12): p. 92-96,

2002.

[8] L. B. Becker, C. E. Pereira, O. P. Dias, I. M. Teixeira and J. P. Teixeira. MOSYS: A

Methodology for Automatic Object Identification from System Specification. in 3rd

IEEE Int. Symp. on Object-Oriented Real-Time Distributed Computing (ISORC 2000),

March, 2000, p:198-201, IEEE CS Press.

[9] U.-M. G. Consortium. Usability-Driven Open Platform for Mobile Government. in,

2004

[10] M. Elkoutbi and R. K. Keller. User Interface Prototyping based on UML Scenarios

and High-level Petri Nets. in In Application and Theory of Petri Nets 2000 (Proc. of

21st Intl. Conf. on ATPN), June, 2000. Aarhus, Denmark, p:166-186, Springer.

[11] J. M. Fernandes and R. J. Machado. From Use Cases to Objects: An Industrial

Information Systems Case Study Analysis. in 7th Int. Conf. on Object-Oriented

Information Systems (OOIS '01), Aug., 2001, p:319-28, Springer-Verlag.

[12] J. M. Fernandes and R. J. Machado. System-Level Object-Orientation in the

Specification and Validation of Embedded Systems. in 14th Symp. on Integrated

Circuits and System Design (SBCCI '01), September, 2001, p: 8-13, IEEE CS Press.

[13] J. M. Fernandes, R. J. Machado and H. D. Santos. Modeling Industrial Embedded

Systems with UML. in 8th ACM/IEEE/IFIP Int. Workshop on Hardware/Software

Codesign (CODES'2000), May, 2000. San Diego, CA, USA, p:18-22, ACM Press.

[14] Z. Hu and S. Shatz. Mapping UML Diagrams to a Petri Net Notation to Exploit

Tool Support for System Simulation. in Software Engineering and Knowledge

Engineering (SEKE’04), 2004, p:213-219.

60

[15] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development

Process. 1999: Addison-Wesley.

[16] I. Jacobson, M. Christerson, P. Jonsson and G. Övergaard, Object-Oriented

Software Engineering: A Use Case Driven Approach. 1992: Addison-Wesley.

[17] M. T. Kimour and D. Meslati, Deriving objects from use cases in real-time

embedded systems. Information and Software Technology. 47(8): p. 533-541, 2005.

[18] A. Kleppe and J. Warmer. Do MDA Transformations Preserve Meaning? An

investigation into preserving semantics. in Metamodelling for MDA First International

Workshop, November, 2003. York, UK.

[19] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven

Architecture: Practice and Promise. 2003: Addison-Wesley.

[20] A. v. Lamsweerde and L. Willemet, Inferring Declarative Requirements

Specifications from Operational Scenarios. IEEE Transactions on Software

Engineering. 24(12): p. 1089-1114, 1998.

[21] Y. Liang, From Use Cases to Classes: a Way of Building Object Model with UML.

Information and Software Technology. 45: p. 83-93, 2003.

[22] J. Lilius, D. Truscan and J. M. Fernandes, Integration of DFDs into a UML-based

Model-Driven Engineering Approach. Software and Systems Modeling (SoSyM), 2005.

[23] OMG. MDA Guide Version 1.0.1, June, 2003.

[24] OMG. XML Metadata Interchange Specification 1.2, OMG Document: formal/02-

01-01. in, January 2002

61

[25] R. K. Runde and K. Stolen, What is Model Driven Architecture? Research Report

304 ISBN 82-7368-256-0 ISNN 0806-3036, March, 2003

[26] M. Saeki and H. Kaiya. Transformation Based Approach for Weaving Use Case

Models in Aspect-Oriented Requirements Analysis. in 4th AOSD Modeling With UML

Workshop, 2003.

[27] M. Satyanarayanan, Pervasive computing: Vision and challenges. IEEE Personal

Communications. 8(4): p. 10-17, 2001.

[28] B. N. Schilit, N. Adams and R. Want. Context-Aware Computing Applications. in

Workshop on Mobile Computing Systems and Applications, 1994. Santa Cruz, CA,

U.S, IEEE Computer Society.

[29] S. Schönberger, R. K. Keller and I. Khriss, Algorithmic Support for Model

Transformation in Object-Oriented Software Development. Concurrency and

Computation: Practice and Experience. 13(5): p. 351-383, 2001.

[30] S. Sendall, G. Perrouin, N. Guelfi and O. Biberstein. Supporting Model-to-Model

Transformations: the VMT approach. in Workshop Model Driven Architecture:

Foundations and Applications, Technical Report TR-CTIT-03-27. Univ. of Twente,

2003

[31] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha and D. Manuel, Supporting

Scenario-Based Requirements Engineering. IEEE Transactions on Software

Engineering. 24(12): p. 1072-1088, 1998.

[32] D. Truscan, J. M. Fernandes and J. Lilius. Tool Support for DFD-UML Model-

based Transformations. in 11th Annual IEEE International Conference and Workshop

on the Engineering of Computer Based Systems (ECBS 2004), May, 2004. Brno, Czech

Republic, p:388-397, EEE CS Press.

62

[33] M. Weiser, The Computer for the 21st Century. Scientific American: p. 66-75,

1991.

63

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Chapter
	
	Introduction
	Chapter
	
	Model-Based Transformations
	Chapter
	
	Transforming Use Cases into Objects
	Chapter
	
	Validation of the 4SRS
	Chapter
	
	Conclusions
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

