
  

Colored Petri Nets 
in the Animation of UML Models 

for Requirements Validation  

 

Sérgio António Real de Oliveira 

 

 

 
Dissertação submetida à Universidade do Minho 

 para obtenção do grau de Mestre em Sistemas de Informação, 
 elaborada sob a orientação científica dos Professores: 

 
Ricardo Jorge Silvério de Magalhães Machado 

e 

Guilherme Augusto Borges Pereira 
 
 
 
 
 
 
 
 

Departamento de Sistemas de Informação 
Escola de Engenharia 

Universidade do Minho 
Guimarães, Julho de 2006 



  ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The reproduction of this thesis, in its whole, is authorized only for research purposes, upon written 
declaration from the interested part, which compromises itself to do so. 

 
 
 

É autorizada a reprodução integral desta tese apenas para efeitos de investigação, mediante declaração 
escrita do interessado, que a tal se compromete. 

 



  

ESCOLA DE ENGENHARIA DA UNIVERSIDADE DO MINHO 
DEPARTAMENTO DE SISTEMAS DE INFORMAÇÃO 

 
SEMAG -  SOFTWARE ENGINEERING AND MANAGEMENT RESEARCH GROUP 

CENTRO DE INVESTIGAÇÃO ALGORITMI 

Colored Petri Nets 
in the Animation of UML Models 

for Requirements Validation 

Sérgio António Real de Oliveira 
Licenciado em Engenharia Sistemas e Informática pela 

ESCOLA DE ENGENHARIA DA UNIVERSIDADE DO MINHO, 1993 
 
 
 

 

Dissertação submetida à Universidade do Minho 
para obtenção do Grau Académico de Mestre em Sistemas de Informação, 

elaborada sob a orientação científica dos Professores: 
 

Ricardo Jorge Silvério de Magalhães Machado 
Professor Auxiliar do Departamento de Sistemas de Informação 

da ESCOLA DE ENGENHARIA DA UNIVERSIDADE DO MINHO 

e 

Guilherme Augusto Borges Pereira 
Professor Auxiliar do Departamento de Produção e Sistemas 

da ESCOLA DE ENGENHARIA DA UNIVERSIDADE DO MINHO 

 
 
 
 
 
 

Guimarães, Julho de 2006 



  iv 

 



  v 

Acknowledgements 

After many years working outside the academic world, having become one of the 

many victims of the “collateral effects” of the so-called “country-on-its-knees”1 eco-

nomical situation, was all that I needed for deciding to give a chance to an ever seduc-

ing idea that a steady job managed to keep in a lethargic state for too long: to try-out my 

capabilities for the work as a researcher. Having been pushed by those circumstances, 

and being rather out of the usual age for such an experiment, this was not only a de-

manding task in what concerns to perseverance, but also threatening to my 

self-confidence in the eventuality of failure. However, the more than expectable support 

I received from various persons helped me to overcome all those fears. I am very grate-

ful to all those persons, some of which I must in particular refer. 

The first persons to whom I want to express my gratitude are my supervisors – Prof. 

Ricardo Machado and Prof. Guilherme Pereira – for their constant availability, for their 

wise orientation in maintaining my work within high scientific standards, for preventing 

me from deriving to unrealistic goals, and for their flexibility to accept the adaptation of 

those goals to my personal preferences, all that done in the most friendly cordiality. I 

must express a particular reference to Prof. Ricardo Machado, for his constant encour-

agement in many ways, as was the case of conceding me the privilege of choosing me to 

present our paper, the first one in which I participated, in the CPN05 Workshop, at the 

University of Aarhus, Denmark. 

For their determinant contribution to the development of the uPAIN animation pro-

totype, I must thank Marco Couto and Patrícia Pinto, also co-authors of the paper pre-

sented in the CPN05 Workshop, with whom I have shared my working hours, as lab 

mates, in a most friendly good disposition. 

                                                 
1 A free translation for the Portuguese expression “país de tanga”. 



 

 vi 

I also thank Kristian Bisgaard Lassen, of the Department of Computer Science of 

the University of Aarhus, Denmark, for sharing with us know-how and techniques on 

the use of CPN-Tools and the BRITNEY animation tool, without which the uPAIN 

animation prototype would not have reached the quality that it has. My gratitude must 

also be expressed to Prof. Kurt Jensen, Prof. Søren Christensen and Prof. Jens Bæk Jør-

gensen of the Department of Computer Science of the University of Aarhus, whose in-

terest in our application of those techniques not only made possible the participation of 

Kristian, but also functioned as an important stimulus. 

I thank Prof. João Miguel Fernandes, from the Department of Informatics of the 

Engineering School of the University of Minho, for one opportune strategic advice he 

gave me, and for his good will in conceding me free access to his lab. 

I also want to thank Prof. João Álvaro Carvalho and Prof. Luís Amaral, respec-

tively former and present directors of the Department of Information Systems of the 

Engineering School of the University of Minho, for their determinant engagement in 

providing a particular environment that stimulates a special spirit for the research work 

at the department. Another expression of my recognition goes to the director of the MSc 

course in Information Systems, Prof. Manuel Filipe Santos, for his commitment in giv-

ing always the best support to the MSc students. 

Special thanks to my wife Elisabete, my daughter Catarina and my son Miguel for 

their understanding and love, and for being so fantastic. Special thanks also to Zé Pedro, 

Arlindo and Zé Luís, for their friendship, enthusiastic support, and the indispensable 

beer meetings. They all provided me the strength to overcome all weaknesses. 

Last, but not least, I thank my colleagues Miguel Ferreira, Cesar Ávila, Óscar 

Ribeiro and Paula Monteiro, for their interest, and their availability to discuss ideas and 

helping in several ways. 



  vii 

Abstract 

Functional requirements must be validated by the client of the software project 

(managers, users and stakeholders in general). However, requirements validation is a 

critical task in any engineering project. Presenting static requirements models to the 

stakeholders is not sufficient, since it does not allow stakeholders, who do not have 

computer science background, to discover all the interdependencies between the elicited 

requirements. With the mere presentation and explanation of UML (Unified Modelling 

Language) requirements models, even the most simple and intuitive ones, it is not easy 

for the software engineer to be confident on the stakeholders’ requirements validation. 

This thesis describes an approach, based on the construction of executable interactive 

animation prototypes, to support the validation of functional requirements, where the 

system to be built must explicitly support the interaction among people within a perva-

sive cooperative workflow execution. A demonstration case from a real project is used 

to illustrate the proposed approach. 



 

 viii 

 



  ix 

Redes de Petri Coloridas 
na Animação de Modelos UML 
para Validação de Requisitos 

Resumo 

Os requisitos funcionais de software têm de ser validados pelo cliente do projecto 

de desenvolvimento (gestores, utilizadores e todas as partes interessadas - stakeholders - 

em geral). Mas a validação de requisitos é uma tarefa crítica em qualquer projecto de 

engenharia. A mera apresentação de modelos estáticos aos stakeholders não é suficiente, 

porque os stakeholders sem formação em ciências da computação não são capazes de 

descobrir todas as interdependências entre os requisitos, que estão implícitas nesses 

modelos. Recorrendo apenas à apresentação e explicação de modelos de requisitos em 

UML (Unified Modelling Language), mesmo os mais simples e intuitivos, não é fácil ao 

engenheiro de software sentir confiança na validação dos requisitos pelos stakeholders. 

Esta dissertação descreve uma abordagem, baseada na construção de protótipos execu-

táveis de animação interactiva, para suportar a validação de requisitos funcionais de um 

sistema, a construir, que suporte explicitamente a interacção entre pessoas na execução 

de um processo cooperativo pervasive (intrusivo). Um caso de demonstração de um pro-

jecto real é usado para ilustrar a abordagem proposta. 

 



 

 x 



  xi 

 
 
 
 
 
 
 
 
 

To my mother Maria 
my wife Elisabete 

my daughter Catarina 
and my son Miguel 



 

 xii 

 
 



  xiii 

Table of Contents 

Acknowledgements ......................................................................................................... v 

Abstract..........................................................................................................................vii 

Resumo............................................................................................................................ ix 

Table of Contents .........................................................................................................xiii 

Index of Figures ............................................................................................................ xv 

Chapter 1  Introduction ................................................................................................. 1 

1.1  Workflow perspective.......................................................................................... 2 

1.2  SWEBOK perspective ......................................................................................... 6 

1.3  Contribution of this dissertation .......................................................................... 7 

1.4  uPAIN demonstration case .................................................................................. 8 

1.5  Structure of this document ................................................................................... 9 

Chapter 2  Petri Nets Concepts ................................................................................... 11 

2.1  Petri nets structure ............................................................................................. 11 

2.1.1  Some structural particularities .................................................................. 15 

2.2  Petri nets behavior ............................................................................................. 15 

2.3  Petri nets and Linear Algebra ............................................................................ 17 

2.4  Analyzing Petri nets........................................................................................... 19 

2.4.1  Conflict and confusion.............................................................................. 19 

2.4.2  Reachability and coverability ................................................................... 20 

2.4.3  Boundness and safeness............................................................................ 22 

2.4.4  Conservation ............................................................................................. 22 

2.4.5  Net invariants............................................................................................ 24 



 

 xiv 

2.4.6  Deadlock and liveness...............................................................................26 

2.4.7  Reachability and coverability trees and graphs.........................................27 

2.4.8  Reduction and decomposition techniques .................................................32 

2.5  Petri net extensions and high-level Petri nets.....................................................32 

2.5.1  Continuous and hybrid Petri nets ..............................................................33 

2.5.2  Inhibitor and enabling arcs........................................................................33 

2.5.3  Interpreted Petri nets .................................................................................35 

2.5.4  High-level Petri nets..................................................................................37 

2.6  Conclusions ........................................................................................................39 

Chapter 3  CP-nets for Animation Prototypes ...........................................................41 

3.1  Requirements validation at early stages .............................................................41 

3.2  High-level UML modeling.................................................................................42 

3.2.1  Stereotyped sequence diagrams ................................................................44 

3.3  Colored Petri Nets ..............................................................................................46 

3.3.1  Structure ....................................................................................................47 

3.3.2  Behavior ....................................................................................................50 

3.3.3  Dynamic character of the structure ...........................................................51 

3.3.4  Code segments...........................................................................................52 

3.3.5  Equivalent PT-nets ....................................................................................52 

3.3.6  Hierarchy...................................................................................................53 

3.4 CP-nets for Animation Prototypes ......................................................................56 

3.5 Discussion and conclusions.................................................................................60 

Chapter 4  uPAIN Demonstration Case......................................................................63 

4.1 Animations for requirements’ validation ............................................................63 

4.2 Tools Integration .................................................................................................65 

4.3 Usability Issues ...................................................................................................72 

4.4 Performance analysis...........................................................................................76 

4.5 Discussion and conclusions.................................................................................77 

Chapter 5  Conclusions .................................................................................................79 

References ......................................................................................................................81 

 



  xv 

Index of Figures 

Fig. 2.1 – Examples of graphs: a) undirected, and b) directed. ...................................... 12 

Fig. 2.2 – Representation of a multigraph: a) without the use of weights, and b) using 

weights. ......................................................................................................... 12 

Fig. 2.3 – An example of an ordinary Petri net. ............................................................. 13 

Fig. 2.4 – An example of confusion. .............................................................................. 20 

Fig. 2.6 – A marked Petri net with a) its reachability tree and b) its reachability graph.28 

Fig. 2.7 – An unbounded Petri net and its coverability tree. .......................................... 31 

Fig. 2.8 – An inhibitor arc giving priority to process A over process B. ....................... 34 

Fig. 2.9 – An enabling arc synchronizing process B with process A. ............................ 34 

Fig. 3.1 – The requirements validation cycle. ................................................................ 42 

Fig. 3.2 – UML use case diagram for the uPAIN system............................................... 43 

Fig. 3.3 – UML case diagram detailing the use case {U0.1} Bolus Request...................... 44 

Fig. 3.4 – UML sequence diagram of a macro-scenario for the uPAIN system. ........... 45 

Fig. 3.5 – An example CP-net before applying the MoveToSubPage command to T1.... 53 

Fig. 3.6 – The CP-net of Fig.3.5 after applying the MoveToSubPage command to T1. .. 54 

Fig. 3.7 – The CP-net of Fig.3.6b after a possible modeling of the detail of T1............ 55 

Fig. 3.8 – Transformation of successive messages......................................................... 57 

Fig. 3.9 – Transformation of an alternative block. ......................................................... 57 

Fig. 3.10 – CP-net responsible for the animation of the use case {U0.1} Bolus Request. . 59 

Fig. 3.11 – Top-level CP-net of the animation prototype for the uPAIN system........... 60 

Fig. 3.12 – Using a conflict place for the transformation of an alternative block. ......... 61 

Fig. 4.1 – Global architecture for prototype animation. ................................................. 65 

Fig. 4.2 – Interactive animation prototype for the uPAIN system. ................................ 67 

Fig. 4.3 – Drawing in SceneBeans. ................................................................................. 68 

Fig. 4.4 – Defining behaviours, commands, and events in SceneBeans. ........................ 69 



 

 xvi 

Fig. 4.5 – Defining Java classes as plug-ins of BRITNeY Animation tool...........................70 

Fig. 4.6 – Declaring and instantiating objects in CPN-Tools. ........................................71 

Fig. 4.7 – Events CP-net subpage. ...................................................................................72 

Fig. 4.8 – Message passing in the animation prototype for the uPAIN system. .............74 

Fig. 4.9 – Dashed line contours in the animation prototype for the uPAIN system. ......75 



 

 1 

Chapter 1 
 
Introduction 

Clients of software projects (users and stakeholders in general) and developers 

(system designers and requirements engineers) have, naturally, different points of view 

towards requirements. Actually, a requirement can be defined as “something that a cli-

ent needs” but also, from the point of view of the system designer or the requirements 

engineer, as “something that must be designed”. The IEEE 610 standard [IEEE, 1990] 

defines a requirement as: (1) a condition or capability needed by a user to solve a prob-

lem or achieve an objective; (2) a condition or capability that must be met or possessed 

by a system, or system component, to satisfy a contract, standard, specification, or other 

formally imposed documents; (3) a documented representation of a condition or capabil-

ity as in (1) or (2). 

Taking into account these two distinct perspectives, two different categories for re-

quirements can be conceived: 

• User requirements result directly from the requirements elicitation task [Zowghi 

and Coulin, 2005], in an effort to understand the stakeholders’ needs. They are 

typically described in natural language and with informal diagrams, at a rela-

tively low level of detail. User requirements are focused in the problem domain 

and are the main communication medium between the stakeholders and the de-

velopers, at the analysis phase. 

• System requirements result from the developers’ effort to organize the user re-

quirements at the solution domain. They, typically, comprise abstract models of 

the system [Machado et al., 2005a], at a relatively high level of detail, and con-



2  Introduction 

  

stitute the first system representation to be used at the beginning of the design 

phase. 

The correct derivation of system requirements from user requirements is an impor-

tant objective, because it assures that the design phase is effectively based on the stake-

holders’ needs. Some existent techniques [Liang, 2003; Whittle et al., 2005; Krüger et 

al., 1999; Machado et al, 2005 b] can be used to support the transformation of user re-

quirements models into system requirements models, by manipulating the correspond-

ing specifications. This also guarantees that no misjudgment is arbitrarily introduced by 

the developers during the process of system requirements specification. 

However, this effort for maintaining the continuity of the models’ functional co-

herence, by applying controlled transformational techniques, can be worthless if the 

user requirements models are not effectively validated. Typically, the confrontation of 

stakeholders with static requirements models is not enough, since stakeholders without 

computer science education are not able to discern all the interdependencies between the 

elicited requirements. With the mere presentation and explanation of UML2 (Unified 

Modeling Language) requirements models (use case diagrams and some kind of se-

quence diagrams), even the most simple and intuitive ones, it is not easy for the soft-

ware engineer to be confident on the stakeholders’ requirements validation. 

1.1  Workflow perspective 

The production of goods or services requires the execution of sets of operations 

that must be performed according to predefined processes. Simple processes, like for 

instance the making of handicraft pieces, can be executed by a single person. But the 

majority of processes that run in today’s organizations are typically executed by several 

participants – people and/or machines (including computers and their software). The 

reason behind this new reality lies on the fact that most of the goods or services pro-

duced nowadays have such a complexity, that they require several high-level skills and 

competencies, that makes them impossible to be executed by a single participant (per-

son or machine), because the number of different high-level competencies that a partici-

pant is capable of possessing is always limited. Consequently, each process must be 

subdivided into sub-processes and activities, in a number that, at maximum, equals the 

                                                 
2 http://www.uml.org/ 



Introduction  3 

 

number of specific competencies required for the process as a whole, in order that each 

participant may be assigned only the process’s activities for which the participant has 

the required competencies. 

In most processes, there are some activities that may be executed simultaneously, 

but when there are rules that impose precedence between activities, these must necessar-

ily be executed sequentially (a situation that also occurs, at least partially, in almost 

every process). Therefore, the execution of a business process may be seen as the flow 

of work (represented by documents, information, materials or tasks) passing from one 

participant to another, according to rules that are specific to the process. It is this notion 

of controlled flow of work that originated the designation workflow. 

The Workflow Management Coalition (WfMC) defines business process and work-

flow as [WFMC, 1999]: 

“A business process is a set of one or more linked procedures, which 

collectively realize a business objective or policy goal, normally within 

the context of an organizational structure, defining functional roles and 

relationships”. 

“A workflow is the automation of a business process, in whole or part, 

during which documents, information or tasks are passed from one par-

ticipant to another for action, according to a set of procedural rules.”  

From what has been stated previously, and this definition of workflow, the differ-

ence is subtle, residing mainly in the addition of the term automation. Yet, this subtle 

addition carries within it a consequence of major importance. It enforces the use of in-

formation technology (IT) (e.g. a workflow management system - WMS) to control the 

whole process, which, in turn, means that it implies the need of, among other things, 

modeling the process in a representation that is adequate for IT specialists to convert it 

into a process definition of a WMS. 

Depending on the characteristics inherent to the nature of each business process, 

four types of workflows are widely considered, including by the WfMC: 

Production Workflow – It corresponds to the automation of processes 

that are made of a large number of similar and highly repetitive tasks, aim-

ing at productivity maximization through the automation of almost all of 



4  Introduction 

  

the tasks, reducing human intervention to the resolution of exception situa-

tions. Modeling these workflows is a heavy task and generates complex 

and rigid models, requiring a high consumption of time, both in the initial 

definition and subsequent changes (which, for that reason, are expected to 

be rare).  

Administrative Workflow – It is characterized by the tendency to involve 

a large number of people, and by being applied to processes that require 

frequent changes. For this reason, it is desirable that they are kept easy to 

model, and that the model be as flexible as possible, even at the cost of a 

less optimized productivity. 

Collaborative workflow – It applies to situations where several teams 

work together for the realization of a common goal. It can be the case of 

project oriented small groups, or highly dispersed geographically people 

sharing common interests. With the globalization phenomenon and the 

ever increasing presence of the INTERNET in the strategy of the organi-

zations, this kind of workflow assumes a crucial role in the coordination of 

processes, which typically involve the cooperation among several organi-

zations around the same goals, as is the case of e-business. The flexibility 

of quick adaptation to new products or services and the coordination are 

its main requirements, and productivity is treated as a second priority. 

Ad-Hoc workflows – These workflows are adequate to processes which 

are subject to changes to the initial definition at any moment. The priority 

is on the haste of the process of defining the workflows and on how easy it 

is to change process rules to specific cases, originating multiple variants of 

the process. 

The characterization of these four types of workflow shows how different work-

flows can be in terms of several properties. Yet, it is obvious that, although there is an 

important diversity of factors that influence processes, the main criterion for the evalua-

tion of a process is its functional correctness, which is determined by the process defini-

tion. This is why modeling is considered a key issue by workflow researchers, who have 

been investing a great deal of effort in creating artifacts and improving their capability 



Introduction  5 

 

of supporting the whole diversity of both functional and non-functional requirements of 

business processes. 

In [Aalst et al., 2003] three tendencies of the evolution of information technology 

(IT) are identified: (1) an increase in functionality, translated into an increase of the 

number of software layers in computer systems; (2) an increased focus on processes and 

the corresponding decrease of the relative importance of the data perspective; (3) a pro-

gressive increase of the practice of redesign and organic growth, as a response to the 

constant need to the more and more frequent need for organizations to adapt their busi-

ness processes to constant market changes. These tendencies explain, not only the grow-

ing interest on Business Process Management (BPM) [BPMG] and WMSs 3  (like 

Staffware [Staffware], MQSeries [MQSeries] and COSA [COSA], to name just a few) 

and case handling systems (like FLOWer) [FLOWer], but also on process modeling. 

The workflow modeling languages of the commercially available workflow man-

agement systems are based on one of the two groups of languages that are used by the 

scientific community studying workflows: (1) Process Algebras and (2) Petri nets. The 

history of the application of both groups of languages to the workflow area has ap-

proximately the same age. Although the genesis of Petri nets ascends to 1962, with the 

PhD dissertation of Carl Adam Petri [Petri, 1962], according to [Aalst et al., 2003] the 

use of variants of Petri nets to model office proceedings (in what can be considered the 

precursors of the WMSs – the so called “Office Information Systems”) took place only 

in the seventies, with the initiative of researchers like Clarence (Skip) Ellis [Ellis, 

1979], Anatol Holt [Holt, 1985] and Michael Zisman [Zisman, 1977]. According to 

[Best and Koutny, 2004], the first ideas of process algebras were introduced in the same 

age by Tony Hoare [Hoare, 1978] and Robin Milner [Milner, 1980]. As also mentioned 

by [Best and Koutny, 2004], the relations between both groups of languages have been 

studied during their development. Possibly motivated by commercial interests, some 

apologists of one, or the other, group of languages have incurred in exaggerated appre-

ciations of the qualities of their preferred languages, as commented in an unpublished 

paper [Aalst, 2003], about the relative strengths and weaknesses of process algebras and 

Petri nets, with a clear conclusion in favor of Petri nets. 

                                                 
3 An extensive list can be found in http://www.doconsite.co.uk/DirectoryPages/Systems/wmsbysupp.cfm. 



6  Introduction 

  

1.2  SWEBOK perspective 

Being a subject of major importance in software engineering, the Guide to Soft-

ware Engineering Body of Knowledge (SWEBOK) - a project of the IEEE Computer 

Society Professional Practices Committee - treats requirements as the first Knowledge 

Area (KA) of software engineering, entitled precisely Software Requirements. In the 

topic concerning the definition of software requirement, it is possible to read in the 

SWEBOK [IEEE, 2004, pp. 2-1]: 

“A software requirement is a property which must be exhibited by soft-

ware developed or adapted to solve a particular problem. The problem 

may be to automate part of a task of someone who will use the software, 

to support the business processes of the organization that has commis-

sioned the software, to correct shortcomings of existing software, to con-

trol a device, and many more. The functioning of users, business proc-

esses, and devices is typically complex. By extension, therefore, the re-

quirements on particular software are typically a complex combination 

of requirements from different people at different levels of an organiza-

tion and from the environment in which the software will operate.” 

There is nothing in this excerpt from the SWEBOK contradicting the definition 

given by the IEEE 610 standard. It is just introducing a motivation for the need for 

documenting, modeling and validating requirements. In fact, the SWEBOK presents 

several classifications of requirements (product and process requirements, functional 

and non-functional requirements, emergent properties, quantifiable requirements, sys-

tem requirements) according to different perspectives, whose descriptions allow sum-

marizing them into the classification given by the definition of the IEEE 610 standard. 

In the SWEBOK, modeling is treated in the subtopic 4.2 – Conceptual Modeling – 

of the 4th topic – Requirements Analysis – of the Software Requirements KA. It is con-

sidered there that the purpose of conceptual modeling is more helping to understand the 

problem, rather than initiating the design of the solution. Conceptual modeling is thus 

associated to the treatment of the user requirements, in the sense that before proceeding 

to the next modeling phase – the modeling of the solution – their validation, by the users, 

is required, as a means of certifying that they were fully understood by the software en-

gineers. That subtopic (4.2), recommends the use, in conceptual modeling, of notations 



Introduction  7 

 

that benefit from generalized acceptance, such as the Unified Modeling Language 

(UML). The use of notations based on Discrete Mathematics is also referred as being 

advantageous in the analysis of some critical functions or components. In the subtopic 

5.1 – The System Definition Document – of the topic 5 – Requirements Specification – is 

said that the system definition documentation may include conceptual models to illus-

trate several aspects of the system, such as workflows. A new mention to formal nota-

tions appears in the subtopic 6.3 – Model Validation – of the topic 6 – Requirements 

Validation – to add that their use allows the proof of some properties of those specifica-

tions. 

1.3  Contribution of this dissertation 

At this point, it is necessary to make a statement concerning the term validation. 

Although the SWEBOK uses the term validation associated to the application of analy-

sis methods with the aim of proving some properties of the models, that use of the term 

is not universal among the software engineering scientific community. In this disserta-

tion, we will adopt the interpretation of the colored Petri nets research community; i.e., 

the term validation is used to refer to the actions, taken by the software engineers, to 

obtain from the users the confirmation that the model really describes their requirements, 

meaning that the requirements were correctly understood. For the purposes that are de-

scribed by the SWEBOK, in the subtopic 6.3 of the software requirements KA, we will 

use the term verification. 

According to [Aalst, 2004] there are three kinds of analysis that should be accom-

plished before a workflow is put into production: (1) validation, to check if the work-

flow behaves as expected; (2) verification, to study the correctness of a workflow; and (3) 

performance analysis, to estimate the solution conformance with throughput times, ser-

vice levels, and resource utilization. This dissertation is solely concerned with the first 

kind of analysis, at the process level; i.e., we are considering, neither the resource di-

mension (where resources estimation is supposed to be reached) nor the case dimension 

(where a concrete instance of a workflow process is analyzed, both in its common as-

pects and in its particularities). 

In this dissertation, we describe one proposal that uses CPN-Tools [Lafon et al., 

2001] and the BRITNEY Animation tool [BRITNeY] in the generation of interactive 

animation prototypes to allow stakeholders to be confronted with executable versions of 



8  Introduction 

  

UML use case and sequence diagrams of previously elicited requirements. This ap-

proach towards user requirements validation is illustrated with a real demonstration case 

where a healthcare information system must be built to support explicitly the interaction 

between people within a pervasive workflow execution. 

1.4  uPAIN demonstration case 

The demonstration case considered in this dissertation consists of an information 

system (uPAIN system) whose main concern is the process of pain control of patients, 

in a hospital, who are subjected to relatively long periods of pain during post surgery 

recovery. When a surgery is concluded, the patient enters a recovery period, during 

which analgesics must be administered to him, in order to minimize the pain that in-

creases as the effects of the anesthesia gradually disappear. This administration of anal-

gesics must be controlled according to a program that depends on factors like some per-

sonal characteristics of the patient (weight, age, etc.) and the kind of surgery to which 

the patient has been submitted. The quantity of administered analgesics must be high 

enough to eliminate the pain, but low enough to avoid exaggerated or dangerous seda-

tion states. This controlled analgesia is administered to the patient by means of a spe-

cialized device called PCA (patient controlled analgesia). PCA is a medication dispens-

ing unit equipped with a pump attached to an intravenous line, which is inserted into a 

blood vessel in the patient’s hand or arm. By means of a simple push button mechanism, 

the patient is allowed to self administer doses of pain relieving medication (narcotic) on 

an “as need” basis. This is called a bolus request. 

The motivation for the development of the uPAIN system arises from the fact that 

different individuals feel pain and react to it very differently. Moreover, although nar-

cotic doses are predetermined as mentioned previously, there is a considerable variabil-

ity of their efficacy from patient to patient. This is why anesthesiologists are interested 

in monitoring several variables, in a continuous manner, during patients’ recovery, in 

order to increase their knowledge on what other factors, besides those already known, 

are relevant to pain control, and in what measure they influence the whole process. To 

achieve this, the main idea behind the uPAIN system is to replace the PCA push-button 

by an interface on a PDA (personal digital assistant), which still allows the patient to 

request doses from the PCA, but with the addition of the functionality of creating re-

cords, in a database, of all those requests, along with other data considered relevant by 



Introduction  9 

 

the medical doctors, like the values of some predetermined physiological indicators 

measured by a monitor, and/or other data related to a particular patient’s state. Ques-

tions concerning symptoms or psychological state may be automatically asked by the 

system, via the PDA, when the patient requests a dose or at regular time intervals, or 

even when a medical doctor decides to ask them. 

So, the uPAIN system is intended to: (1) provide a platform that enables the regis-

tration of patients’ pain levels and the occurrence of several symptoms related with the 

analgesia processes, as frequently as desired; (2) allow the medical staff to be perma-

nently aware of the occurrence of all the relevant facts of the patients’ recovery and pain 

control processes and, (3) allow permanent remote wireless communication among sys-

tem, patients and medical staff. 

1.5  Structure of this document 

In this chapter, the subjects of requirements and modeling, as well as their interre-

lationships were introduced. To illustrate their importance, the perspective of the work-

flow community on modeling, and the relationship between both subjects reflected by 

the SWEBOK were pointed-out. The chapter concludes with the presentation of the 

proposed contribution of this dissertation, along with the introduction to the adopted 

demonstration case. 

The remainder of this dissertation is organized as follows. Chapter 2 introduces and 

defines the structure, behavior, properties and analysis methods of low-level Petri nets. 

It also points-out the limitations of low-level Petri nets, as a starting point to briefly pre-

sent their most important extensions and high-level Petri nets. Chapter 3 presents a pro-

posal of a technique to derive Colored Petri Nets (CP-nets) from UML models of func-

tional user requirements, with the intent of applying them to control interactive anima-

tion prototypes, for validation of those requirements by stakeholders. Chapter 4 de-

scribes how that technique, CPN-Tools and the BRITNeY Animation tool are recom-

mended to be applied to support the building of an animation prototype for the uPAIN 

demonstration case. 



10  Introduction 

  

 



 

 11 

Chapter 2 
 
Petri Nets Concepts 

To address concurrency in systems, Carl Adam Petri introduced, in his PhD disser-

tation Komunikation mit Automata [Petri, 1962], presented in 1962, at Darmstadt, Ger-

many, a special class of generalized graphs, now called Petri nets. Because they have a 

mathematical description associated to the graphical representation, Petri nets are a tool 

that is well suited not only for modeling but also for analysis and study of discrete event 

systems (DES), especially those in which events can occur concurrently. In other words, 

using Petri nets to model a system leads to a mathematical description of that system, 

which allows the analytical study of its structure and properties, including those associ-

ated to simultaneous occurrence of the system’s events. 

2.1  Petri nets structure 

Every graph consists of two types of elements – vertices or nodes, and edges – and 

a given interconnection of these elements (Fig. 2.1a). Formally, 

a graph is a triple G = (V,E,φ), where V is a nonempty set of nodes, E is a 

set of edges, and φ is a mapping from the set of elements of E to a set of 

pairs of elements of V. 

An edge is said to be directed if the connection it establishes between a pair of 

nodes is ordered. To indicate the direction, an arrow is placed on the edge (Fig. 2.1b). A 

directed graph is a graph where all the edges are directed. Petri nets are directed 

graphs. 



12  Petri Nets Concepts 

  

 

Fig. 2.1 – Examples of graphs: a) undirected, and b) directed. 

In a graph, two nodes that are connected by an edge are called adjacent nodes. A 

graph is called a multigraph if it contains parallel edges, i.e., edges that connect the 

same pair of nodes and, if directed, have the same direction (Fig. 2.2a). Petri nets are 

multigraphs. When a Petri net has no more than one arc (the name given to edges in 

Petri nets) connecting two nodes, then it is called an ordinary Petri net. 

In order to simplify the graphical representation of parallel arcs, it is better to re-

place them by a single arc with a non-negative integer attached to it (called weight) rep-

resenting the number of parallel arcs. The concept of weight corresponds to a generali-

zation of the notion of arc that is most adequate for mathematical representations. Natu-

rally, arcs with weight 0 are not represented graphically, because a weight with the 

value 0 means the inexistence of an arc. Furthermore, as a convention, when the weight 

is 1 the corresponding arc is drawn without the number 1 attached to it (Fig. 2.2b). 

Therefore, in the graphical representation of ordinary Petri nets there are no integers at-

tached to arcs. 

 

Fig. 2.2 – Representation of a multigraph: a) without the use of weights, and b) using weights. 

Another characteristic of Petri nets is that they are bipartite graphs. This means 

that they have two types of nodes and that an arc cannot directly connect nodes of the 

same type. In a Petri net, the two types of nodes are called places and transitions. 



Petri Nets Concepts  13 

  

Therefore, because Petri nets are bipartite graphs, an arc always connects from a place 

to a transition or from a transition to a place and never from a place to another place or 

from a transition to another transition.  

Fig. 2.3 shows an example of an ordinary Petri net. Conventionally, places are rep-

resented as circles, transitions as black filled rectangles (or thick bars), and arcs are the 

directed lines connecting the places and the transitions. However, depending on the type 

of Petri net, and personal preferences, these elements can have different configurations. 

Therefore, transitions can be represented as unfilled rectangles or just thin bars, places 

can appear as ellipses, and arcs can always be shaped freely, according to personal taste 

and readability concerns. 

 

Fig. 2.3 – An example of an ordinary Petri net. 

Given the concepts just presented, it is now possible to consider the following for-

mal definition:    

A Petri net is a bipartite directed graph represented by a quadruple 

N = (P,T,I,O), where,  

P = {p1,p2,...,pn} is a finite set of places,  

T = {t1,t2,...,tm} is a finite set of transitions,  

I(p, t) is a mapping  P × T → ℕ∪{0}, corresponding to the set of 

the weights of the arcs directed from places to transitions, and  



14  Petri Nets Concepts 

  

O(p, t) is a mapping  P × T → ℕ∪{0}, corresponding to the set of 

the weights of the arcs directed from transitions to places. 

Instead of using the generalization provided by the notion of weight of an arc, some 

authors (e.g. [Peterson, 1981]) have preferred to maintain the notion of multiple parallel 

arcs, and express the sets I and O as being I: T → P∞ and O: T → P∞ mappings from 

transitions into bags of places. Naturally, without the use of the weight concept, the 

definitions used by those authors assume a different form, but they are, of course, per-

fectly equivalent to the ones used here. 

For a given transition tj, its preset, denoted by °tj, is the set of its’ input places, 

which are the places connected to it by its’ input arcs, according to the definition 

°tj = {pi ∈ P: I(pi,tj) ≠ 0} 

Analogously, the postset of tj, denoted by tj°, is the set of its’ output places, which 

are the places connected to it by its’ output arcs, according to the definition 

tj° = {pi ∈ P: O(pi,tj) ≠ 0} 

The same notation applies to places, originating the corresponding definitions of 

the preset (the set of the input transitions) and the postset (the set of output transitions) 

of a given place pi 

°pi = {tj ∈ T: O(pi,tj) ≠ 0},  pi° = {tj ∈ T: I(pi,tj) ≠ 0}. 

For example, for the Petri net of Fig. 2.3, the presets and postsets of place p1 and 

transition t2 are 

°p1 = {t1,t7},    p1° = {t2,t3},    °t2 = {p1},    t2° = {p2,p3} 

Naturally, the enumeration of the set of places, the set of transitions, and the presets 

and postsets of all the places (or all the transitions) of an ordinary Petri net, constitute a 

complete mathematical definition of its structure. 



Petri Nets Concepts  15 

  

2.1.1  Some structural particularities 

A node is called a source if it has only outgoing arcs (its’ preset is ∅). A node 

which has only incoming arcs (its' postset is ∅) is called a sink. 

A path is a set of  k arcs and  k+1 nodes, with  k ∈ ℕ, such that, for i ∈ ℕ and 

1 ≤ i ≤ k, the ith arc either connects the ith node to the i+1th node, or the i+1th node to the 

ith node. If, for all 1 ≤ i ≤ k, the ith arc connects the ith node to the i+1th node, the path is 

called a directed path. A path in which every arc is traversed only once is called a sim-

ple path. A path in which every node is traversed only once is called an elementary path. 

It is important to note that an elementary path is always a simple path, but a simple path 

may not be an elementary path. 

A Petri net is connected if and only if there is a path (not necessarily directed) from 

any node to any other node. A Petri net is strongly connected if and only if there is a 

directed path from any node to any other node. Naturally, a Petri net that has a source or 

sink cannot be strongly connected. 

A directed circuit is a directed path from one node back to itself. A directed ele-

mentary circuit is a directed circuit in which no node appears more than once. Because 

they are adequate for modeling sequences of events, directed elementary circuits play a 

key role in the performance analysis of DES modeled with Petri nets [Cassandras, 1993]. 

For certain purposes, it is often useful to consider only one part of a Petri net, 

called a subnet, defined as follows: 

A subnet of a Petri net N = (P,T,I,O) is a Petri net Ns = (Ps,Ts,Is,Os), where 

Ps ⊆ P,    Ts ⊆ T,     Is =  (Ps × Ts) ∩ I,    Os =  (Ps × Ts) ∩ O 

2.2  Petri nets behavior 

Petri nets are also capable of modeling the dynamics of a system. Yet, the elements 

of Petri nets defined so far are used to model only the structure of a system. In order to 

model the system’s dynamics an extra element of the Petri nets meta-model is needed – 

the token. Tokens are used to express the states of a system in a Petri net, and are repre-

sented in the graph as black dots that can reside in places. In the example of Figure 2.1, 



16  Petri Nets Concepts 

  

the particular state shown for the net is described with only one token in place p1. When 

the allowed number of tokens in a place is limited, the net is said to have capacities. 

Each possible distribution of tokens in a net that respects those limits is called a mark-

ing, that is, 

For a given Petri net N = (P,T,I,O), a mapping M: P → ℕ ∪ {0} is a 

marking of N iff 

∀ p ∈ P, M(p) ≤ K(p) 

where M(p) is the number of marks in place p and K(p) is the capacity of 

place p. 

This way, each possible state of the system is represented, in its Petri net model, by 

a particular marking. Therefore, in order to represent the transition from one given state 

of the system to a subsequent state, there must be a process by which the Petri net 

model of the system changes from the corresponding first marking into the other. This 

process is called firing, and is the mission of the nodes that, for that reason, were very 

appropriately named “transitions”. 

Firing consists of the action through which transitions remove tokens from their in-

put places and add tokens to their output places. When a transition fires, the number of 

tokens removed from an input place equals the weight of the corresponding input arc. 

Similarly, the number of tokens added to an output place equals the weight of the corre-

sponding output arc. However, for a transition to be allowed to fire, it must be enabled, 

according to the definition: 

A transition t is M-enabled (enabled by a given marking M), iff 

∀p∈ °t, M(p) ≥ I(p, t) ∧ ∀p∈ t°, M(p) ≤ K(p) - O(p,t) 

Therefore, 

When a transition t is M0-enabled, it can fire, originating M1(p), which is a 

next marking of M0(p), given by 

∀p∈ P, M1(p) = M0(p) – I(p,t) + O(p,t) 



Petri Nets Concepts  17 

  

It is then said that t fired from M0 to M1, expressed with the notation M0[t 〉 M1. 

2.3  Petri nets and Linear Algebra 

Because many aspects of Petri nets can be represented as vectors and matrices, Lin-

ear Algebra, due to its strong adequacy for implementation in computer programming, 

plays a very important role in Petri net theory. 

The topology, or structure, of a Petri net can be represented by an integer matrix. 

However, for that purpose, the Petri net may not have self-loops, i.e., it must be pure. 

A Petri net N = (P,T,I,O) is pure, iff 

∀p∈ P,  t ∈ T,  I(p,t) · O(p,t) = 0 

If, for a given pair of nodes (one place pi and one transition tj),  I(p,t) · O(p,t) > 0, 

this means that there is an arc directed from pi to tj and an arc directed from tj to pi, 

forming what is called a self-loop, and then, the Petri net is not pure. 

The matrix representing the structure of a pure Petri net with n places and m transi-

tions is an n × m matrix, called incidence matrix (or flow matrix). 

The elements of the incidence matrix C, of a pure Petri net N = (P,T,I,O), 

with  n = #P,  m = #T,  are given by:  

Cij =  O(pi,tj) - I(pi,tj),  for  1 ≤ i ≤ n  ∧ 1 ≤ j ≤ m 

Observing this definition, it is evident that it completely describes the structure of a 

pure Petri net N = (P,T,I,O), as follows: 

#P equals the number of rows of C, 

#T equals the number of columns of C, 

I(pi,tj) = - min{Cij,0}, 

O(pi,tj) = max{Cij,0}. 

From this, it becomes evident that a self-loop would not be represented in the inci-

dence matrix C, because the corresponding element in the matrix would not allow the 



18  Petri Nets Concepts 

  

reconstruction of the original arcs. For a self-loop formed by arcs of equal weight, the 

resulting element of C would be zero, eliminating the traces of the self-loop. For a 

self-loop with arcs of different weights, the resulting element in C would lead to the er-

roneous interpretation that only an arc, with a weight equal to the difference of the 

original weights, existed between the two nodes. 

As an example, the incidence matrix C, and the corresponding I and O mappings in 

the matrix form, for the Petri net of Fig. 2.3 are: 

 

C =   1 -1 -1 0 0 0 1

  -1 1 0 -1 0 0 0

  0 1 0 0 -1 0 0

  0 0 1 0 1 -1 0

  0 0 0 1 -1 0 0

  0 0 0 0 0 1 -1

 

 

 

 

 

 

 

Using a vector  Mi = [M(p1) M(p2) M(p3) … M(pn)]T  to represent a marking, and 

another vector S in which all elements are zero, except the jth element, which is 1, corre-

sponding  to a transition tj enabled by Mi, the next marking Mi+1 is obtained by the equa-

tion 

 Mi+1 = Mi + C · S (1) 

where C is the incidence matrix. 

I =    0 1 1 0 0 0 0

  1 0 0 1 0 0 0

  0 0 0 0 1 0 0

  0 0 0 0 0 1 0

  0 0 0 0 1 0 0

  0 0 0 0 0 0 1

O =  1 0 0 0 0 0 1 

 0 1 0 0 0 0 0 

 0 1 0 0 0 0 0 

 0 0 1 0 1 0 0 

 0 0 0 1 0 0 0 

 0 0 0 0 0 1 0 



Petri Nets Concepts  19 

  

2.4  Analyzing Petri nets 

From what has just been stated, the enabling of a transition only depends on the 

marking of the places that are directly connected to it. Furthermore, a transition only 

needs to be enabled in order to be allowed to fire. So, it becomes immediately apparent 

that in a given state (a given marking) of a Petri net, two transitions that have disjoint 

presets and disjoint postsets may be concurrently enabled and, consequently, they may 

fire simultaneously. This natural support of concurrency is clearly a major advantage of 

using Petri nets as a modeling tool. 

Besides, being mathematically defined, Petri net models describe systems in an un-

ambiguous manner, thus preventing confusion when used for communication purposes 

among people involved in the study of the systems they describe. But Petri nets have 

additional strengths that result from the fact that they are a mathematical meta-model. 

Through mathematical descriptions, it is possible to express particular structures and 

properties of Petri nets, as well as using analysis algorithms to detect and verify those 

structures and properties. 

2.4.1  Conflict and confusion 
One of the powers of Petri nets is unquestionably the support for concurrency. Yet, 

the same characteristic that makes concurrency possible – the capability for two transi-

tions to be able to fire simultaneously – may bring undesired situations, like conflicts or 

confusion. 

 A conflict occurs when concurrently enabled transitions share a common 

input place, i.e., iff for a Petri net N = (P,T,I,O), 

∀p∈ P,  #p° > 1 

For example, in the Petri net of Fig. 2.3 transitions t1 and t4 both share the same in-

put place p2, i.e. 

p2° = {t1, t4} 

The same happens with t2, t3 and pl 

p1° = {t2, t3} 



20  Petri Nets Concepts 

  

These conflicts are easily identified by observing the matrices I or C. The rows 1 

and 2, corresponding to places p1 and p2, both have more than one positive value, in I 

(the elements I(1,2), I(1,3) and I(2,1), I(2,4)). Naturally, in C that corresponds to the ex-

istence of more than one negative element in the same rows (the elements C(1,2), C(1,3) 

and C(2,1), C(2,4)). 

t1 t2

t3

p2

p3

p5

p6p4

p1

 

Fig. 2.4 – An example of confusion. 

In the Petri net of Fig. 2.4, only t1 and t3 are enabled. If t3 fires first, then t1 can fire 

and the execution stops. However, if t1 fires first, then t2 and t3 become both enabled but 

in conflict due to the common input place p3. In cases like this one, in which the occur-

rence of a conflict depends on firing sequences, we say we are in the presence of confu-

sion. 

2.4.2  Reachability and coverability 
Reachability concerns the question whether a given marking of a Petri net is possi-

ble. From the modeled system point of view, we might be interested in checking if it is 

possible that a given state can be reached, whether because it is forbidden, or mandatory, 

and under which circumstances. It might be possible for the system to reach a given 

state, only when starting from a particular initial state, and after a particular sequence of 

events. If we know in advance that an already existing system, under certain conditions, 

reaches a certain state, we might be interested in checking if a Petri net we have built to 

model it reflects that reality. Alternatively, we might be interested in assuring that a sys-

tem that is to be built, according to a Petri net model, will reach (or not) a given state, 

under certain conditions. 

If, from an initial marking M0, of a Petri net N, a transition t1 fires, producing a next 

marking M1, i.e., M0[t1 〉 M1, then we say that M1 is immediately reachable from M0. If 



Petri Nets Concepts  21 

  

another marking M2 is immediately reachable from M1, through the firing of another 

transition t2, that is, M1[t2 〉 M2, then we say that M2 is reachable from M0. We can then 

write M0[t1t2 〉 M2, or M0[FS 〉 M2, where FS = t1t2 is called a firing sequence, and repre-

sents the sequence of transitions that were fired to reach M2 from M0. The set of all the 

possible firing sequences from M0 may be denoted by FS (N,M0). 

The reachability set of N from M0, denoted by R(N,M0), is the smallest set 

of reachable markings of a Petri net N = (P,T,I,O), with initial marking M0, 

such that: 

M0 ∈ R(N,M0) 

      Mi ∈ R(N,M0)  ∧  ∃ tk ∈ T:  Mi[tk 〉 Mj  ⇒  Mj ∈ R(N,M0) 

A Petri net N = (P,T,I,O) for which an initial marking M0 is reachable from any 

marking Mi ∈ R(N,M0) is said to be reversible. A less demanding criterion for reversi-

bility, adequate to a larger number of situations, is for a marking Mj ∈ R(N,M0), called 

an intermediate state, to be reachable from any other marking Mi ∈ R(N,M0). When any 

marking Mi ∈ R(N,M0) is reachable from any other marking Mj ∈ R(N,M0), we say that 

N is completely controllable. 

At this point, it is interesting to note that, for pure Petri nets, if a given firing se-

quence is possible from an initial marking M0, equation (1), of page 18, may be used to 

obtain the resulting marking. For this purpose, the elements of the vector S are zero for 

the transitions that are not in the firing sequence, and are equal to the number of times a 

transition fired, for the elements corresponding to transitions belonging to the firing se-

quence. Yet, this method should be used with caution, because some information 

(namely the order of the firings) is lost in the process of converting the firing sequence 

into the vector S, and that fact might lead to incoherent results. 

A variation of the question of reachability is the case in which we are interested in 

knowing if it is possible to reach, from a given initial marking M0, a marking Mi for 

which the individual markings of the places satisfy predetermined minimum values. 

This is the coverability problem. We might be interested in such an analysis in the case 

of models for which some places represent counters. Naturally, in this type of analysis it 

is possible to have more than one marking that satisfies that condition. 



22  Petri Nets Concepts 

  

In formal terms, in a coverability problem we are interested in determining if, given 

a Petri net N = (P,T,I,O), a marking Mi ∈ R(N,M0), and another marking Mj, Mi covers 

Mj, i.e., Mi ≥ Mj, where Mi ≥ Mj is defined by: 

Mi ≥ Mj ⇔ ∀p∈ P,  Mi(p) ≥ Mj(p) 

2.4.3  Boundness and safeness 
Some systems restrict the number of tokens in a given place to a certain limit. That 

is the case, for instance, of a place that is modeling a storage space for limited units of a 

resource, or a place modeling a counter of a system to be implemented in hardware or 

software. Those places must be bounded for the initial marking, according to the follow-

ing definition: 

Given a Petri net N = (P,T,I,O), we say that a place p is k-bounded, for an 

initial marking M0, iff  

∀ Mi ∈ R(N,M0),  ∃ k ∈ ℕ: Mi(p) ≤ k 

We say that a Petri net is k-bounded for a given initial marking, if all its places are 

k-bounded for that initial marking, i.e. 

A Petri net N = (P,T,I,O) is k-bounded, for an initial marking M0, iff 

∀ p ∈ P,  Mi ∈ R(N,M0),  ∃ k ∈ ℕ: Mi(p) ≤ k 

These definitions present boundness as being dependent of the initial marking of 

the Petri net, but it is possible for a Petri net to have a topological structure that guaran-

ties boundness for any initial marking. In this case, we say that the Petri net is structur-

ally bounded. 

When a Petri net is 1-bounded, i.e., when k = 1, we say that it is safe. 

2.4.4  Conservation 
Petri nets are often used to model resource allocation systems. For instance, a Petri 

net modeling the allocation of a pool of printers, shared among several users, would 

have a certain number of tokens corresponding to the number of printers in the pool. 

These tokens would be located in several places, according to their condition of readi-



Petri Nets Concepts  23 

  

ness for use. One place could be used to indicate that a printer is ready, another place 

would indicate that the printer is busy, other places could represent other states, like out 

of paper, out of toner, on maintenance, etc. Because the number of printers in the pool is 

a constant, the number of tokens in the Petri net should remain constant, independently 

of their distribution among the places. To this requirement, we call conservation. 

A Petri net N = (P,T,I,O), with an initial marking M0 is strictly conserva-

tive iff  

∀ p ∈ P,  Mi ∈ R(N,M0),  Σ Mi(p) = Σ M0(p) 

According to this definition, in order for a Petri net to be strictly conservative, the 

firing of one transition cannot change the total number of tokens in the net. Therefore, 

each transition has to produce as many tokens as it consumes. However, Petri nets mod-

eling finite resources allocation systems often have places whose tokens do not repre-

sent resources. These places may represent counters, conditions that determine the 

changes in the resource states, etc. In such cases, and for the majority of the applications, 

strict conservation may not be required, and it can be allowed for some transitions to 

produce a different number of tokens than the ones they consume. A solution to obtain a 

definition of conservation that supports these cases is to consider, not the simple sum of 

the numbers of tokens in the places, but a weighted sum. By assigning a non-negative 

rational weight (not necessarily integer) to each place, it may be possible to obtain a 

constant weighted sum after each transition firing, allowing the introduction of a differ-

ent definition for conservation: 

A Petri net N = (P,T,I,O), with an initial marking M0 is conservative with 

respect to a weighting vector w = (w1, w2, …, wn), where n = #P, iff  

∀ pi ∈ P,  Mj ∈ R(N,M0),  Σ [wi · Mj(pi)] = Σ [wi · M0(pi)] 

It is important to note that conservation with respect to a weighting vector may re-

sult from the occurrence of strict conservation of a subnet. That is the case when the ele-

ments of the weighting vector have only values that are either 0 or 1. This means that 

the elements that are equal to 0 correspond to places that do not support conservation, 

while the elements that are equal to 1 correspond to the places belonging to a strictly 

conservative subnet. If this subnet corresponds to the part of the Petri net that models 



24  Petri Nets Concepts 

  

the finite resource allocation, then this conservation criterion may satisfy the modeler’s 

needs in what concerns the verification of the model. 

2.4.5  Net invariants 
Net invariants are one of the structural properties of Petri nets, i.e., properties that 

depend only on the topological structure of the Petri net and not on the net's initial 

marking. Therefore, because they are structural properties, invariants are important 

means for analyzing Petri nets since they allow the investigation of the net's structure 

independently of any dynamic process. Moreover, that analysis can be performed on 

local subnets without considering the whole system. Invariants are also used for model 

verification. 

There are two kinds of invariants: place invariants and transition invariants. 

Place invariants 
The notion of place invariant coincides with the particular case in which all the ele-

ments of the vector of weights used to define conservation are integer, i.e., a place in-

variant (or P-invariant) is a non-negative integer vector, with dimension equal to the 

number of places in the Petri net. The ith element is a weight associated to the ith place, 

such that the weighted sum of markings of the places is a constant for any firing se-

quence. However, the preferred definition for a P-invariant has a form that leads to an 

algorithm for their determination: 

A P-invariant of a Petri net N = (P,T,I,O), with #P = n and an incidence 

matrix C, is a non-negative integer vector x, with n elements, that satisfies 

the relation 

 CT · x = 0 (2) 

The set of places corresponding to the strictly positive elements of x is called the 

support of the invariant [Levis, 1989], and is denoted <x>. When the support of an in-

variant does not contain the support of another invariant, except itself and the empty set, 

the support is said to be minimal. 

By multiplying the equation (1) by  xT and by using (2) to eliminate the term  xT·C·S, 

we obtain (3), which establishes the relationship between (2) and the conservation prop-

erty, as stated by the theorem: 



Petri Nets Concepts  25 

  

The vector x, is a P-invariant of a Petri net N = (P,T,I,O), iff 

 ∀ M0,Mi ∈ R(N,M0),   xT · Mi  =  xT · M0 (3) 

This theorem establishes the conservation of the number of tokens belonging to the 

support <x>, weighted by the value of the elements of the P-invariant vector x. 

A P-component is the subnet associated with a P-invariant, according to the defini-

tion: 

The P-component [x] of a Petri net N = (P,T,I,O), having a P-invariant x 

with the support <x>, is a subnet of N whose set of places is <x> and 

whose transitions are the input and output transitions of the places of <x>, 

i.e., 

[x] = (Px,Tx,Ix,Ox) : 

Px = <x>, 

Tx = {°p : p ∈ Px} ∪ {p° : p ∈ Px}, 

Ix =  (Px × Tx) ∩ I, 

Ox =  (Px × Tx) ∩ O. 

Having in consideration the discussion of the last paragraph of the topic on conser-

vation, it becomes evident that the determination of invariants is a sustained method for 

the verification of a subnet that is responsible for the modeling of finite resources. If a 

P-component is found which coincides with that subnet, then that subnet satisfies the 

conservation property required for the modeling of the finite resources allocation. 

Transition invariants 

The notion of transition invariant, or T-invariant, of a Petri net is associated with a 

set of transitions that, together with their presets and postsets, form a cyclic part of the 

Petri net. It indicates which transitions must fire and how many times each, so that an 

initial marking is repeated. 



26  Petri Nets Concepts 

  

A T-invariant of a Petri net N = (P,T,I,O), with #T = m and an incidence 

matrix C, is a non-negative integer vector y, with m elements, that satisfies 

the relation 

 C · y = 0 (4) 

The interpretation of the vector y is that it contains positive integers in the positions 

corresponding to the transitions belonging to the transition invariant, and zeros every-

where else. Each positive integer denotes how many times the corresponding transition 

must fire in order that the initial marking is repeated. 

In an analogous way as has been done with P-invartants, the support <y>, of a 

T-invariant y, is the set of transitions corresponding to the strictly positive elements of y 

[Levis, 1989], and the corresponding T-component [y] is a subnet whose set of transi-

tions is <y> and whose places are the input and output places of the transitions of <y>. 

2.4.6  Deadlock and liveness 
A deadlock is a marking in which none of the transitions of a Petri net is enabled 

and, therefore, none of them can fire, causing the execution of the Petri net to end. Be-

cause deadlocks may correspond to anomalies in the system design or in its’ Petri net 

model, or may be natural behaviors of a system which should be avoided or require spe-

cial attention, the causes of deadlocks have been extensively studied. The property of 

Petri nets related to deadlocks is liveness. 

A transition ti, of a Petri net N, is live, for an initial marking M0, if, for every reach-

able marking Mj ∈ R(N,M0), a firing sequence from Mj exists which contains ti. A Petri 

net is live for an initial marking M0 if all its transitions are live for M0. 

Real systems tend to be complex, originating large and complex Petri net models 

that make the analysis of liveness very expensive – in terms of computational resources 

– and sometimes unfeasible. For that reason, by relaxing some conditions, different lev-

els of liveness have been defined. So, for a Petri net N, with initial marking M0, a transi-

tion ti is said to be: 

L0-live – or dead – if ti can never be fired. 



Petri Nets Concepts  27 

  

L1-live – potentially fireble – if ti can be fired at least once, i.e., if a mark-

ing Mj ∈ R(N,M0) exists, such that ti is enabled in Mj. 

L2-live – if, for a positive integer k, ti can be fired at least k times in one of 

the firing sequences of S(N,M0). 

L3-live – if ti appears an infinite number of times in some of the firing se-

quences of S(N,M0). 

L4-live – or live – if ti is L1-live for all markings of R(N,M0). 

A Petri net is said to be Lk-live, with k ∈ {0,1,2,3,4}, if all its transitions are 

Lk-live. An L1-live Petri net may also be called almost-live. 

It is important to note that liveness is closely related to reachability. If the liveness 

of a transition depends on its capability for firing, it depends on the reachability of a 

marking that enables it. So, the complexity of both types of analysis – liveness and 

reachability – is equivalent. 

2.4.7  Reachability and coverability trees and graphs 
As invariants, the reachability and coverability trees and graphs are analysis tools 

that reflect the structure of a Petri net and allows the study of its behavior. As the name 

suggests, a reachability tree is a graph that represents the reachability set of a Petri net. 

Each node of a reachability tree is a marking, being the first node the initial mark-

ing. Each transition that is enabled by a given marking is represented by a directed arc, 

connecting the node corresponding to that marking to the node corresponding to the 

marking that results from its firing. 

Fig. 2.6 shows a Petri net with initial marking M0 = (1,0,0,0,0,0) and, in a), the 

reachability tree for that initial marking. In b) is shown the equivalent reachability 

graph. As can be seen, the reachability graph differs from the reachability tree in the 

fact that there are no repeated nodes, originating a more compact representation of the 

reachability set. 



28  Petri Nets Concepts 

  

t6

t3

t4

t5

t1

t2

p1

p2

p3

p4

p5

p6

100000

000100011000

t1 t2

000001

t5

100000

t6t4

000100

000001

t5

100000

t6

001010

t3

a) b)

100000

000100011000

t1 t2

000001

t5

t6

t4

001010

t3

 

Fig. 2.6 – A marked Petri net with a) its reachability tree and b) its reachability graph. 

In section 2.3.1, page 6, a marking M was defined as a mapping of the type 

M: P → ℕ ∪ {0} 

This means that the values of M(p) are non-negative integers. However, it is possi-

ble that the number of tokens in a place grows indefinitely. When that is the case, the 

symbol ω is used to represent an arbitrarily large number of tokens, justifying the use of 

the form 

M: P → ℕ ∪ {0,ω} 

for the definition of a marking. The symbol ω – which may be interpreted as infinity – 

satisfies the following properties: 



Petri Nets Concepts  29 

  

∀ a ∈ ℕ,  ω + a = ω  ∧  ω – a = ω  ∧  a < ω  ∧  ω ≤ ω 

In the Petri net of Fig. 2.3, place p3 is an example for the use of the symbol ω. For 

the initial marking shown, the firing of t2 corresponds to 

(1,0,0,0,0,0) [t2 〉 (0,1,1,0,0,0) 

If  t1 fires next,  

(0,1,1,0,0,0) [t1 〉 (1,0,2,0,0,0) 

And if  t2 fires again,  

(1,0,2,0,0,0) [t2 〉 (0,1,3,0,0,0) 

As this initial sequence shows, if these two transitions – t1 and t2 – keep firing al-

ternately, the number of tokens in p3 will grow indefinitely, the same happening to the 

number of different markings for the Petri net. For these cases, it is impossible to build 

a finite reachability tree. 

The symbol ω allows to represent, with a single tuple, a Petri net marking that cov-

ers any possible marking where the number of tokens in a given place may be arbitrarily 

large. While some authors, like [Peterson, 1981], maintain the designation reachability 

tree even for graphs where the symbol ω appears, i.e., that use the concept of coverabil-

ity, other authors, like [Murata, 1989], use that designation only for bounded Petri nets, 

and prefer the designations coverability tree, or coverability graph [Reisig, 1985a], for 

graphs representing the reachability sets of unbounded Petri nets. 

The algorithm for the construction of the coverability tree, in [Peterson, 1981], 

classifies each node as frontier, terminal, duplicate, or internal, and, with slight adapta-

tions, consists of the following: 

1. Define the initial marking as root of the tree and, initially, as a frontier node. 

2. While frontier nodes remain, do: 

2.1. Select a frontier node x. 



30  Petri Nets Concepts 

  

2.2. If there exists another node y in the tree which is not a frontier node, and has 

the same marking associated with it, i.e., Mx = My, then redefine node x as a 

duplicate node. 

2.3. If no transitions are enabled for the marking Mx, then redefine node x as a 

terminal node. 

2.4. If there are enabled transitions for the marking Mx, then: 

2.4.1. Redefine node x as an interior node. 

2.4.2. For all transitions tj which are enabled for the marking Mx, do: 

2.4.2.1.  Create a new node z in the coverability tree. 

2.4.2.2.  Draw an arc, labelled tj, directed form node x to node z. 

2.4.2.3.  Define node z as a frontier node. 

2.4.2.4.  For each place pi, the marking Mz(pi) is: 

a) If  Mx(pi) = ω, then Mz(pi) = ω. 

b) If there exists a node y on the path from the root to node x such 

that My ≠ Mz ∧ Mz ≥ My ∧ Mz(pi) > My(pi), then Mz(pi) = ω. 

c) Otherwise, Mz(pi) = Mx(pi) – I(pi,tj) + O(pi,tj). 

This algorithm ends, because the reachability tree is guaranteed to be finite [Peter-

son, 1981]. Fig. 2.7 shows an unbounded Petri net and its coverability tree obtained ac-

cording to this algorithm. 

The coverability tree allows several types of analysis. Naturally, being based on the 

coverability property, determining if a given marking is covered is done by mere obser-

vation of the coverability tree. Likewise, the determination of safeness and boundness 

are quite intuitive. If only 0 and 1 appear in the coverability tree, the Petri net is obvi-

ously safe. The Petri net is bounded if and only if the symbol ω never appears in the 

coverability tree. If this happens, the Petri net represents a finite state system, and the 

coverability tree constitutes a state graph that allows answering any question related to 

boundness [Peterson, 1981]. For unbounded Petri nets, it is still possible to determine, 

by exhaustive observation of the coverability tree, the bounds for the places that do not 

have the symbol ω in the reachability tree. Conservation with respect to a weighting 



Petri Nets Concepts  31 

  

vector may also be tested with the reachability tree. If a node in the reachability tree 

presents a symbol ω for a place whose corresponding weight is positive, the Petri net is 

not conservative with respect to that vector. For a bounded Petri net with n places, with 

k nodes in the reachability tree, it is possible to construct a system of k linear equations 

in n + 1 unknowns (corresponding to the n weights of the vector and the constant 

weighted sum) for whose solution several algorithms exist [Peterson, 1981]. 

t3t1

t2p1

p2

p3

100

0111ω0

t1 t2

001

t3

0ω11ω0

t1 t2

0ω1

t3

 

Fig. 2.7 – An unbounded Petri net and its coverability tree. 

Although the coverability graph allows several kinds of analysis, including some 

reachability and liveness questions, it is not powerful enough to answer all reachability 

or liveness questions or to determine which firing sequences are possible. The presence 

of the symbol ω corresponds to a loss of information that limits those kinds of analysis. 

It hides, for example, the fact that a place can only have an odd or an even number of 

tokens, or an increasing or decreasing number of tokens [Murata, 1989]. For example, 

in the Petri net of Fig. 2.7, if t2 fires after some firings of t1, the number of tokens in p2 

increases 1 unit, and then t3 fires but the number of tokens in p2 decreases another unit, 

yet, the symbol ω for the place p2 in the nodes of the reachability tree hides that fact. 



32  Petri Nets Concepts 

  

2.4.8  Reduction and decomposition techniques 
The analysis techniques just discussed, based on matrix equations approaches and 

the coverability tree, have proven to be effective in determining properties of safeness, 

boundness, conservation and coverability, as well as in establishing a necessary condi-

tion for reachability. However, for real systems models, these techniques become too 

demanding in terms of processing resources, especially for analysis problems concern-

ing reachability or liveness. 

In order to reduce the processing cost of analysis of complex Petri nets, reduction 

and decomposition techniques have been developed. These techniques transform a Petri 

net in a simpler one (i.e., with fewer nodes). Because this new net is simpler and smaller, 

it requires a smaller processing effort in the application of analysis techniques. 

There is a considerable diversity of reduction techniques, the simplest of which 

consisting of fusion of places or transitions, in series or in parallel, and elimination of 

place or transitions’ self-loops. The great advantage of these techniques is not only the 

preservation of the nets’ properties after their application, but also the bidirectionality of 

that preservation. I.e., if the original net has the properties of safeness, boundness or li-

veness, then the reduced net preserves those properties, but also, if some of these prop-

erties are verified by the reduced net, then it is guarantied that the original net also veri-

fies the same properties. Therefore, by applying the analysis techniques to the reduced 

net, we obtain the same results as if the original net was used at a lower processing cost. 

There are several more elaborated approaches to reduction methods. In [Valette, 

1979], a method is presented, which allows to analyse the properties of liveness and 

safeness of a Petri net in which one of its transitions has been replaced by a 

macro-transition. In [Suzuki and Murata, 1983] this method is generalized, and some 

ways of refining places of a Petri net using macro-places are proposed. 

2.5  Petri net extensions and high-level Petri nets 

Although the Petri net meta-model presented in the previous chapter – 

place-transition Petri nets, or just PT-nets – is already an evolution of the first Petri nets 

– condition-event Petri nets (CE-nets) – it still belongs to the class of low-level Petri 

nets. The relative simplicity of PT-nets derives from the fact that they are almost a di-

rect result of the application of the ideas presented by Carl Adam Petri in his PhD dis-



Petri Nets Concepts  33 

  

sertation [Petri, 1962] and have the important advantage of being the most adequate for 

an introduction to Petri nets. However, this simplicity also carries disadvantages with it. 

One of the limitations of this meta-model is the complexity of the Petri net models that 

result from its application to “real-world” systems, due to the large number of nodes 

needed. Another disadvantage consists of some limitations of the expressive power of 

the PT-nets meta-model in certain situations. 

As these limitations began to arise, several proposals have been made by the Petri 

net researchers’ community, in the form of changes to the PT-nets meta-model. Exten-

sions to the PT-nets meta-model have been proposed to deal with some of the limita-

tions, but the most important contribution to reduce the real world models’ complexity 

appeared only under the form of what are known as high-level Petri nets. 

2.5.1  Continuous and hybrid Petri nets 
One kind of extension that dramatically changed the discussion on Petri nets con-

sists of considering that the number of tokens on the places of a Petri net may be ex-

pressed as a real number, instead of a non-negative integer. This extension originates 

the continuous Petri net meta-model, which expands the field of application of Petri 

nets beyond its original boundary – the discrete event systems. If only some places have 

a real number expressing their numbers of tokens, we are in the presence of a hybrid 

Petri net, containing a discrete part and a continuous part [David, 2005]. 

2.5.2  Inhibitor and enabling arcs 
These special arcs have been introduced in some extended Petri net meta-models as 

a way of supporting coordination between two or more almost independent processes. 

The coordination supported by these special arcs can be synchronization or prioritiza-

tion. 

Fig. 2.8 illustrates the use of an inhibitor arc (represented by the dashed line ending 

with a small circle) for the establishment of a priority of process A over process B when 

there is an attempt of both processes to simultaneously access a common resource. As 

shown in the example, an inhibitor arc connects a place to a transition. If a token is in 

that place, the transition cannot fire. The inhibitor arc in this example ensures that, if 

tokens are present simultaneously in p2 and p6, t2 will not fire until t5 removes the token 



34  Petri Nets Concepts 

  

that is inhibiting it in p6, thus avoiding the conflict on the simultaneous access to the 

shared common resource, modeled by the token in p3. 

 

Fig. 2.8 – An inhibitor arc giving priority to process A over process B. 

Fig. 2.9 illustrates the use of an enabling arc (represented by the dashed arrow) for 

the synchronization of process B with process A. An enabling arc connects a place to a 

transition, and it works as a normal arc in the sense that the transition to which it is con-

nected will only fire if a token is present in the place where the arc has its origin. The 

difference from a normal arc is that when the transition fires, the token is not removed 

from the place. In the example of Fig. 2.9, the presence of a token in p1 is not enough 

for t1 to fire. Due to the enabling arc, t1 has to wait for a token in p3 so that it can fire. 

t1 t2p2p1

t3 t4p4p3

Process A

Process B

 

Fig. 2.9 – An enabling arc synchronizing process B with process A. 



Petri Nets Concepts  35 

  

These are not the only special arcs that have been proposed to extend the PT-nets 

meta-model. For the version 2.0 of the shobi-PN meta-model, a generalized set of arcs, 

composed by 16 types of special arcs, is presented in [Machado and Fernandes, 2001], 

as one of  two additional specifications to the version 1.0 of the shobi-PN meta-model 

[Machado and Fernandes, 1998]. 

2.5.3  Interpreted Petri nets 
Interpreting a Petri net is to give a concrete meaning to a mathematical model, by 

associating existing entities to its places, transitions and tokens [Valette, 1993]. 

When considering a system that executes some kind of processing, the operations 

of this processing are associated to places or to transitions of a Petri net model. An op-

eration that is associated to a place is considered to be executing during the whole pe-

riod of time in which the place is marked. When associated to a transition it is supposed 

to be indivisible and executed instantaneously when the transition fires. 

Some operations may not be executed immediately after the end of the preceding 

ones. Their execution may depend on the values of some data. Those situations are 

modeled through the association of supplementary firing conditions to the transitions 

that represent those operations. Therefore, in order for the firing of these transitions to 

occur they need to be enabled but, additionally, the associated supplementary firing 

conditions must be true. The supplementary firing conditions are often found in two or 

more transitions that constitute the postset of the same place, making possible to decide 

which transition can fire in a given moment, thus avoiding the inconveniencies of a 

situation that was described, in the previous chapter, as a structural conflict.  

Synchronized Petri nets 
In the case of open systems (systems that interact with their environment), some of 

the supplementary firing conditions may be associated to external events. This way, be-

cause these transitions must wait for those external events to occur, these Petri nets are 

called synchronized Petri nets and are often used to model, not a whole system, but only 

a controller for part of it. In these cases, the modeler must decide what part of the sys-

tems’ events must be controlled by the controller and what part will be considered ex-

ternal to the controller. The occurrence of these external events will not be decided by 

the controller, but they may be considered important as inputs for the controller, in the 

form of external events for synchronization purposes. 



36  Petri Nets Concepts 

  

Autonomous versus non-autonomous 
Petri nets that integrate characteristics that connect them to their environment are 

also classified as non-autonomous Petri nets, because their execution depends on exter-

nal data. In opposition, Petri nets whose execution does not depend on external data and 

are called autonomous Petri nets. 

Control and data 
Modeling an open system with a Petri net may be considered as structuring it in 

two parts. The first part, called the control part (or just control) is described by the un-

interpreted Petri net and describes all potential sequences of events and activities. The 

second part, called the data part (or operative part, or controlled part) describes the in-

ternal data structures of the system, as well as the transformations and calculations that 

are operated on those data, without specifying in which instants they will take place. In 

addition to the internal data, these calculations may also involve the time and external 

data (information from the environment). 

Considerations on the analysis of interpreted Petri nets 
An interpreted Petri net can be seen as a PT-net to which a data layer has been 

added, by the addition of conditions that make the firing of enabled transitions depend-

ent on the value of data. Although the majority of the Petri net models that are built to 

solve “real-world” problems are interpreted, this dependency of the data for the firing of 

transitions reduces the number of reachable markings of the uninterpreted Petri net (the 

original PT-net to which the data layer was added). Some analysis techniques (like place 

invariants) are still valid for interpreted Petri nets. However, the addition of the data 

layer makes the determination of the properties an undecidable problem, as complex as 

the formal proof of a computer program [Valette, 1993]. This means that the proof of 

some properties of the uninterpreted Petri net cannot be used to prove the same proper-

ties for the interpreted Petri net, but a lot of time may be saved in the modeling of a sys-

tem if some problems have been previously found in the uninterpreted Petri net. 

Structuring the data part 
From what has been said here, it becomes apparent that interpreted Petri nets do not 

really constitute a new meta-model built from the original PT-nets. The basis for this 

statement consists of the fact that no rules or constructs have been defined for structur-

ing the data part. For that reason, several extensions to support the operative part, in-



Petri Nets Concepts  37 

  

cluding timing aspects, have been proposed to Petri nets, originating new meta-models. 

Some of these extensions have also added to the basic PT-net meta-model a gain in ex-

pressive power, which allowed not only the construction of more compact models, but 

also modeling more complex systems. 

Timed and Stochastic Petri nets 
Timed Petri nets (with constant timings), or stochastic Petri nets (with stochastic 

timings with exponential distribution), are often used for performance evaluation of sys-

tems because they allow to perform that evaluation by analytical methods [David, 2005]. 

Time may be associated to places (in P-timed Petri nets) or to transitions (in T-timed 

Petri nets), being possible to transform one model into the other. 

2.5.4  High-level Petri nets 
The purpose of this topic is to explain why the CP-net meta-model was developed 

as well as what is its relation to Petri nets in general, and to high-level Petri nets in par-

ticular. That explanation is presented in the bibliographical remarks at the end of the 

first chapter, of volume 1, of [Jensen, 1997], given by the very creator of CP-nets, with 

a great clarity about the motivations for their development. That is why we chose to use 

that explanation here, in a summarized version, for most of this topic. 

The emergence of several extensions originated a great diversity of Petri net 

meta-models, each one with particular strengths for coping with certain types of model-

ing problems. However, most of those net meta-models had almost no analytic power. 

Besides, it often turned out to be a difficult task to translate an analysis method devel-

oped for one net model into another. 

The first meta-model of high-level Petri nets – Predicate/Transition Nets (PrT-nets) 

– designed to be of general purpose applicability, was presented in 1981 by Genrich and 

Lautenbach (and improved by Gendrich in 1987), forming a “nice” generalization of 

PT-nets and CE-nets. Because PrT-nets can be formally related to PT-nets and CE-nets, 

it is possible to generalize most of the basic concepts and analysis methods of these 

models, so that they also become applicable to PrT-nets. However, the generalization of 

the analysis methods of invariants, for application to PrT-nets, presented some technical 

problems, because the variables that appear in the arc expressions also appear in the in-

variants, making their interpretation prone to errors. 



38  Petri Nets Concepts 

  

The first version of Colored Petri Nets (CP81-nets) was defined by Jensen, in 1981, 

with the intent of overcoming that problem. The main ideas of this Petri net meta-model 

are directly inspired by PrT-nets, but they use functions attached to arcs (instead of ex-

pressions) that eliminate the presence of variables in invariants, making their interpreta-

tion non-problematic. However, the functions attached to arcs in CP81-nets are often 

more difficult to interpret than the expressions attached to arcs in PrT-nets. This fact, 

and the strong relation between the two meta-models, inspired Jensen to propose, in 

1985, an improved meta-model, named High-level Petri Nets (HL-nets), combining the 

qualities of PrT-nets and CP81-nets. But because that name began to be used as a general 

classification for PrT-nets, CP81-nets and HL-nets, Jensen decided to change the name 

of HL-nets to Colored Petri Nets (CP-nets), to avoid confusion. 

CP-nets have two different representations, with formal translations defined be-

tween both, in both directions. The expression representation is nearly identical to 

PrT-nets (in their form presented in 1981), and was used to describe systems, while the 

function representation is nearly identical to CP81-nets, and was used for all the different 

kinds of analysis. Nevertheless, because the linear function representation has turned 

out to be only necessary for invariant analysis, at present the expression representation 

is used for all purposes, except for the calculation of invariants. 

Jensen refers that several other classes of high-level Petri nets have been defined, 

which are quite similar to CP-nets, but use different inscription languages (e.g., alge-

braic nets [Dimitrovici et al., 1991], CP-nets with algebraic specifications [Vautherin, 

1987], many-sorted high-level nets [Billington, 1989], numerical Petri nets [Billington, 

1988], [Symons, 1978], OBJSA nets [Battiston et al., 1988], PrE-nets with algebraic 

specifications [Kramer and Schmidt, 1987], Petri nets with structured tokens [Reisig, 

1991], and relation nets [Reisig, 1985b]). 

In [Gerogiannis et al., 1998], a comparative presentation, evaluation and categori-

zation of Petri nets meta-models is made, where hierarchical high-level Petri nets have 

been classified as having a “very high” level in the criteria: descriptive power, degree of 

difficulty in mastering the method, compactness, degree of supporting encapsula-

tion-abstraction-refinement and degree of specifying communication, as opposed to 

low-level Petri nets, which have obtained a “low” level in most of those criteria, except 

for the last one, where their obtained level was “medium”. In contrast, for the criterion 

ease of analysis, the situation was the opposite, i.e., low-level Petri nets obtained a level 



Petri Nets Concepts  39 

  

of “very high”, while hierarchical high-level Petri nets were assigned a level of only 

“medium”. 

2.6  Conclusions 

Petri nets are a graphical formalism with an underlying strong mathematical foun-

dation that can be applied in systems specification, analysis and verification. They rep-

resent systems as a structured set of interconnected active and passive elements – transi-

tions and places connected by arcs. They are also executable through a mechanism 

called firing of transitions, which removes tokens from some places and adds tokens to 

other places. A system state is represented by a particular distribution of tokens. Petri 

nets are particularly adequate to describe and analyze systems that are characterized as 

asynchronous, distributed, parallel and nondeterministic. 



40  Petri Nets Concepts 

  



 

 41 

Chapter 3 
 
CP-nets for Animation Prototypes 

This chapter presents a proposal of a technique for modeling high-level user re-

quirements of the functionalities of workflows (i.e., the business processes to be auto-

mated by those workflows) in UML use case diagrams and some kind of stereotyped 

sequence diagrams, and, by applying simple transformation rules, deriving CP-nets 

from those UML models. The simulation of those CP-nets will control animation proto-

types that will be used to submit the modeled requirements to stakeholders’ validation. 

3.1  Requirements validation at early stages 

Requirements elicitation is all about learning and understanding the needs of users 

and project sponsors with the ultimate aim of communicating these needs to the system 

developers [Zowghi and Coulin, 2005]. Getting the right requirements is considered as a 

vital and difficult part of software development projects. Modeling and model-driven 

approaches provide ways of representing the existing or future processes and systems 

using analytical techniques with the intention of investigating their characteristics and 

limits [Machado et al., 2005a]. 

The validation of functional user requirements is a cyclic process, as depicted in 

Fig. 3.1. The first step of that cycle consists of the elicitation of the requirements, as 

shown in Fig. 3.1a. On the second step, a model of the system’s functionalities is built, 

according to the elicited requirements. Finally, on the third step, the model is submitted 

to the appreciation of the stakeholders (users) in order to validate it. But, most likely, 

this first model does not receive a complete validation, implying a redefinition of the 



42  CP-Nets for Animation Prototypes 

  

requirements, originating a new cycle, as represented in Fig. 3.1b. This cycle may need 

to be repeated more times, until a complete validation of the model is achieved. 

 

 

a)                                                                         b) 

 

Fig. 3.1 – The requirements validation cycle. 

Naturally, the costs involved in each cycle are proportional to the complexity of the 

model. Furthermore, the stakeholders involved in the early stages of the requirements 

process are, typically, the persons with the highest rank in the organization’s hierarchy, 

who are usually neither interested in detailed systems’ descriptions (their interests are 

essentially confined to the business level), nor willing to spend more than just the 

strictly indispensable time with the requirements validation task. In order to reduce as 

much as possible these costs, the detail of the models used in these early stages of the 

requirements process must also be kept reduced to the minimum needed to satisfy the 

higher ranked stakeholders’ interest. 

3.2  High-level UML modeling 

UML use case diagrams are a quite adequate tool to describe user requirements at a 

first high level of abstraction. These diagrams constitute a suitable means for delimiting 

the system boundaries, for identifying the functionalities that should be provided by the 

 
Build 

a 
Model 

 
Validate 

the 
Model 

 
Elicit 

Requirements 

 
Change 

the 
Model 

 
Resubmit 
the Model 

to Validation 

 
Redefine 

Requirements



CP-Nets for Animation Prototypes  43 

 

system, and for affecting external actors with specific use case functionalities. Addi-

tionally, brief textual descriptions may be provided in natural language for each use case. 

These diagrams are normally constructed by the developers in an attempt to document 

the elicited requirements. With the support of those textual descriptions, stakeholders 

can read and use these diagrams to recognize the main functional areas of the system to 

be designed. 

General functionalities of the uPAIN system are inscribed in the UML use case dia-

gram depicted in Fig. 3.2. A set of additional use case diagrams, as the one of Fig. 3.3, 

have been constructed to refine some of the use cases existent in Fig. 3.2. The corre-

sponding textual descriptions have also been obtained. 

 

Fig. 3.2 – UML use case diagram for the uPAIN system. 

With the exception of just a few «uses» and «extends» relationships that may already 

be shown between use cases, it turns out to be obvious that use case diagrams do not 

practically say anything about how the system should be designed, in order to supply 

the identified functionalities. A further step on that direction may be provided by se-

quence diagrams in order to illustrate the desired dynamic behavior in what concerns its 



44  CP-Nets for Animation Prototypes 

  

functional interaction with the environment. These diagrams are also to be constructed 

by the developers. Stakeholders can also read them. However, stakeholders are not com-

fortable with all the details these diagrams can entail. 

{U0.1.1} Inject
Drug

{U0.1} Bolus Request

Patient

{U0.1.5}  Configure
Drug Parameters

Medical Staff

{U0.1.4}  Validate
User

{U0.1.3}  Manage
Drug Administration

«uses»

«uses»
{U0.1.2} Request

Bolus «uses»

PCA

 

Fig. 3.3 – UML case diagram detailing the use case {U0.1} Bolus Request. 

3.2.1  Stereotyped sequence diagrams 
At the analysis phase of system development, we adopt a stereotyped version of 

UML sequence diagrams, where only actors and use cases are involved in the sequences, 

since no particular structural elements of the systems are known yet. This is illustrated 

by the sequence diagram of Fig. 3.4, whose purpose is to model the exchange of mes-

sages among the external actors and use cases depicted in Fig. 3.3, thus representing just 

a small increase in semantics detail to the use case diagram. Sequence diagrams of this 

kind allow a pure functional representation of behavioral interaction with the environ-

ment and are particularly appropriate to illustrate workflow user requirements. Addi-

tionally, these stereotyped sequence diagrams keep the model detail at the higher level, 

making them the most adequate for the early stages of user requirements modeling. 

The main aspect that makes our stereotyped UML sequence diagrams contrast with 

the traditional ones consists of the fact that these already involve system objects in the 

interaction with external actors, implying that those objects must be previously identi-

fied. One important issue concerning objects identification and building object diagrams 

is that they already model structural elements of the system, which is clearly beyond the 



CP-Nets for Animation Prototypes  45 

 

scope of the user requirements. Additionally, the use of this kind of traditional sequence 

diagrams at the first stage of the analysis phase (user requirements modeling and valida-

tion) requires a deeper intervention of modeling skills that are hardly understandable to 

most stakeholders, making more difficult for them to establish a direct correspondence 

between what they initially stated as functional requirements and what the model al-

ready describes. Therefore, a validation of the user requirements resulting from such an 

advanced model is not only more difficult to achieve, but also less trustworthy and less 

ensuring that the resulting system will correspond effectively to the stakeholders expec-

tations. 

Fig. 3.4 depicts one stereotyped UML sequence diagram for the uPAIN system that 

describes one macro scenario where a patient requests a bolus. That request may be ac-

cepted by the system or originate a request for an explicit medical decision. In the later 

case, the doctor may decide to authorize the bolus or to reconfigure the PCA parameters. 

sendRequest()

ProcessRequest()

Patient

{U0.1.2} Request
Bolus

{U0.1.3}  Manage
Drug Administration

PCA Medical Staff

{U0.1.1} Inject
Drug

{U0.1.4}  Validate
User

sendOrder()

requestMedicalDecision()

sendID(id)

sendOrder()

reconfigureDrugParams(id,params)

sendID(id)

{U0.1.5}  Configure
Drug Parameters

sendConfiguration(params)

authorizeDrugAdministration(id)

alt

alt

{SD0.1#1} Bolus Request

inject()

inject()

storeConfiguration(params)

 

Fig. 3.4 – UML sequence diagram of a macro-scenario for the uPAIN system. 

The integration of several scenarios into only on sequence diagram (for a macro 

scenario) is possible due to the new mechanisms of UML 2.0 (alt-blocks, in this case) in 



46  CP-Nets for Animation Prototypes 

  

supporting different kinds of frames. As can be seen in the diagram, this first step is de-

cided by the use case {U01.3} Manage Drug Administration. The first frame of the 

macro scenario (accept bolus) corresponds to the first section of the outer alt-block. The 

second section of the outer alt-block corresponds to the scenario in which the use case 

{U01.3} Manage Drug Administration decides to request a medical decision. The sec-

ond and third frames correspond to the two sections of the inner alt-block, where the 

doctor may decide to authorize the bolus or to reconfigure the PCA parameters. 

Some more stereotyped UML sequence diagrams have been constructed to capture 

the main system scenarios. 

3.3  Colored Petri Nets 

In the previous chapter, the power of low-level Petri nets was presented and ex-

plained in its several aspects. The most important limitations of low-level Petri nets and 

some of their most important extensions, as well as more powerful Petri net languages 

(high-level Petri nets) were also discussed. Since Colored Petri Nets (CP-nets) and 

CPN-Tools were used in the uPAIN demonstration case, a brief discussion and a defini-

tion of CP-nets are presented here. 

Colors are the most important constituent of the CP-net meta-model, in the sense 

that they represent the groundwork for all the other elements that distinguish CP-nets 

from low-level Petri nets. A color is a value that can be bound (associated) to a token. 

This association of values to tokens increases dramatically the expressive power of Petri 

nets. Arc expressions use variables that can also be bound to colors, making the evalua-

tion of the expressions dependant of colors. The colors that are bound to tokens result 

either from the evaluation of the expressions of the output arcs of a transition, or from 

initialization expressions that are associated to places and evaluated in the beginning of 

the execution of the CP-net to provide an initial marking. Variables are also used in 

boolean expressions, called guards, that are associated to transitions and make the oc-

currence (or firing) of transitions dependent on the colors that are bound to the guards’ 

variables. Furthermore, the occurrence of a transition depends not only on the presence 

of a certain number of tokens in its input places, but also on the colors that are bound to 

those tokens. 



CP-Nets for Animation Prototypes  47 

 

3.3.1  Structure 
The definition of a non-hierarchical CP-net, which can be found in [Jensen, 1997], 

is as follows: 

A non-hierarchical colored Petri net is a tuple 

 CPN = (Σ,P,T,A,N,C,G,E,I) 

that satisfies the following requirements: 

(i) Σ is a finite set of non-empty types, called color sets. 

(ii) P is a finite set of places. 

(iii) T is a finite set of transitions. 

(iv) A is a finite set of arcs such that: P ∩ T = P ∩ A = T ∩ A = ∅. 

(v) N is a node function:  N: A → P × T ∪ T × P. 

(vi) C is a color function:  C: P → Σ. 

(vii) G is a guard function:  G:T → {expressions} such that: 

 ∀ t ∈ T: [Type(G(t)) = {true, false} ∧ Type(Var(G(t))) ⊆ Σ]. 

(viii) E is an arc expression function:  E: A → {expressions} such that: 

 ∀ a ∈ A: [Type(Var(E(a))) ⊆ Σ  ∧ Type(E(a)) = C(p(a))MS] 

 where p(a) is the place of N(a). 

(ix) I is an initialization function:  I: P → {closed expressions} such 
that: 

 ∀ p ∈ P: [Type(I(p)) = C(p)MS]. 

 

The interpretation of this definition is as follows: 

(i)  The set Σ of color sets 

The set Σ of color sets determines the types, operations and functions 

that can be used in the net inscriptions (arc expressions, guards, initiali-

zation expressions, etc.). 

(ii), (iii) and (iv)  The sets P, T and A 

As in low-level Petri nets, the places, transitions and arcs distinguish 

from each other because they are entities with different semantics and 

characteristics. Therefore, the sets P, T and A are required to be mutu-

ally disjoint, as expressed in (iv). However, this definition does not for-

bid the net structure to be empty (i.e., P ∪ T ∪ A = ∅ is allowed). This 



48  CP-Nets for Animation Prototypes 

  

allows a modeler to write the declarations for a CP-net (the definition of 

the set of color sets for that CP-net) and submit them to a syntax check, 

with the CPN-Tools, before beginning to draw the net structure. 

(v)  The node function N 

By mapping arcs into pairs of nodes, the node function N tells us what 

are the source and destination nodes of each arc. For instance, N(a) = 

(p3, t2) means that the arc a has the place p3 as its source node and the 

transition t2 as its destination node.  

In CP-nets the existence of more than one arc having the same input and 

output nodes is allowed. This is why the set of arcs is defined by means 

of a specific set A, together with a mapping of its elements into the ele-

ments of P × T ∪ T × P, and not as a mere subset of P × T ∪ T × P, as is 

the case with low-level Petri nets. 

It is also allowed for a node to be isolated, i.e., having a node that is not 

connected by arcs to any other node of the CP-net. This situation may 

occur intentionally, when the modeler inserts an isolated node in the 

model, or unintentionally, when, for a given binding, the arc expres-

sions of all the input and output arcs of a node evaluate to the empty 

multi-set (a multi-set may be seen as a set that accepts multiple occur-

rences of the same element). If an arc expression always evaluates to 

the empty multi-set, that is equivalent to the inexistence of the corre-

spondent arc, (this is the equivalent situation of an arc with a weight of 

zero, in low-level Petri nets). 

(vi)  The color function C  

The mapping of each place to a color set, given by the color function C, 

represents the obligation of every token color in a given place p to be-

long to the same color set. Therefore, C(p) represents the color set asso-

ciated to the place p. 

(vii), (viii) and (ix)  Type(argument) 

The expression Type(argument) is used to designate the color set to 

which the value of argument belongs. 



CP-Nets for Animation Prototypes  49 

 

(vii) and (viii)  Var(argument)  

The expression Var(argument) designates the set of all the variables 

used in argument. 

(vii)  The guard function G  

The mapping of each transition to a boolean expression, given by the 

guard function G in (vii), establishes that each transition t must have a 

guard G(t) conditioning its occurrence. In order to ensure consistency, 

the CPN-Tools assume that the closed expression true is the guard asso-

ciated to every transition to which the modeler did not explicitly add an 

expression as its guard. Type(G(t)) = {true, false} means that the type of 

a guard must be boolean, and Type(Var(G(t))) ⊆ Σ means that all the 

variables used in the guard must be of types belonging to the color sets 

of the CP-net. 

(viii)  The arc expression function E 

The arc expression function maps each arc a to an expression E(a) (an 

arc expression), i.e., each arc must have an expression attached to it. 

Additionally, this expression must satisfy two conditions: (1) its vari-

ables must be of types belonging to the set of color sets declared for the 

net; and (2) its type must be C(p(a))MS, i.e., the arc expression must 

evaluate to a multi-set over the color set that is attached to the place to 

which the arc is connected. This second condition contains two very 

important features: 

a) The first feature obligates all of the arcs connected to a given place to 

have expressions that generate values of the same type of the tokens 

that are allowed into that place. The colors (or values) of the tokens 

that are put into a place are generated by the evaluation of the expres-

sions of its input arcs. In order to be capable of removing tokens from a 

place, the expressions of its output arcs must evaluate to colors of the 

same type of the colors of the tokens. 

b) The second feature is the need for the type of the arc expressions to be 

multi-sets. It may be necessary for one arc to move more than one to-



50  CP-Nets for Animation Prototypes 

  

ken at a time. For that purpose, its expression must be capable of gen-

erating multiple colors in one evaluation. This is only possible if the 

expression evaluates to a multi-set. For instance, if we want an arc ex-

pression to generate two tokens at a time, it must be of the form 

2`(expr) 

However, when an expression is required to generate only one value, 

the CPN-Tools allow the simplified form 

expr 

 instead of 

1`(expr) 

(ix)  The initialization function I 

The initialization function maps each place p into a closed expression of 

type C(p)MS, i.e., a multi-set over the color set of the place p. A closed 

expression is an expression that does not contain variables and, conse-

quently, it always evaluates to the same color, for every possible bind-

ing. Its purpose is to provide an initial state for the CP-net, i.e., an initial 

marking. Because a state does not require tokens in every place of the 

net, the initialization expression is not mandatory. Analogously to (viii) 

it may have the form 

expr 

instead of 

1`(expr) 

when only one token is needed for a given place. 

3.3.2  Behavior 
With the exception of the additional condition imposed by guards to the firing of 

transitions, the behavior of CP-nets follows, basically, the same rules as for PT-nets. 

Each input place of a transition has a number of tokens that is expressed as a multi-set 

over the color set that is associated to the place. The number of elements of that 

multi-set is the number of tokens in the place. As with PT-nets, the number of tokens 



CP-Nets for Animation Prototypes  51 

 

that a transition needs in each input place, to become enabled, must be greater or equal 

to the number of tokens that is determined by the evaluation of the arc expressions of 

the corresponding input arcs. 

However, because the evaluation of arc expressions depends on bindings, the state 

of enablement of a transition depends also on bindings. Additionally, for a transition to 

be considered enabled its guard must also evaluate to true for the same binding that is 

used to evaluate the arc expressions. Therefore, it is necessary to specify the binding b 

for which a transition t is enabled, in a given marking M. That is expressed: 

t is enabled in M for the binding b 

or 

(t,b) is enabled in M 

where (t,b) is what is called a binding element. 

When a transition t fires in the binding b we say that (t,b) occurs. 

3.3.3  Dynamic character of the structure 
It has already been said above (in (v), the explanation of the node function) that an 

arc expression may evaluate to the empty multi-set. It was also said that, if an expres-

sion evaluates to the empty multi-set for every possible binding, that situation has an 

equivalent in low-level Petri nets that consists of considering that a non-existent arc is 

an arc with a weight of zero. However, this similarity exists only in a case that is con-

sidered a design abnormality in a CP-net (an arc expression that always evaluates to the 

same multi-set, i.e., an arc expression that is a closed expression). 

This discussion raises a very important difference between these two types of Petri 

nets. While, in low-level Petri nets, arc expressions are constants (integer weights), de-

termining a static structure, in CP-nets arc expressions use variables and, consequently, 

they normally evaluate to different multi-sets, depending on the bindings that take place 

during the net’s execution. This non-deterministic variability, which is naturally in-

duced by the diversity of bindings that take place during the CP-net execution, may also 

be explicitly imposed by the modeler, by the use of  if-then-else or case structures in arc 

expressions. Therefore, during the execution of a CP-net everything works as if its 

structure was dynamic. Depending on the evaluation of the net’s arc expressions, each 

arc may exist (i.e., if it does not evaluate to the empty multi-set) or not. Guards have 



52  CP-Nets for Animation Prototypes 

  

also a very important role in this dynamic character of the structure of CP-nets. When a 

guard evaluates to false the CP-net behaves as if the corresponding transition, along 

with all its surrounding arcs, did not exist. 

3.3.4  Code segments 
Code segments are pieces of sequential code that may be associated to transitions. 

The code segment of a given transition is executed each time a binding element of that 

transition occurs. Code segments may contain an input pattern, an output pattern, a code 

guard and an action body. The action body contains the executable code. The input pat-

tern is used to pass the values of some of the variables of the occurring binding element 

to the executable code. This allows the code segment to use, but not change, the values 

of data from the net during its execution. However, by the use of an output pattern it is 

possible to change the values of some variables in the code segment, as long as those 

variables do not appear in the input arcs’ expressions or in the guard (because these in-

fluence the transition’s enabling). 

Code segments are an extremely powerful instrument. Through them, a CP-net may 

be used to control, during its execution, the launching of virtually any action that is usu-

ally external to a CP-net’s execution.  Among many other things, they may be used to 

write data to output files, read from input files, or, as was done in our demonstration 

case, execute graphical animations related to the modeled system. Examples of code 

segments may be seen in several of the transitions of figures 3.11 and 3.12. 

3.3.5  Equivalent PT-nets 
It can be demonstrated [Jensen, 1997] that any PT-net may be represented by a 

CP-net. Conversely, it can be demonstrated that the reverse transformation is also al-

ways possible, i.e., any CP-net can be represented by an equivalent PT-net. The most 

important aspect of these equivalences is that all the properties that are verified by a 

PT-net are also verified by its equivalent CP-net, and vice-versa. This does not imply, 

however, that it is necessary to obtain the equivalent PT-net, of a given CP-net, to check 

the properties of the later, because all the analysis methods are directly applied to the 

CP-nets. 



CP-Nets for Animation Prototypes  53 

 

3.3.6  Hierarchy 
As was said in the previous chapter, hierarchy is the approach by which Petri nets 

may be structured, to allow an incremental model design, weather it is by a top-down, 

bottom-up, or mixed strategy, in a very similar way as procedures and functions do for 

structured programming. 

It was said above that any non-hierarchical CP-net can be translated in a behavior-

ally equivalent PT-net, and vice-versa, and that this allows the use, with CP-nets, of the 

same analysis techniques that are used for PT-nets. In a similar way, CP-nets implement 

hierarchy by means of two formal constructs – substitution transitions and fusion places 

– providing a well-defined semantics that allows to demonstrate that any hierarchical 

CP-net can be translated into a behaviorally equivalent non-hierarchical CP-net, and 

vice-versa, thus making it possible to apply to hierarchical CP-nets the same analysis 

techniques that are used for non-hierarchical CP-nets. 

In informal terms, a substitution transition may be defined as a special type of tran-

sition that has a corresponding subnet describing the detail of the action represented by 

that transition. It may have begun by being an ordinary transition in a single 

non-hierarchical CP-net, which models a first level of detail of a system, receiving to-

kens from its input places and placing tokens in its output places. 

 

Fig. 3.5 – An example CP-net before applying the MoveToSubPage command to T1. 



54  CP-Nets for Animation Prototypes 

  

When the modeler decides to model the detail of the action that a transition repre-

sents at the first level, in CPN-Tools he simply applies the MoveToSubPage command (see 

Fig. 3.5) to the transition. As a result, a new page is created, containing a copy of the 

transition, along with all its surrounding arcs and places. Fig. 3.5 shows an example of a 

CP-net, before applying the MoveToSubPage command to the transition T1. Fig. 3.6a 

shows the changes that occurred in the CP-net of Fig. 3.5 after applying the MoveToSub-

Page command to T1, and Fig. 3.6b shows the new subpage that was automatically cre-

ated by the MoveToSubPage command. 

 

Fig. 3.6 – The CP-net of Fig.3.5 after applying the MoveToSubPage command to T1. 

The original non-hierarchical CP-net has now become a hierarchical CP-net com-

posed by two pages. The originally unique page (the one named “Top”) has now be-

come a superpage, because it contains a supernode (the substitution transition T1). The 

newly created page is a subpage, because it contains the detail of a supernode. After ap-

plying the MoveToSubPage command to T1, it is transformed into a substitution transition 

(see Fig. 3.6a). That is revealed by the new tag attached to it, containing the name of the 

corresponding subpage (it is automatically named with the same name of the original 

transition). 

The tags In, Out and I/O that appear on the places P1, P2 and P3, respectively, of the 

subpage “T1”, indicate that these places are, respectively, an input port, an output port 

and an input/output port of the subpage. They are also fusion places, i.e., the places P1, 



CP-Nets for Animation Prototypes  55 

 

of the page “Top”, and P1, of the subpage “T1” constitute a fusion set, which means that 

they are two appearances, of the same place, in different pages of the hierarchical 

CP-net (the places named P2, of both pages, make up another fusion set, and the ones 

named P3 make up a third fusion set). In practical terms, it means that any token that is 

put into one of the places of a fusion set also appears in all of the places that belong to 

the same fusion set. Likewise, any token that is removed from of one of the places of a 

fusion set also disappears from all of the places that belong to the same fusion set. The 

places of a superpage that correspond to the ports of a subpage are called sockets. 

The net of the newly created subpage may then be changed to reflect the detailed 

action of the substitution transition (see Fig. 3.7b). The subpage may also be renamed, 

originating the same automatic renaming of the tag of the corresponding substitution 

transition (see Fig. 3.7a). If considered convenient, after the creation of a subpage the 

places that constitute its ports may be renamed at will (as was done in the CP-net of 

Fig. 3.10), because CPN-Tools maintain internal identifiers for each node, and it is 

those identifiers that are used to assure the connection between each port and its corre-

sponding socket. 

 

Fig. 3.7 – The CP-net of Fig.3.6b after a possible modeling of the detail of T1. 

In order to keep this example simple, the CP-net of the page “Top” contains just 

the minimum set of nodes necessary to illustrate the process of transforming it into a 



56  CP-Nets for Animation Prototypes 

  

hierarchical CP-net. It does not contain any other node except the substitution transition 

and its input and output places. For that reason, if the modeler decided to refine the 

transition T1 directly in the original CP-net, instead of creating a subpage, he would ob-

tain a non-hierarchical CP-net exactly coincident with the one of Fig. 3.7b. However, in 

a real modeling situation, the CP-net of a superpage contains other nodes that are not 

transferred to a subpage when a transition is moved to it for detailing purposes. That can 

be seen in the examples of the Figures 3.11 and 3.12. The substitution transition “Bolus 

Request” of Fig. 3.11 is detailed in a subpage containing the CP-net of Fig. 3.10. The 

only input place of the substitution transition “Bolus Request”, called “Patient Option 

Chosen” is fused to the only input port of the CP-net of Fig. 3.10 – the place named 

“Strong Pain”. Similarly, the only output place of the substitution transition “Bolus Re-

quest”, called “Start End” is fused to the only output port of the CP-net of Fig. 3.10 – 

the place named “Done”. None of the other nodes of the CP-net of Fig. 3.11 is repre-

sented in the “Bolus Request” subpage. In this case, if the modeler decided to refine the 

transition “Bolus Request” directly in the CP-net of Fig. 3.11, the resulting CP-net 

would be much larger and more difficult to read than the hierarchical CP-net. 

Formal definitions for hierarchical CP-nets and their behavior are also presented in 

[Jensen, 1997], but because the construction of hierarchical CP-nets from 

non-hierarchical CP-nets is easily understandable by means of plain informal descrip-

tions and explanations (contrarily to what happens with the introduction of 

non-hierarchical CP-nets, departing from PT-nets), we decided not to present them here. 

3.4 CP-nets for Animation Prototypes 

The behavior of the animation prototypes (proposed in this dissertation) results 

from translations of sequence diagrams into CP-nets. The transitions of these CP-nets 

present a strict one to one relationship with the messages in the sequence diagrams, i.e., 

for each message in a sequence diagram, one transition, in the corresponding CP-net, is 

created. In order to make that correspondence more evident, the name of each transition 

matches exactly the name of the corresponding message in the sequence diagram. Two 

simple rules were used for that translation: (1) Fig. 3.8 illustrates the rule for translating 

two successive messages in a sequence diagram (Fig. 3.8a) into a CP-net (Fig. 3.8b); 

(2) Fig. 3.9 illustrates the rule for translating an alternative block in a sequence diagram 

(Fig. 3.9a) into a CP-net (Fig. 3.9b).  



CP-Nets for Animation Prototypes  57 

 

With these transformation rules, the color set of all of the places is the color set E 

(or unit), i.e., all the tokens are the uncolored e token (equivalent to the tokens in 

PT-nets), as can be seen in Fig. 3.10. This is why the arc expressions were omitted in 

Figs. 3.9 and 3.10. 

 

Fig. 3.8 – Transformation of successive messages. 

Because all the tokens are e tokens, the evaluation of the expressions used in the 

conditions of the output arcs of a transition that has two alternative output places (e.g. 

transition Message1 of Fig. 3.9b) cannot, obviously, depend on the color of the tokens. 

Instead, the expressions in those conditions use variables that are bound by the Output 

pattern of the code segment of that transition. That situation is illustrated by the transi-

tions Process Request and Request Medical Decision of the example CP-net of Fig. 3.10. 

 

Fig. 3.9 – Transformation of an alternative block. 

By just observing Figs. 3.9 and 3.10, it results clear that, with these transformation 

rules, a place of the CP-net corresponds to the interface between two consecutive mes-

sages of the sequence diagram. Therefore, a place represents a part of a use case of the 

stereotyped sequence diagrams, which responds to a precedent message with a subse-

quent message. If the refinement of a given use case is modeled with a new sequence 



58  CP-Nets for Animation Prototypes 

  

diagram, this new sequence diagram can, in turn, be transformed into a refinement sub-

net. Although it is not possible to create sub-pages for places (there are no such things 

as “substitution places”), those places may be replaced, at the same hierarchy level 

where they originally appear, by refinement subnets (composed of one input place, one 

output place, and one substitution transition between them) to support the refinement of 

use cases. This way, the refinement subpage of each substitution transition of such re-

finement subnets represents the refinement of part, or the totality, of a use case. 

Typically, those refinement subnets will be built after the application of the 4SRS 

(4 step rule-set) technique [Machado et al., 2005b] that transforms users requirements 

into architectural models representing system requirements, by mapping use cases into 

system level objects (or components) within a four step approach: (1) object creation, 

(2) object elimination, (3) object packaging and aggregation, and (4) object association. 

Therefore, each transition in those subnets will correspond to the invocation of a 

method of a system object. 

The CP-net of Fig. 3.10 is responsible for the animation of the use case {U0.1} Bolus 

Request (see Fig. 3.3) by executing the scenarios described in Fig. 3.4, each one corre-

sponding to one of the three branches of the CP-net. Those nodes and arcs drawn with 

thinner lines were added in a later phase, and have no semantic correspondence to the 

sequence diagram. They were included for the purpose of tools interoperability, as ex-

plained in chapter 4. 

The CP-net represented in Fig. 3.11 corresponds to the top-level net of the anima-

tion prototype for the uPAIN system. Thick lines were used to represent the elements 

that correspond to the main animation paths. Most of the transitions of this CP-net cor-

respond to the use cases in Fig. 3.2. For example, the refined CP-net of the substitution 

transition bolus request of Fig. 3.11 corresponds to Fig. 3.10. 

Because the transformation rules depicted in Fig. 3.8 and Fig. 3.9 are to be applied 

only to sequence diagrams, direct links between the use case diagram of Fig. 3.2 and the 

CP-net of Fig. 3.11 were not intended to follow explicit rules. Instead, the link between 

the UML diagrams and the CP-nets is obtained in two steps: (1) sequence diagrams are 

constructed after identifying scenarios that involve use cases and actors; (2) CP-nets are 

derived from the sequence diagrams by applying the transformation rules. 



CP-Nets for Animation Prototypes  59 

 

 

Fig. 3.10 – CP-net responsible for the animation of the use case {U0.1} Bolus Request. 

Sequence diagrams transmit partial views for the interaction between the system 

and its environment, allowing the adoption of an evolutionary approach, by considering 

a set of sequence diagrams to have a partial evaluation of the requirements and then pro-

gress with more detailed requirements. In the uPAIN system, the animation prototype 

reflects only a top-level description of the system. After the validation of this top-level 

model, a set of additional animations, based on refined sequence diagrams at the solu-

tion level (where objects would already appear), can be constructed. 



60  CP-Nets for Animation Prototypes 

  

 

Fig. 3.11 – Top-level CP-net of the animation prototype for the uPAIN system. 

3.5 Discussion and conclusions 

In this chapter, a technique for deriving CP-nets from UML models representing 

high-level user requirements of the functionalities of workflows was proposed. To ob-

tain those CP-nets, two transformation rules were suggested. 

One advantage of the transformation rules suggested is that the resulting CP-nets 

are structurally simple and require only uncolored tokens on the workflow paths. This 

would not be the case, if for the transformation rule of an alternative block of a se-

quence diagram (see Fig. 3.9), a conflict place (a place with two output arcs) was used, 

as depicted in Fig. 3.12, instead of a transition with two output arcs, as shown in 

Fig. 3.9b. 



CP-Nets for Animation Prototypes  61 

 

 

Fig. 3.12 – Using a conflict place for the transformation of an alternative block. 

As shown in Fig. 3.12, if a conflict place was used to the transformation of an al-

ternative block of a sequence diagram, the decision whether Message2 or Message3 should 

follow Message1, would have to be taken from the evaluation of guards associated to 

transitions Message2 and Message3, depending on the value (color) of the token in place 

PreCond2. Therefore, the color set of place PreCond2 would have to be other than E. For 

that reason, a color set X was used for the place PreCond2, and a variable x, of that color 

set, was used for the surrounding arcs’ expressions. The variable x would have to be 

bound by the Output pattern of the code segment of the transition Message1. 

At an initial phase of simulations where these CP-nets are to be used, only the con-

trol of animation prototypes, for validation of the workflows by the stakeholders, is in-

tended. For that reason, the uncolored tokens in the workflow paths of the CP-nets is a 

plus, because in case of need of simulations of the CP-net model, of other types than the 

mere control of those animations (e.g. for performance analysis purposes), the change of 

the tokens’ semantics, by means of the addition of colors, would be independent of the 

workflows’ control logic, and, therefore, would not interfere with it. 



62  CP-Nets for Animation Prototypes 

  



 

 63 

Chapter 4 
 
uPAIN Demonstration Case 

As already said, the uPAIN demonstration case was used to experiment and evalu-

ate an approach of user requirements validation by means of the execution of UML 

models. The main idea was, in a first step, to elicit the users’ requirements and represent 

them in UML models. In a second step, these models were presented and explained to 

the stakeholders in order to subject the elicited requirements to a previous validation. 

This previous validation of the elicited requirements through the UML models served 

two purposes: (1) it reduced the number of cycles of reconstruction of animations before 

their complete final validation; (2) the observation of the stakeholders’ reactions to the 

presentation of the UML models and to the animations, allowed to compare the effec-

tiveness of both approaches in what concerns to their relative understandability. 

This chapter describes how the technique presented in chapter 3, CPN-Tools and 

the BRITNeY Animation tool are recommended to be applied to support the building of 

an animation prototype for the uPAIN demonstration case. 

4.1 Animations for requirements’ validation 

The effort to use only elements from the problem domain (external actors and use 

cases) in the user requirements models (use case and stereotyped sequence diagrams) 

and to avoid any reference to elements belonging to the solution domain (objects and 

methods) is not enough to obtain requirements models that are capable of being fully 

understandable to common stakeholders. This difficulty is mainly observable in what 

concerns the comprehension of the dynamic properties of the system within its interac-

tion with the environment. This means that, even with the referred efforts, those static 



64  uPAIN Demonstration Case 

 

requirements models should not be used to directly base the validation of the elicited 

user requirements by the stakeholders. Instead, we use those static requirements models 

to derivate animation prototypes. 

User-friendly visualizations of the system behaviour, automatically translated from 

formal systems’ models specifications, accepting user interaction for validation pur-

poses, have been generically called animations. Despite seeming a good idea, in a con-

text where IT is offering more and more powerful multimedia capabilities, the use of 

animation in user requirements validation, as a means of improving the understandabil-

ity of systems’ models by stakeholders, has been considered by only a small number of 

researchers. 

In [Gemino, 2003] an empirical study has been carried out to comparatively evalu-

ate the effectiveness of animation and narration (voice recordings of diagram explana-

tions complemented with PowerPoint slides) in the process of communication of do-

main information to stakeholders for validation purposes, which may be seen as a sign 

that animation is increasingly drawing the software engineers’ attention as a potentially 

valuable instrument for user requirements validation. The results of that empirical study 

were inconclusive about the effectiveness of animation, as opposed to the success of 

narration, but in our opinion that was due to the fact that, instead of using a meaningful 

user interface, the animations were of a very rudimentary type, simply consisting in 

highlighting the graphical elements of the diagrams while narration is being executed. 

Some papers have been published, reporting the use of animations to ease valida-

tion by stakeholders, as is the case in [Fenkam et al., 2002], where a CORBA API has 

been used to directly interpret VDM-SL specifications of requirements to generate a 

graphical user interface. Scenario-based approaches have also been used in [Ozcan et al., 

1998] as a means of ensuring user orientation, and also in [Uchitel et al., 2004], where 

fluents (boolean system states that model pairs of system actions) have been used to re-

late goals with scenarios and, simultaneously, support animation. In [Winter et al., 

2001], virtual reality is used to support animation techniques when modeling high con-

sequence systems (systems where errors in development have consequences of high 

cost). 



uPAIN Demonstration Case  65 

   

4.2 Tools Integration 

In the uPAIN project, the implementation of the interactive animation prototype 

demanded the usage of several technologies. The integration of tools was mainly based 

on XML files. Fig. 4.1 shows the global architecture of the tool environment used to 

generate the animation prototype. It is composed of a model executor and an animation 

tool. The model executor includes a CP-net editor and a CP-net simulator, both from 

CPN-Tools. The animation tool used corresponds to the BRITNeY Animation tool [BRIT-

NeY]. 

With BRITNeY Animation tool it is possible to use pre-defined plug-ins (or write our 

own plug-ins) for executing some animation behaviour in the model. The pre-defined 

plug-ins include SceneBeans [Pryce and Magee] (an animation framework), message se-

quence charts (for displaying the passing of messages) and plot graphs. The writing of 

our own plug-ins involves the coding of Java classes and the creation of an XML de-

scription of the plug-in. BRITNeY Animation tool will automatically generate the code 

needed for the simulator to know of and use those plug-ins. 

 

Fig. 4.1 – Global architecture for prototype animation. 

It is possible to execute behaviours in the BRITNeY Animation tool while simulating 

models in CPN-Tools. Behaviours are executed through certain SML functions, which, 

in turn, call the corresponding Java methods. The names of the functions correspond to 



66  uPAIN Demonstration Case 

 

those of the Java methods. When an SML function calls a Java method, it simply corre-

sponds to the logic of an RMI call. The method name and arguments are passed over to 

the interface of the BRITNeY Animation tool and the return value of the executed method is 

passed back from the interface. If the method M in class C has the signature 

int M (int x, string y), then it could be invoked as C.M (42, "Hello World"). However, this is just 

an example to explain how to use the Java methods in the CP-net model (see [BRITNeY] 

for complementary explanations). These behaviours, or methods, can be executed any-

where in the CP-net model where an expression is allowed. So, it can be on an arc ex-

pression, code segments on transitions (these are specific for CPN-Tools), and so on. 

This is a nice feature for debugging and for understanding the way the model affects the 

animation. 

The BRITNeY Animation tool can also be executed as a standalone program, using e.g. 

Java WebStart to enable web browser integration. This feature is very useful to generate 

an autonomous animation prototype which allows stakeholders to “play with” without 

the interference and the presence of elements from the development team. This ap-

proach to validation was experimented with and proved to be very effective. This em-

powerment of the stakeholders promoted a deeper involvement of them in the analysis 

phase that not only assured better validation results, but also allowed the complemen-

tary elicitation of workflow requirements. 

The interactive animation prototype for the uPAIN system is depicted in Fig. 4.2. 

The usage of SceneBeans allowed the animation of actors and message passing. Scene-

Beans provides a parser that translates XML documents into animation objects. A Scene-

Beans document is contained within a top-level <animation> element that contains five 

types of sub-elements: (1) a single <draw> element defines the scene graph to be rendered 

(e.g. the icons representing the doctor, the nurse, the patient); (2) <define> elements de-

fine named scene graph fragments that can be linked into the visible scene graph; 

(3) <behaviour> elements define behaviours that animate the scene graph (e.g. the anima-

tion of the drug injection from PCA icon to the patient icon); (4) <event> elements define 

the actions that the animation performs in response to internal events (e.g. the cleaning 

of the info text at the end of the drug injection animation); (5) <command> elements name 

a command that can be invoked upon the animation and define the actions taken in re-

sponse to that command (e.g. the invocation of the behaviours responsible for the drug 

injection animation). 



uPAIN Demonstration Case  67 

   

 

Fig. 4.2 – Interactive animation prototype for the uPAIN system. 

Fig. 4.3 shows an example of a piece of code that was used in our <draw> element. 

This piece of code is responsible for the creation of the icons for the uPAIN system 

cloud (the first <primitive> element, inside the first translate type <transform> element), the 

patient (the second <primitive> element, inside the second translate type <transform> element, 

which, in turn, is inside an <input> element, because the patient icon works as a button) 

and the black ball (the third <primitive> element, inside the third translate type <transform> 

element) that represents the messages between actors. To animate the ball, we used the 

<animate> element, which means that parameters x and y will be animated by the behav-

iours xf_patient_to_system and yf_patient_to_system, respectively. 

Fig. 4.4 shows the behaviours, the commands and the events that are responsible 

for moving the ball from the patient icon to the uPAIN system icon. When the simulator 

invokes the command f_patient_t_system_cmd, the <reset> and <start> elements execute the 

behaviours corresponding to the movement of the ball and the displaying of its textual 

info. When the execution of a behaviour ends, the animation will trigger the associated 

event, and this will start other behaviours, like xball_out (to hide the ball), fadeout_info (to 



68  uPAIN Demonstration Case 

 

hide the textual info), or hide_patientpda_icon (to hide the patient PDA icon). At the end, 

the <annouce> element announces the event. This last action is crucial, because it allows 

the CP-net simulator to capture the event. 

 

Fig. 4.3 – Drawing in SceneBeans. 

Communication between SceneBeans objects in the animation and the CP-net model 

can be done in two ways: (1) asynchronously, here the CP-net model simply invokes a 

command on a SceneBeans object and proceeds simulating, not caring for the moment 

when the animation behaviour that was executed terminates; (2) synchronously, here the 

CP-net model, again, invokes a command on a SceneBeans object, but, instead of just 

proceeding, the CP-net model waits for a particular event to arrive (e.g. the event “ball 

moved from patient to system”). This event would be broadcasted by the animation 



uPAIN Demonstration Case  69 

   

command that was executed when it terminates to let the CP-net model know that this 

animation has completed. 

 

Fig. 4.4 – Defining behaviours, commands, and events in SceneBeans. 

Synchronous interactions with SceneBeans objects must be carefully analyzed; oth-

erwise, animations that should be executed in sequence will be executed concurrently. It 

is necessary to determine which animation behaviours are to be completed before any 

other can proceed (synchronous) and which ones can occur in any order (asynchronous). 

Invocations on SceneBeans objects are asynchronous in the sense that, per default, they 

do not broadcast any event; this has to be specified in the SceneBeans XML specification. 

After creating all the behaviours, commands and events that allow the animation to 

announce events and receive commands from the CP-net simulator, the next step is to cre-

ate Java classes. SceneBeans have the limitation of not allowing the user to input dy-

namic contents. In fact, SceneBeans only allows the creation of animations, based on 

static behaviours, defined in an XML file. The Java classes we created are responsible 



70  uPAIN Demonstration Case 

 

for showing the graphical interfaces of the PDAs and for sending the corresponding user 

(of the animation prototype) inputs to the CP-net simulator. For instance, the Log Window 

that shows all the messages sent between actors demanded the creation of a Java class 

(Messenger) that receives the messages from the CP-net simulator. To add a new message to 

the list of messages of the Log Window, we simply invoke Messen-

ger.createAndShowGUI(“message”). After creating the Java classes, an XML description must 

be constructed so that the BRITNeY Animation tool recognizes them as plug-ins (see 

Fig. 4.5). 

 

Fig. 4.5 – Defining Java classes as plug-ins of BRITNeY Animation tool. 

To access public methods of previously written Java classes (Chat, ScenarioSelector, 

Messenger, Ppda, Dpda, and Npda) and to invoke commands of the SceneBeans object (ob-

ject anim) from the CPN-Tools, plug-ins must be declared and instantiated as objects in 

the index of CPN-Tools. 

Java classes in defined animation plug-ins can be instantiated through SML (Stan-

dard Meta Language) functors that BRITNeY Animation tool generates. SML functors are 

“abstract” SML structures which can be instantiated. A Java object is instantiated by, 

e.g., structure anim = SceneBeans(val name = "Name"), which instantiates an object from the 

SceneBeans class. Methods on the instantiated anim are accessed as public methods de-

fined in the SceneBeans class. Another example is the function SPO ( ) in the transition 



uPAIN Demonstration Case  71 

   

Select Patient Options of Fig. 3.11 that contains the following code to invoke methods to 

our Java objects: 

Messenger.cleanText ( ); 
Ppda.createAndShowGUI (“mainmenu”); 
Ppda.getValueString ( ); 

 

SceneBeans objects provide also some methods to control the animation. For in-

stance, the calling of function move ( ) in the CP-net of Fig. 3.10 consists in an invocation 

of the method invokeCommand to the SceneBeans object anim (Fig. 4.6), which is responsi-

ble for invoking the previously defined commands in the XML file (Fig. 4.4). In this 

case, the invoked command corresponds to the movement of the black ball between the 

actors of the animation. 

 

Fig. 4.6 – Declaring and instantiating objects in CPN-Tools. 

Additionally, it is possible to capture events announced by the animation. In our 

animation prototype we included one CP-net subpage called Events (Fig. 4.8) that is 

composed by two distinct parts: one is responsible for the initial loading of the XML 



72  uPAIN Demonstration Case 

 

animation description (places Start and Running, and transition Init); the other part includes 

the transition Capture Event (captures all the events announced by the SceneBeans anima-

tions and places them, in the form of a string list, in the place Events) and the place Events. 

This place Events belongs to a global fusion set of places that are connected to every 

transition where the capture of specific events is required (see, for instance, the nodes 

and arcs drawn with thinner lines in Figs. 3.11 and 3.12). All these fusion places are 

named EventN (where N is a digit that serves only as a distinguishing character, because 

CPN-Tools do not accept places with the same name, in the same page) and have no 

semantic meaning from the workflows’ point of view. They are only needed for tool 

interoperability. 

 

Fig. 4.7 – Events CP-net subpage. 

4.3 Usability Issues 

According to [ISO 9241-11], usability is considered “the extent to which a product 

can be used by specified users to achieve specified goals with effectiveness, efficiency 

and satisfaction in a specified context of use”. This means that, besides all the technical 

efforts described in the previous two sections of this chapter, the effectiveness of the 

implemented animation prototype to involve stakeholders in the interactive execution of 

the elicited sequence diagrams, complementary elicitation of workflow requirements 

and validation of the requirements model was also a result of a strong investment in us-

ing usability techniques in the construction of this software artefact, namely in what 

concerns its GUI (graphical user interface) and the comfort of exploitation of the anima-

tion prototype. 



uPAIN Demonstration Case  73 

   

The adopted GUI makes use of eight icons on the display: three proactive actors 

(one patient, one medical doctor and one nurse); four reactive actors (one monitor, one 

PCA device and two databases in use at the hospital); and the uPAIN system repre-

sented by a cloud. The adopted GUI should be obvious and intuitive to the stakeholders 

and thus, with the exception of the cloud and the databases, we opted for “concrete” 

icons. When real world objects are represented in an icon (“concrete” icon), individuals 

are likely to find it more meaningful, are often familiar with the items depicted, and find 

it easy to make links between what is shown in the icon and the function it is supposed 

to represent [McDougall et al., 2000]. To symbolize the uPAIN system (a concept 

which is difficult to materialize and to represent), we chose a cloud which constitutes an 

“abstract” icon. Forming strong systematic relations between icons and functions is very 

important, particularly when there are no pictorial alternatives for a given icon function 

[McDougall et al., 2001]. To represent the uPAIN system we wanted an icon that em-

phasized its pervasive and wireless nature. Databases are also represented through an 

“abstract” icon that is a standard way to represent software technology databases. We 

also opted for uniform icons in terms of size because we wanted to avoid stakeholders 

focusing on some of the icons and not others due to size differences; we wanted them to 

have, at the first glance, the notion of the whole GUI. On the other hand, the real sized 

PDA is the biggest element and the only one that detaches from the GUI in terms of size, 

in order to improve the legibility of its contents. 

Whenever one proactive actor is clicked with the mouse, a PDA icon appears 

above it and then, a real sized version of the PDA is also displayed, showing the pre-

defined options, corresponding to possible requests (see Fig. 4.2). Through each proac-

tive actor’s PDA, the stakeholder just has to select the desired option and then the corre-

sponding sequences are executed (each one of these is formally related with one of the 

UML stereotyped sequence diagrams). 

Each time one of the proactive actors is clicked, a black ball (representing the ac-

tor’s request) is sent from the actor towards the cloud. In Fig. 4.8, the stakeholder inter-

acting with the animation prototype chose the “consult patient state” option by using the 

PDA of the medical doctor. The snapshot in Fig. 4.8 corresponds to the exact moment 

in which the monitor is sending to the uPAIN system some physiological indicators 

about the patient; this data exchange is graphically represented by the black ball trajec-

tory in the display. 



74  uPAIN Demonstration Case 

 

 

Fig. 4.8 – Message passing in the animation prototype for the uPAIN system. 

This snapshot also shows a log window, where all the requests and interactions are 

registered. At the same time, underneath the cloud, a textual expression “receiving pa-

tient data” identifies the ongoing request/interaction. A caption, identifying the selected 

option is displayed during the whole action in the upper left corner of the display to 

prevent stakeholders from forgetting the task at hand and to provide them feedback, a 

golden rule of GUI design suggested in [Welie et al., 1999]. It is crucial for stake-

holders that the animation prototype lets them know at what point they are, at any given 

time in a clearly understandable way. Additionally, in Fig. 4.2 it is possible to observe a 

green colored “Ready…” message informing that the animation prototype is ready to 

accept one mouse click in one of the buttons of the displayed PDA. If, in any point of 

the simulation, the actor “uPAIN system” is in processing state, then a spinning globe 

appears inside the cloud and a red colored “Running…” message is presented (see 

Fig. 4.8). 

To assure that the purpose of any graphical entity is clearly apparent and inferred 

(an important cognitive dimension in GUI design to deal with expressiveness [Pane, 



uPAIN Demonstration Case  75 

   

2002]), a green dashed line contour was added around each proactive actor to make 

clear that only these are the proactive actors on which it is possible to click to produce 

some kind of interaction (Fig. 4.9). 

 

Fig. 4.9 – Dashed line contours in the animation prototype for the uPAIN system. 

The green colored “Ready…” message also appears when these green dashed line 

contours are displayed. We also used a dashed line and different background colors to 

help delimit the three main areas of the GUI and grouping actors in a logical way, ac-

cording to the areas in the hospital where they may be: the patient, the monitor and the 

PCA are always in the infirmary; the two databases are installed in the server’s room; 

the medical doctor and the nurse can be elsewhere due to the nature of uPAIN system 

(ubiquitous); and the uPAIN system is “everywhere” in the hospital and so the cloud is 

placed in the middle of the three dashed areas. Below each actor, and to ensure that the 

actor is clearly identified immediately, the respective caption was added, since good la-

belling can guide stakeholders through the GUI with minimal search time. We also la-

belled the three dashed areas. This approach in GUI design contributes for a reduced 

cognitive load and immediate recognition in detriment of recalling in order to let stake-



76  uPAIN Demonstration Case 

 

holders make optimal use of their high-level cognitive abilities and save them to per-

form the essence of work; i.e., using the high level cognitive capacity for the more de-

manding work tasks such as workflow requirements validation, which is the real aim of 

the animation prototype. 

The reduction of short-term memory load [Pane, 2002] was another intended goal, 

once in that part of memory only few information elements (typically, 5 to 8) can be 

stored simultaneously and the decay time is short (approximately 15 sec.). Thus, we 

avoided a dense area with many elements and presented only the necessary information. 

4.4 Performance analysis 

All that has been said so far in this dissertation about Petri nets has to do with the 

modeling of systems functionality. The term simulation has been used associated only 

to the execution of a CP-net, with the production and consumption of tokens, and the 

execution of code segments whenever transitions fire. Simulations of this kind allow the 

investigation of the logical correctness, functionality and dynamic properties of a sys-

tem. However, during the simulation of a CP-net it is also possible to carry out perform-

ance analysis. The CP-net model was extended [Jensen, 1997 – vol. 2] with a global 

clock and the possibility for a token to carry a time stamp (in addition to the token 

color), which tells when the token is ready to be used by a transition. More recently, as 

a result of the work reported in [Wells, 2002], new functionalities have been added to 

CPN-Tools (already available in version 2.0.0) that extend considerably the capabilities 

of performance analysis of a model. In this section, we present briefly these new func-

tionalities. 

During a simulation, a CP-net model can contain and generate a significant amount 

of quantitative data that can be used to evaluate the system’s performance. In order to 

evaluate the performance of a system, by means of the simulation of a CP-net model, 

but without introducing changes in its structure for that specific purpose, additional arte-

facts are needed. The most important ones are monitors.  

Monitors are mechanisms that are used to observe, inspect, control or modify a 

simulation of a CP-net. They can inspect the states (markings) and events (occurring 

transitions) of a simulation, and take appropriate actions based on the observations. 



uPAIN Demonstration Case  77 

   

With monitors, there is an explicit separation between monitoring the behavior of a net, 

and modeling the behavior of the system. 

4.5 Discussion and conclusions 

In this chapter, the application of the technique presented in chapter 3, CPN-Tools 

and the BRITNeY Animation tool were applied to support the building of an animation 

prototype for the uPAIN demonstration case. 

The current development state of CPN-Tools makes the construction of CP-nets a 

comfortable, and even pleasant, task. Their powerful capabilities for the adjustment of 

all the visual details allow a perfect shaping of the nets, which greatly contributes for 

their optimized legibility. Their capability to simulate the functionality of CP-nets has 

proven to be complete and quite adequate to drive our animations. Besides, with the re-

cent monitoring facilities, CPN-Tools and CP-nets have become a very strong “team” in 

every aspect of systems modeling and analysis. The weak link in the tool set that was 

used in the uPAIN demonstration is on the side of the animation tools. The BRITNeY 

Animation tool worked adequately as an interface between a graphical animation and 

the CP-nets being simulated, but there is still an important lack of plug-ins to ease the 

construction of animations, namely in what concerns to the degree of automation. An 

interface that allowed to draw the animation elements without the need to specify them 

manually in XML would be a valuable improvement. Another aspect to consider is the 

important processing power required. As an indication of processing requirements, our 

experience showed that computers with Intel processors prior to Pentium 4 or Pentium 

M, even with an amount of RAM of 512 MB, were practically incapable of running the 

animations. 

The animation prototype was first demonstrated to the stakeholders with a strong 

involvement of the developers to explain the main approach to its usage as a software 

artefact to support the early execution of functional requirements. After that, the stake-

holders have been given a standalone version of the animation prototype. This usage of 

the animation prototype has enabled the effective validation of requirements, since 

stakeholders frequently generated change requests to incorporate new scenarios and to 

adjust others already elicited, which has definitively contributed to the rapid evolution 

of the requirements model maturity, prior to design phase. We believe the usability con-



78  uPAIN Demonstration Case 

 

cerns we adopted in designing the whole animation prototype was determinant to the 

success of the uPAIN project. 



 

 79 

Chapter 5 
 
Conclusions 

Static requirements models should not be used to directly base the validation of the 

elicited user requirements by the stakeholders, since the effort to use only elements from 

the problem domain in the user requirements models and to avoid any reference to ele-

ments belonging to the solution domain is not enough to obtain requirements models 

that are capable of being fully understandable by common stakeholders. The stake-

holders’ comprehension of the dynamic properties of the system within its interaction 

with the environment is better assured if animation prototypes, formally deduced from 

the elicited static requirements models, are used. 

The behaviour of the animation prototypes can be specified by using CP-nets rig-

orously translated from use case and stereotyped sequence diagrams. An effective exe-

cution of UML models can be achieved by using CPN-Tools to operationally implement 

the interaction with the stakeholders within their efforts to validate the previously elic-

ited workflow requirements models. Presently, the referred transformations are executed 

manually, which can be considered a major drawback of the proposed approach when 

the system to animate is of large dimension, presenting a great number of use cases and 

a large amount of behavioural scenarios to transform into CP-nets. 

The generation of standalone versions of the interactive animation prototypes mo-

tivates stakeholders to get a deeper involvement in the analysis phase (without the inter-

ference of the development team). Usability features of the animation prototypes must 

also be carefully studied and experimented, before reaching the final version of the pro-

totype in supporting the interactive execution of the elicited sequence diagrams, com-

plementary elicitation of workflow requirements and validation of the requirements 



80  Conclusions 

 

models. CPN-Tools and BRITNeY Animation tool should evolve to support better the trans-

parent generation of this kind of standalone versions and to allow a simpler start-up of 

an animation. 

As future work, we intend to automatically generate CP-net skeletons from work-

flows requirements models (use case and stereotyped sequence diagrams). Additionally, 

we will study the possibility of using CP-nets, constructed for specifying the behaviour 

of the animation prototype, to base the behavioural specification of the elements that 

will compose the architecture of the system within the design phase. If data-flow lan-

guages (such as LabVIEW, as described in [Machado and Fernandes, 2002; Machado 

and Fernandes, 2005]) are used to develop the semantic layer responsible for integrating 

the whole ubiquitous system (embedded and mobile devices, database accesses and a 

service-oriented architectural platform), the asynchronous nature of CP-nets will 

smooth the transition from analysis to design phases in what regards behavioural mod-

els. 



 

 81 

References 

[Aalst et al., 2003] van der Aalst, W.M.P., Hofstede, A.H.M. and Weske, M., Business Process Manage-
ment: A Survey, In Aalst, W.M.P., Hofstede, A.H.M. and Weske, M. (Eds.), Lecture Notes in 
Computer Science, Vol. 2678, pp. 1‑12, Springer-Verlag, 2003. 

[Aalst, 2003] van der Aalst, W.M.P., Pi calculus versus Petri nets: Let us eat “humble pie” rather than 
further inflate the “Pi hype”, unpublished paper, available at 
http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf, 2003. 

[Aalst, 2004] van der Aalst, W.M.P., Business Process Management Demystified: A Tutorial on Models, 
Systems and Standards for Workflow Management, In Desel, J., Reisig, W. and Rozenberg, G. 
(Eds.), Lecture Notes in Computer Science, Vol. 3098, pp. 1‑65, Springer-Verlag, 2004. 

[Battiston et al., 1988] Battiston, E., De Cindio, F., Mauri, G., OBJSA Nets: A Class of High-level Petri 
Nets Having Objects as Domains, In: G. Rozenberg (ed.): Advances in Petri Nets 1988, Lecture 
Notes in Computer Science, Vol. 340, pp. 20-43, Springer-Verlag, 1988. 

[Best and Koutny, 2004] Best, E. and Koutny, M., Process Algebra: A Petri‑Net‑Oriented Tutorial, In 
Desel, J., Reisig, W. and Rozenberg, G. (Eds.), Lecture Notes in Computer Science, Vol. 3098, 
pp. 180‑209, Springer-Verlag, 2004. 

[Billington, 1988] Billington, J., Wheeler, G., Wilbur-Ham, M., Protean: A High-LevelPetri Net Tool for 
the Specification and Verification of Communication Protocols, IEEE Transactions on Software 
Engineering, Special Issue on Tools for Computer Communication Systems, Vol. 14, 
pp. 301-316, 1988. 

[Billington, 1989] Billington, J., Many-sorted High-level Nets, Proceedings of the Third International 
Workshop on Petri Nets and Performance Models, Kyoto, pp. 166-179, 1989. 

[BPMG] Business Process Management Group, http://www.bpmg.org/. 

[BRITNeY] BRITNeY Animation tool, available at wiki.daimi.au.dk/tincpn 

[Cassandras, 1993] Cassandras, Christos G., Discrete Event Systems, Richard D. Irwin, Inc., Homewood, 
IL, 1993. 

[COSA] http://www.cosa-bpm.com/Business_Process_Management.html. 

[David, 2005] David, R., Discrete, Continuous, and Hybrid Petri Nets, Springer, Jan 1, 2005. 

[Dimitrovici et al., 1991] Dimitrovici, C., Hummert, U., Petrucci, L., Semantics, Composition and Net 
Properties of Algebraic High-Level Nets, In: G. Rozberg (ed.), Advances in Petri Nets 1991, 
Lecture Notes in Computer Science, Vol. 524, pp. 93-117, Springer-Verlag, 1991. 



82  References 

 

[Ellis, 1979] Ellis, C.A., Information Control Nets: A Mathematical Model of Office Information Flow, In 
Proceedings of the Conference on Simulation, Measurement and Modeling of Computer Sys-
tems, pp. 225–240, Boulder, Colorado, ACM Press, 1979. 

[Fenkam et al., 2002] Fenkam, P., Gall, H., Jazyeri, M., Visual Requirements Validation: Case Study in a 
Corba supported Environment, IEEE Joint International Conference on Requirements Engineer-
ing (RE’2002), 2002.  

[FLOWer] http://www.pallas-athena.com/. 

[Gemino, 2003] Gemino, A., Empirical Comparisons of Animation and Narration in Requirements Vali-
dation, Requirements Engineering, Vol. 9, pp. 153-168, Springer-Verlag, November, 2003. 

[Gerogiannis et al., 1998] Gerogiannis, V., Kameas, A., Pintelas, P., Comparative Study and Categoriza-
tion of High-Level Petri Nets, The Journal of Systems and Software, Vol. 43, pp. 133-160, El-
sevier Science Inc., 1998. 

[Hoare, 1978] Hoare, C.A.R., Communicating Sequential Processes, Communications Of the ACM, 
Vol. 21, pp. 666-677, 1978. 

[Holt, 1985] Holt, A. W.,  Coordination Technology and Petri Nets, In G. Rozenberg, editor,Advances in 
Petri Nets 1985, Lecture Notes in Computer Science, Vol. 222, pp. 278–296, Springer-Verlag, 
Berlin, 1985. 

[IEEE, 1990] IEEE 610.12 1990: IEEE Standard Glossary of Software Engineering Terminology, 1990. 

[IEEE, 2004] IEEE, Guide to the Software Engineering Body of Knowledge – 2004 Version, IEEE Com-
puter Society, 2004. 

[ISO 9241-11] ISO 9241-11:1998, Ergonomic requirements for office work with visual display terminals 
(VDTs) - Part 11: Guidance on Usability, 1998. 

[Jensen, 1997] Jensen, K., Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, 
Volumes 1-3. Monographs in Theoretical Computer Science, Springer-Verlag, 1992 1997. 

[Krämer and Schmidt, 1987] Krämer, B., Schmidt, H.W., Types and Modules for Net Spacifications, In: 
K. Voss, H.J. Genrich, G. Rozenberg (eds.): Concurrency and Nets, Advances in Petri Nets, 
Springer-Verlag, pp.269-286, 1987. 

[Krüger et al., 1999] Krüger, I., Grosu, R., Scholz, P., Broy, M., From MSCs to Statecharts, In F.J. Ram-
mig (Ed.), Distrib-uted and Parallel Embedded Systems, pp. 61 72, Kluwer Academic Publishers, 
1999.  

[Lafon et al., 2001] Lafon, M.B., Mackay, W.E., Andersen, P., Janecek, P., Jensen, M.,  Lassen, M., Lund, 
K., Mortensen, K., Munck, S., Ratzer, A., Ravn, K., Christensen, S., Jensen, K., CPN/Tools: A 
Post WIMP Interface for Editing and Simulating Colored Petri Nets, 22nd International Confer-
ence on Applications and Theory of Petri Nets (ICATPN 2001), Newcastle upon Tyne, UK, June, 
2001. 

[Levis, 1989] Levis, A.H., Generation of Architectures for Distributed Intelligence Systems, Massachu-
setts Institute of Technology, Report LIDS-P-1849, 1989. 

[Liang, 2003] Liang, Y., From Use Cases to Classes: a Way of Building Object Model with UML, Infor-
mation and Software Technology, no. 45, pp. 83–93, 2003. 

[Machado and Fernandes, 2001] Machado, R.J., Fernandes, J.M., A Petri Net Meta-Model to Develop 
Software Components for Embedded Systems, Proceedings of the 2nd IEEE/FME International 
Conference on Application of Concurrency to System Design - ACSD 2001, Newcastle Upon 
Tyne, U.K., June, 2001, IEEE Computer Society Press, pp. 113-122, 2001. 



References  83 

  

[Machado and Fernandes, 2002] Machado, R.J., Fernandes, J.M., Heterogeneous Information Systems 
Integration: Organizations and Methodologies, In M. Oivo, S. Komi Sirviö (Eds.), 4th Interna-
tional Conference on Product Focused Software Process Improvement (PROFES’02), Ro-
vaniemi, Finland, Lecture Notes in Computer Science Series, Vol. 2559, pp. 629-643, Springer-
Verlag, December, 2002. 

[Machado and Fernandes, 2005] Machado, R.J., Fernandes, J.M., Integration of Embedded Software with 
Corporate Information Systems, In A. Rettberg, M.C. Zanella, F.J. Rammig (Eds.), From Speci-
fication to Embedded Systems Application, IFIP Series, Vol. 184, pp. 169-178, Springer-Verlag, 
September, 2005. 

[Machado et al., 1998] Machado, R.J., Fernandes, J.M., Proença, A.J., Hierarchical Mechanisms for 
High-level Modeling and Simulation of Digital Systems, Proceedings of the 5th IEEE Interna-
tional Conference on Electronics, Circuits and Systems - ICECS'98, Lisbon, Portugal, September, 
1998, Vol. III, pp. 229-232, 1998. 

[Machado et al., 2005a] Machado, R.J., Ramos, I., Fernandes, J.M., Specification of Requirements Mod-
els, In A. Aurum and C. Wohlim (Eds.), Engineering and Managing Software Requirements, 
pp. 47-68, Springer-Verlag, July, 2005. 

[Machado et al., 2005b] Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H., Transformation of 
UML Models for Service Oriented Software Architectures, 12th IEEE Int. Conference on the En-
gineering of Computer Based Systems (ECBS 2005), Greenbelt, Maryland, U.S.A., pp. 173 182, 
IEEE Computer Society Press, April, 2005. 

[McDougall et al., 2000] McDougall, S.J.P., Curry, M.B., de Bruijn, O., Exploring the Effects of Icon 
Characteristics on User Performance: The Role of Icon Concreteness, Complexity, and Distinct-
iveness, Journal of Experimental Psychology: Applied, Vol. 6, no. 4, pp. 291-306, 2000. 

[McDougall et al., 2001] McDougall, S.J.P., Curry, M.B., de Bruijn, O., The Effects of Visual Information 
on Users` Mental Models: An Evaluation of Pathfinder Analysis as a Measure of Icon Usability, 
International Journal of Cognitive Ergonomics, Vol. 5, no. 1, pp. 59-84, 2001. 

[Milner, 1980] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science, 
Vol. 92, Springer-Verlag, 1980. 

[MQSeries] IBM WebSphere MQ Workflow, International Business Machines Corporation, 
 http://www-306.ibm.com/software/integration/wmqwf/. 

[Murata, 1989] Murata, T., Petri Nets: Properties, Analysis and Applications, Proceedings of the IEEE, 
Vol. 77, no. 4, April, 1989. 

[Ozcan et al., 1998] Ozcan, M.B., Parry, P.W., Morrey, I.C., Siddiqi, J., Requirements Validation Based 
on the Visualisation of Executable Formal Specifications. International Conference on Computer 
Software and Applications, pp. 381-386, Austria, IEEE CS Press, 1998. 

[Pane, 2002] Pane, J.F., A Programming System for Children that is Designed for Usability, PhD Thesis, 
Computer Science Department, Carnegie Mellon University, Pittsburgh, USA, May, 2002. 

[Peterson, 1981] Peterson, J.L., Petri Net Theory and the Modeling of Systems, Prentice Hall, Englewood 
Cliffs, NJ., 1981. 

[Petri, 1962] Petri, C.A., Kommunikation mit Automaten, Bonn, Institute fur Instrumentelle Mathematik, 
Schriften des IIm no. 2, Also in English translation: Communication with Automata, Tech. Re-
port RADC-TR-65-377, Vol. 1, suppl. 1, Applied Data Research, Princeton, NJ, 1966. 

[Pryce and Magee] Pryce, N., Magee, J., SceneBeans: A Component Based Animation Framework for 
Java, http://www-dse.doc.ic.ac.uk/Software/SceneBeans/. 



84  References 

 

[Reisig, 1985a] Reisig, W., Petri Nets: An Introduction, EACTS 4, Brauer, W., Rozenberg, G., Salomaa, 
A. (Eds.), Monographs on Theoretical Computer Science, Springer-Verlag, 1985. 

[Reisig, 1985b] Reisig, W., Petri Nets with Individual Tokens, Theoretical Computer Science, Vol. 41, 
pp. 185-213, North-Holland, 1985. 

[Reisig, 1991] Reisig, W., Petri Nets and Algebraic Specifications, Theoretical Computer Science, 
Vol. 80, pp. 1-34, North-Holland, 1991. 

[Staffware] TIBCO® Staffware Process Suite, TIBCO Software Inc., 
http://www.staffware.com/software/bpm/staffware_processsuite.jsp. 

[Suzuki and Murata, 1983] Suzuki, I., Murata, T., A Method for Stepwise Refinement and Abstraction of 
Petri Nets, Journal of Computer and System Science, Vol. 27, no. 1, pp. 51-76, August, 1983. 

[Symons, 1978] Symons, F.J.W., Modelling and Analysis of Comunication Protocols Using Numerical 
Petri Nets, PhD. Dissertation, Report 152, Department of Electrical Engineering Science, Uni-
versity of Essex, Telecomunication Systems Group, 1978. 

[Uchitel et al., 2004] Uchitel, S., Chatley, R., Kramer, J., Magee, J., Fluent based Animation: Exploiting 
the Relation between Goals and Scenarios for Requirements Validation, 12th IEEE Require-
ments Engineering International Conference (RE’04), 2004. 

[Valette, 1979] Valette, R., Analysis of Petri Nets by Stepwise Refinements, Journal of Computer and Sys-
tem Sciences, Vol. 18, pp. 35-46, 1979. 

[Valette, 1993] Valette, R., Les Reseaux de Petri, L.A.A.S./C.N.R.S., Toulouse, France, 1993. 

[Vautherin, 1987] Vautherin, J., Parallel Systems Specifications with Coloured Petri Nets and Algebraic 
Specifications, In: . Rozberg (ed.), Advances in Petri Nets 1987, Lecture Notes in Computer Sci-
ence, Vol. 266, pp. 293-308, Springer-Verlag, 1987. 

[Welie et al., 1999] Welie, M., van der Veer, G., Eliëns, A., Breaking Down Usability, Interact 99, Edin-
burgh, Scotland, 1999. 

[Wells, 2002] Wells, L., Performance Analysis using Colored Petri Nets, PhD Dissertation, Department 
of Computer Science, University of Aarhus, Denmark, 2002. 

[WFMC, 1999] Workflow Management Coalition, Terminology & Glossary, Document Number 
WFMC-TC-1011, Document Status - Issue 3.0, Feb 99, 
http://www.wfmc.org/standards/standards.htm. 

[Whittle et al., 2005] Whittle, J., Kwan, R., Saboo, J., From Scenarios To Code: An Air Traffic Control 
Case Study, Software and Systems Modeling, Vol. 4, no. 1, pp. 71-93, Springer-Verlag, Febru-
ary, 2005. 

[Winter et al., 2001] Winter, V., Desovski, D., Cukic, B., Virtual Environment Modeling for Require-
ments Validation of High Consequence Systems, Proceedings of the IEEE International Confer-
ence on Requirements Engineering, pp. 23-30, 2001. 

[Zisman, 1977] Zisman, M.D., Representation, Specification and Automation of Office Procedures, PhD 
dissertation, University of Pennsylvania, Warton School of Business, 1977.  

[Zowghi and Coulin, 2005] Zowghi, D. and Coulin, C., Requirements Elicitation: A Survey of Techniques, 
Approaches, and Tools, In A. Aurum and C. Wohlim (Eds.), Engineering and Managing Soft-
ware Requirements, pp. 19–46, Springer-Verlag, July, 2005. 

 

 


