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Abstract 

 

Ubiquitous computing is a research field of computing technology with a growing number 

of researchers and represents a new direction on the thinking about the integration and 

use of computers in people’s lives. It aims to achieve a new computing paradigm, one in 

which there is a high degree of pervasiveness and widespread availability of computers or 

other IT devices, usually with communication capabilities, in the physical environment.  

Model-Driven Development (MDD) constitutes an approach to software design and 

development that strongly focuses and relies on models, through which we build 

software-platform independent models. Several contributions of MDD are: gains of 

productivity; concepts closer to domain and reduction of semantic gap; automation and 

less sensitivity to technological changes; and capture of expert knowledge and reuse. 

This thesis aims to contribute for the appropriate use of model-based/driven 

development approaches in software development for pervasive information systems 

(PIS). This work considers a case study research strategy. It uses two projects developed 

in the field of ubiquitous and mobile computing that directed their software development 

to a model-based/driven approach.  

This thesis describes and analyses the projects. Each one of the project is formalized in a 

SPEM 2.0 model that presents the main elements of the project. This SPEM model allows 

perceiving the structure and elements of the project, along with some issues and facts of 

the project. This thesis conceives a development framework that introduces several 

useful conceptions. Among these conceptions are the dimensions of development, 

functional profiles, resources categories, functional profile instances, global and 

elementary development process. In consonance with this development framework, the 

thesis proposes a SPEM 2.0 Base Plug-In extension and a development framework pattern 

to assist in the analysis of the projects. The SPEM 2.0 Base Plug-In extension defines 

elements that are fundamental to the definition and application of the development 

framework pattern. The development framework pattern is applied to each of the 

projects to facilitate the analysis. From the analysis of the projects, the thesis synthesizes 

a set of guidelines and insight related to the adoption of model-based/driven approaches 

to pervasive information system development.  

Keywords:  Pervasive Information Systems, PIS, Model-Driven Development, MDD, SPEM, 
Development Framework Pattern, Case Studies. 
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Resumo 

 

A computação ubíqua é um campo de investigação de tecnologia de computação com um 

número crescente de investigadores e representa uma nova direcção no pensamento 

sobre a integração e o uso de computadores na vida das pessoas. O objectivo é alcançar 

um novo paradigma de computação em que há um alto grau de abrangência e ampla 

disponibilidade de computadores ou outros dispositivos de tecnologias de informação, 

geralmente com recursos de comunicação, no ambiente físico. 

Model-Driven Development (MDD), constitui uma abordagem de desenho e 

desenvolvimento de software que se baseia em modelos, através da qual construímos 

modelos de plataforma de software independentes. Várias contribuições de MDD são: 

ganhos de produtividade; conceitos mais próximos ao domínio e à redução do salto 

semântico; automação e menor sensibilidade às mudanças tecnológicas; captura de 

conhecimento especializado e reutilização. 

Esta tese visa contribuir para a adequada utilização de abordagens de desenvolvimento 

baseadas/conduzidas por modelos no desenvolvimento de software para sistemas de 

informação “pervasive” (PIS). Esta tese apresenta uma estratégia de investigação de 

estudo de caso. Usa, como estudos de caso, dois projectos desenvolvidos no campo da 

computação ubíqua e móvel, e os quais dirigiram o seu desenvolvimento de software 

para uma abordagem baseada/conduzida por modelos. 

Esta tese descreve e analisa os projectos; cada um dos projectos é formalizado num 

modelo SPEM 2.0 que apresenta os elementos principais do projecto. Este modelo SPEM 

permite perceber a estrutura e os elementos do projecto, juntamente com alguns 

problemas e factos do projecto. Esta tese concebe uma estrutura de desenvolvimento 

que apresenta várias concepções úteis. Entre essas concepções estão as dimensões de 

desenvolvimento, os perfis funcionais, as categorias de recursos, instâncias de perfil 

funcional, os processos de desenvolvimento global e elementar. Em consonância com 

esta estrutura de desenvolvimento, a tese propõe uma extensão ao SPEM 2.0 Base Plug-

In e um padrão de desenvolvimento para auxiliarem a análise dos projectos. A extensão 

ao SPEM 2.0 Base Plug-In define elementos que são fundamentais para a definição e 

aplicação do padrão de estrutura de desenvolvimento. O padrão de estrutura de 

desenvolvimento é aplicado a cada um dos projectos para facilitar a sua análise. A partir 

da análise dos projectos, a tese sintetiza um conjunto de directrizes e de ilações 

relacionadas com a adopção de abordagens MDD para o desenvolvimento de PIS. 

Palavras-chave:  Pervasive Information Systems, PIS, Model-Driven Development, MDD, 
SPEM, Development Framework Pattern, Case Studies. 
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1  

Introduction 

This chapter starts by introducing the research areas subjacent to this thesis, namely 

ubiquitous computing and model-driven development. The chapter goes on by 

presenting the methodological research followed. It concludes with the main 

contributions achieved. 

1.1 Pervasive Systems 

Since the introduction of the transistor in 1947 by John Bardeen, Walter Brattain, and William 

Shockley at Bell Labs (Bell Labs), the integrated circuit in 1958 by Jack Kilby at Texas 

Instruments (Texas Instruments), and the Intel first microprocessor in 

1971 (the 4004 microprocessor (Intel)), technological developments in miniaturization, 

integration and capabilities’ enhancement of electronic components have been noticed by its 

outstanding achievements.  

From the mainframe era (characterized by rare, enormous, and expensive machines that 

were difficult to access, usually only possessed only by large institutions and shared by many 

people), succeeded the era of the widely  available personal computer (one computer for one 

person). Simultaneously, the emergence of the Internet, interconnecting all of those 

machines and enabling for worldwide share of information and computational capabilities, 

new services and business models, and easier and improved people interaction, further 

enhanced the value and social acceptance of computing.  
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These technological developments, along with its social acceptance and business recognition 

of its value, have been major facilitators for adoption of means for structured and automated 

acquisition, storage, and processing of information along with improved ways for easier and 

faster access to that information.  In context of competition, the recognition of information 

as a fundamental resource to individuals and organizations, and of the usefulness of the 

abilities information technology (IT) devices, stimulated the search for enhancement and 

innovation of existing services and for envisioning new ones. Such quest has led to not only 

widespread adoption and sophistication of information systems that are nowadays seen as 

vital to the existence of modern services and business models, but also to further research 

for technology improvements and innovations. 

New technologies and techniques, along with further miniaturization and reduction of costs, 

fostered the dissemination of computing. Notable advances were achieved in portability and 

the embedding of computers, in sensors/actuators, storage capacity, wireless 

communications technology and in novel modalities of human-computer interaction. As 

consequence, today we can find computing and communications technology in places, 

objects, animals or even people. This allows for new possibilities of interaction between 

people and their physical environment, or among people themselves. The once troublesome 

and frequently unpleasant one-to-many computer-human relationship evolved through a 

one-to-one relationship of personal computing, to today’s many-to-one relationship that is 

more convenient and seamlessly integrated in our way of life (Weiser & Brown, 1997). 

Ubiquitous computing 

Ubiquitous computing1 is a research field of computing technology with a growing number of 

researchers and represents a new direction on the thinking about the integration and use of 

computers in people’s lives. It aims to achieve a new computing paradigm, one in which there 

is a high degree of pervasiveness and widespread availability of computers or other IT 

devices, usually with communication capabilities, in the physical environment. As such, 

besides our traditional and current computers, computing devices are embedded in physical 

places and objects (static or mobile), being these (usually wirelessly) interconnected. 

Ubiquitous computing research was introduced in the 90s by Mark Weiser, a primordial 

reference in the ubiquitous computing field. In 1991, Weiser published his widely recognized 

and referenced seminal work on ubiquitous computing, “The Computer for the 21st Century” 

(Weiser, 1991), in which he shared his vision of a new way of thinking about computers. 

                                                                 
1 in today terminology, the term “pervasive” is also used, sometimes interchangeably, with the same meaning of “ubiquitous”.  
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Weiser envisioned a future computing on which computers were embedded in everyday 

objects and places, enhancing its purpose and thus allowing for an enrichment of the physical 

world with the advantages of processing power, storage, and communications of computers.   

Ubiquitous computing doesn’t simply restrict to the widespread pervasiveness of computers; 

it proposes a new computing paradigm of which philosophy values the nuances of the real 

world, and embodies the assumption that computers, should fade into the physical 

environment in a  “virtual or effective” invisible way to people (Weiser, 1993a). While 

computationally enriching the environment, computers shall offer a permanent and non-

intrusive computing that seamlessly support and help people to focus fully on completion of 

the tasks needed to the prosecution of their desired goals. 

This computational augmentation of objects and places, and the subsequent enriched 

interaction with people, follows the principle of an “invisible computing” that “engenders 

calmness”: (i) “invisible”, in the sense that computers, as part of a context of use, become 

integrated and faded with our environment; (ii) “computing that engenders calmness”, in the 

sense that computers and computing don’t need our permanent active attention for 

continuous operation and readiness to easy information access (they lie in the “periphery” 

(Weiser & Brown, 1997), easily moving to the centre of our attention only when needed). In 

this way, it would become possible to allow people to use them without focusing for such 

use, and so, to focus beyond them on new goals.  

Giving the “literacy technology” (the ability to capture a symbolic representation of spoken 

language) as an example of a ubiquitous technology, Weiser also stated that invisibleness of 

computers is “…a fundamental consequence not of technology, but of human psychology. Whenever people learn 

something sufficiently well, they cease to be aware of it” (Weiser, 1991).  Computers, as a tool, should not 

need conscious interaction to it as such; instead, they should be as unobtrusive as possible, 

permanently allowing and assisting people on their tasks. Weiser exemplified: eyeglasses 

don’t need permanent active attention to use them; we look at what is in front of us, and not 

at the eyeglasses (Weiser, 1994). 

This notion of ubiquitous computing was also described as “perhaps (…) opposed” (Weiser, 1991) 

to the notion of virtual reality; the latter, attempting to make a world inside a computer, 

focuses on simulating a world, and the former, focuses on the invisible enhancing of the 

physical world that already exists. Ubiquitous computing also embodies a philosophy 

opposed to the current approach to computing that places the computer as the fundamental 

element to the human attention.  
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Weiser also stated that “The real power of the concept comes not from any of these devices; it emerges from the 

interaction of all them” (Weiser, 1991).  In fact, the individual device does not allow by itself to 

obtain the maximum exploration of its capabilities or even to allow for ubiquitous computing. 

Only in interaction with other devices, ubiquitous computing can be sustained and full 

exploration of device’s capabilities can be achieved, allowing for availability of the 

information collected and processed. 

Weiser established (Weiser, 1991) the major parts of technology needed for realizing for 

ubiquitous computing (“cheap, low-power computers that include equally convenient displays”, “networks that ties 

all of them together” and “software systems implementing ubiquitous applications.”). He identified (Weiser, 

1991; Weiser, 1993b) technological development needs and first issues of importance to be 

attended (such as location2, scale3 and privacy ) and provided a description of how devices 

could be used to work, in the context of ubiquitous computing, to improve peoples’ work and 

life. Considering the campus environment a “particularly good place for ubiquitous computing” (Weiser, 

1998), Weiser exemplified applications of ubiquitous computing on campus and reinforced 

the key concept of engendering calmness. In (Russell & Weiser, 1998), it can be found several 

challenges to the design of ubiquitous systems, concerning the infrastructure, user interface 

and user experiences. 

At Xerox PARC (PARC, 2004), in 1988, it was created the Ubiquitous Computing research 

program that, including several fields of computer science, had at its core the ubiquitous 

computing basic key ideas.  The program was inspired by this new paradigm (considered 

different from the then current predominant “one person – one computer”) that assumed an 

emphasis not in the particular characteristics of computers (such as memory and processor 

speed), but in the use of computer technology in support of daily activity and its appropriate 

integration in the physical environment. It was first envisioned as a  “radical answer to what was 

wrong with the personal computer: too demanding of attention; too  isolating from other people and activities; and too 

dominating as it colonized our desktops and our lives” (Weiser, Gold, & Brown, 1999). 

The research program members at Xerox PARC, as Roy Want (Want et al., 1995),  prototyped 

several systems and demonstrated, with the technology then available, their utility in this 

philosophy of ubiquitous computing (Want, 2000).  Among these systems (Weiser, et al., 

1999) were the LiveBoard (Elrod et al., 1992)  (an electronic whiteboard), the ParcPad (a 

book-sized small computer), and the ParcTab (Want, et al., 1995) (a palm-sized small 

computer). 

                                                                 
2 Ubiquitous computers must know its location. 
3 Ubiquitous computers with different sizes. 
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These research and development efforts in ubiquitous computing resulted in a new field of 

computer science: “In the end, the ubi-comp created a new field of computer science, one that speculated on a physical 

world richly and invisibly interwoven with sensors, actuators, displays, and computational elements, embedded seamlessly in 

the everyday objects of our lives and connected through continuous network” (Weiser, et al., 1999). Nowadays 

new researchers, spread by several related disciplines and research centres, take the lead on 

evolving the work done and try to make ubiquitous computing a reality. The challenge of 

ubiquitous computing is shifting from demonstrating the basic key ideas to “integrating it into the 

existing computing infrastructure and build widely innovative mass-scale applications” (Lyytinen & Yoo, 2002). 

Besides his seminal paper, Weiser published several papers (e.g., (Weiser, 1993a) (Weiser, 

1994) (Weiser, 1998)) standing for his convictions.  Weiser died in April 1999, but his vision 

and work remain, being increasingly focus of attention and value.  

The following years brought attention to his vision and recognition of his work (Want, 2000). 

Since then, research activity in ubiquitous computing has been continuously growing and the 

continuous technology developments helped to turn out this vision a reality. Processing 

power and storage capabilities of portable devices, embedded computers and other IT kind 

devices, and ubiquitous communications allowing for pervasive connectivity are among the 

most central ubiquitous computing enabler’s developments. In the early of the 1990s there 

were no standards for wireless networks, PCs were typically equipped with 50 MHz 

processors and 30 Mb disks; there were no Personal Digital Assistants (PDAs), being 

electronic organizers shipped with 128k of memory (Want, Pering, Borriello, & Farkas, 2002). 

Many of the crucial elements of ubiquitous computing that were a mirage and  constituted a 

difficult obstacle to the evolution of ubiquitous computing environments, exist in the market 

today as common products, such as handheld computers and wireless LANs and other 

devices to sense and control appliances, allowing us to better realize Weiser’s vision 

(Satyanarayanan, 2001). The developments occurred in the last decade and the body of 

knowledge obtained with research on distributed computing and mobile computing, brings 

us, today, the possibility to turn out ubiquitous computing a reality.  

The world is acquiring computational and communication capabilities; it is ever more ruled 

with digital information and processes. It produces more and faster information about 

everything and everyone. The future points to a world full of embedded or mobile computing 

devices with an emerging robotics industry which is “developing in much the same way that the computer 

business did 30 years ago” (Gates, 2007). This reality and inherent potential has been subject of 

study and research under the ubiquitous computing field (the term “pervasive computing” is 

commonly also used with the same meaning).  
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The innovative technological devices that emerge and its widespread availability called for 

organizations’ attention for its potential on collecting, processing, and disseminating 

information. Organizations see this as an opportunity to improve their business’s processes 

and therefore to better compete and respond to market pressures and challenges. 

As examples of technological advances and of today’s technology, are the devices called 

TABs, like the Apple’s iPAD (Figure 1.1) and the Samsung Galaxy Tab (Figure 1.2), featuring 

characteristics such as 1Ghz Processor, Multi-touch display, A-GPS, camera, microphone, 7-9 

hours of battery, cellular 3G and Wi-Fi connection,  digital compass, accelerometer and 

ambient light sensor, etc. 

 

Figure 1.1 - The Apple iPAD(Apple, 2010) . 

 

Figure 1.2 - The Samsung Galaxy Tab(Samsung, 2010) . 

Pervasive systems and technologies have been increasingly employed in either business 

domains, trying to improve the way business is done or even to enable new and innovative 

ways of carrying business. In more personal or social domains, they are used to improve the 

people’s life quality. Several aspects have been focused, such as social concerns (Stone, 2003) 

and the economic implications of its deployment (Langheinrich, Coroama, Bohn, & Rohs, 

2002).  The advent of pervasive computing systems enabled information technology to gain a 

further relevance in its role in human social lives (Dryer, Eisbach, & Ark, 1999), narrowing the 

relationship between humans and technology and fostering focus on human to human 

communication. Assuming the spontaneous use of networking technologies for cooperation 

and access to information and Internet-based services, the potential for applications using 

smart objects is vast, being the limits “less of a technological nature than economic or even legal” (Mattern, 

2001).  Museums (Fleck et al., 2002b), agriculture (Burrell, Brooke, & Beckwith, 2004), 

restaurants (Stanford, 2003a), and health care (Varshney, 2003) are examples of domains 

that have been addressed by applications based on this kind of information technology.   

Along the years, organizational, technological, and social evolutions brought a shift from a 

usually monolithic organization’s information systems, with well-defined and limited source 
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inputs, into complex, distributed, and technologically heterogeneous information systems. As 

consequence, an increasing demand occurs for software development in order to realize 

intended applications for these pervasive information systems, taking advantage of those 

technologies.

1.2 Methodological Challenges 

Focus on models in the development of software systems is not a recent issue. In the history 

of software development, emphasis on models has begun some years ago, particularly when 

software systems became so complex and big to deal. They were difficult to build and 

frequently many projects were unsuccessful. In consequence, structured approaches 

(function-oriented methods, object-oriented methods) to software development appeared to 

facilitate the production of high-quality and cost-effective systems, such as, for example, the 

Yourdon System Method (Yourdon, 1983) that, beyond establishing well-defined steps and 

activities of the development process, focused on models to help to abstract, analyse and 

design software systems. 

Interest and focus on models arise again today with a further emphasis due to recent 

developments that resulted on the establishment of important widely known and accepted 

standards. Particularly, among these, are those originated from the Object Management 

Group (OMG) (such as the Unified Modelling Language (UML), which   unifies modelling 

languages, and the published OMG´s initiative Model-Driven Architecture (MDA), which 

stands for new guidelines to the architecture and development of software systems). These 

standards (and as well as others) represent, through common agreement and acceptance, 

what the best the community has reached in terms of practices, and set up the basis for 

further innovations or developments. These standards also enable  reuse of knowledge and 

artefacts, tools specialization and interoperation, providing thus a “significant impetus for further 

progress” (Selic, 2003b). Another key enabler of the movement on focusing in models in 

software development is the availability of more powerful Computer-Aided Software 

Engineering (CASE) tools supporting the development and management of models and the 

generation of code. 

For some, model-driven development (MDD) is considered “the first true generational shift in 

programming technology since the introduction of compilers” (Selic, 2003b), and it can profoundly change 

the way applications are developed (Atkinson & Kuhne, 2003). Automating many of the 

complex and routine programming tasks,  MDD allows developers to be able to focus on the 
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functionality that the system needs to deliver and on its general architecture, instead of 

worrying about every technical details inherent to the use of a programming language 

(Atkinson & Kuhne, 2003). 

Developing software solutions is not easy. Brown (Brown, 2004) considers that the following 

difficulties arise in the development of software solutions: (i) understand highly complex 

business domains and management of the huge development effort;  (ii) time-to-market 

pressures; (iii) complexity of target software platforms, involving not only new hot 

technologies, as also a diverse and complex assortment of legacy technology infrastructure, 

frequently kept with poor documentation. 

The effective development of today’s application requires that there must be a continuous 

effort on the research of better approaches, languages, techniques and tools for the software 

development that enables one to face the continuous increasing of complexity of the 

development of software solutions. Today, when building large software systems, the main 

challenge for software developers is to “handle complexity and to adapt quickly to changes” (Schmoelzer 

et al., 2004). Model-driven approaches can be a response to this challenge, as they  have the 

objective to  “increase productivity and reduce time-to-market”, which is attained by a using development 

concepts closer to the problem domain than “those offered by programming languages” (Sendall & 

Kozaczynski, 2003).  

The adoption of a MDD approach to software development for PIS has to consider what MDD 

has to offer and which characteristics of pervasive information systems become relevant to 

software development. By this way, it will be possible to provide higher effectiveness on 

development and evolution of PIS. When intending to develop software for PIS, relevant 

characteristics of those are the elevated number of devices that can be involved, the pace of 

technological innovations, the heterogeneity of the devices, and potential complexity of 

interactions that may exist.  

In this document, unless otherwise noticed, the term “model-based/driven” is sometimes 

interchangeably used with the term “model-driven development (MDD)” (spite of strictly 

having slight but semantic differences). 

1.3 Goals and Research Strategy 

This thesis aims to contribute for the appropriate use of model-based/driven development 

approaches to software development for pervasive information systems (PIS).  
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The goals of this thesis are: 

 To represent, in a suitable form, the structure and the elements of a project in order 

to proceed with an analysis about their suitability for PIS and their model-

based/driven characteristics. 

 To identify issues in a project that hamper or difficult the suitability of the adopted 

approach to cope with pervasive systems (in particular issues related with 

heterogeneity), and to support model-based/driven perspectives. 

 To develop a framework, a strategy, or orientations to facilitate the analysis of 

existing projects. 

This work considers a case study research strategy. It analyses two projects, both different in 

scope and dimension. This strategy treats each of the projects as a separate study, which 

facilitates the analysis and “(…) the findings likely to be more robust than having only a single case” (Yin, 

2003). 

The projects allow showing that the structure and the quality of project elements need 

particular attention on their definition in order achieve a proper suitability of the project to 

deal with system pervasiveness and to accommodate model-driven/based approaches. 

According to Yin (Yin, 2003), five components of a research are important: (i) the research 

questions; (ii) the study propositions; (iii) the unit of analysis; (iv) the logic linking the data to 

the propositions; (iv) the criteria for interpreting the findings. Next paragraphs instantiate 

these components for this study.  

Research questions 

The research questions are of major importance, as stated by Yin “Defining the research questions is 

probably the most important step to be taken in a research study,(…)”(Yin, 2003). The analysis of the projects 

aims to provide understanding on answers to the following research questions: 

 How did a particular project deal with pervasive system’s characteristics? 

 How did a particular project structure the development process in order to become 

suitable for the adoption of a model-based/driven development approach? 

 How could a particular project improve its development process in order to better 

cope with pervasive information systems issues and to easier accommodate a model-

based/driven approach? 
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Proposition 

Regarding this component Yin states “(…) each proposition directs attention to something that should be 

examined within the scope of study” (Yin, 2003). 

As proposition, it is considered that structure and element definitions of the project are of 

crucial importance to the capability of the project to deal with pervasiveness of systems. 

Among these elements, modelling artefacts and model transformations have a special 

interest as they have major influence on the suitability of accommodation of model-

based/driven approaches. Revealing the structure, the modelling artefacts, model 

transformations, allow analysing the pervasiveness capability and the model-based/driven 

capability.  

Unit of analysis 

This component is related as “the fundamental problem of defining what the "case" is (…)” (Yin, 2003). The 

project is the main unit of analysis. 

Linking data to propositions and criteria for interpreting results 

Regarding these last two components, linking the data to propositions and the criteria for 

interpreting the findings, Yin further states “The fourth and fifth components have been the least well 

developed in case studies” (Yin, 2003). 

As Yin stated “Analysing case study evidence is especially difficult because the strategies and techniques have not been 

well defined.  (…)  The analysis of case study evidence is one of the least developed and most difficult aspects of doing case 

studies ”(Yin, 2003).  As general strategy, it was followed the theoretical propositions of the case 

study. More specifically, as this study consists of two projects, a cross-case synthesis is 

performed to achieve consolidated findings.  

Additionally, to assist the linking of the information gathered from the projects to the 

theoretical proposition (related to the importance of the structure and elements of the 

development process), SPEM 2.0 specification is used, a development framework is 

conceived, the SPEM 2.0 Base Plug-In is extended, and a corresponding pattern is designed 

and applied. These particular conceptions and structures (may be seen as design, which may 

be uncommon in common case studies) can be nearly framed in the context of the Design 

Science Research approach (Vaishnavi & Jr., 2008) and its general methodology (Figure 1.3). 

In this context, these conceptions and structures may be seen as a contribution in what 
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respects to  assisting the analysis of projects whose purpose is to develop PIS using a MDD 

approach. 

The interpretation of the study’s findings is mainly based on criteria of the suitability level to 

support pervasiveness of systems and model-based/driven format. 

 

 

Figure 1.3 - The general methodology of design science research ((Vaishnavi & Jr., 2008)). 

 

This thesis uses two projects developed in the field of ubiquitous and mobile computing that 

directed their software development to a model-based/driven approach. The first project is 

the uPAIN project (Ubiquitous Solutions for Pain Monitoring and Control in Post-Surgery 

Patients) (uPAIN). The second project is the USE-ME.GOV (USability-drivEn open platform for 

MobilE GOVernment) (USE-ME.GOV, 2003a). These projects, UPAIN and USE-ME.GOV were 

selected for this work as they were based on corresponding scientific and subject areas, and 

were developed in cooperation with Department of Information Systems at Universidade do 

Minho at which this PhD is held. 
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1.4 Contributions 

This thesis contributes with structuring elements and inherent conceptions that allow for 

better development of pervasive information systems, enhancing the flexibility to 

accommodate heterogeneity of devices, technological innovations, and changes on 

functionality requirements. The following paragraphs present the main contributions. 

Development Framework. This framework introduces and describes the concepts sustained 

on a few perspectives of relevance to the development, called dimensions of development. 

Besides the dimensions of development, there are the functional profiles, resources 

categories, functional profile instances, global and elementary development process. 

SPEM Base 2.0 Plug-In Extension. In consonance with this development framework, the 

thesis proposes a SPEM 2.0 Base Plug-In extension to assist in the analysis of the projects. The 

SPEM 2.0 Base Plug-In extension defines elements that are fundamental to the definition and 

application of a development framework pattern.  

Development Framework Pattern. The thesis defines a development framework pattern that 

may be applied each of the projects to facilitate the analysis, and also to illustrate how 

projects could be improved in order to better cope with the development of PIS and adopting 

a model-based/driven approach. 

Insight to PIS development using MDD approaches. From the analysis of the projects, the 

thesis synthesizes a set of pertinent issues and guidelines related to the adoption of model-

based/driven approaches to pervasive information system development. It shows how the 

projects could improve to deal with PIS, using an MDD approach. 

1.5 Structure of this Document 

This document is structured in seven chapters. Generically, all chapters are preceded by a 

chapter cover that exposes a table of contents aiming to facilitate immediate perception and 

access of the main headlines of the chapter. Following that chapter cover, a brief summary of 

the chapter is presented, aiming to briefly synthesize the main chapter content. The several 

sections of the chapter come after the summary, starting with a section of introduction and 

ending with a section of conclusion; between those, come the sections pertinent to that 

chapter thematic.  
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The seven chapters of this document and their main content are: 

Chapter 1: Introduction. This chapter introduces the areas of research, the goals and 

research strategy, contribution, and document structure. The areas of research are the 

pervasive/ubiquitous computing and model-driven development.  

Chapter 2: Pervasive Computing. This chapter introduces the origins, characteristics, 

research, business opportunities, and social concerns of pervasive/ubiquitous computing, and 

ends presenting the concept of pervasive information systems (PIS). 

Chapter 3: Model-Driven Development. This chapter presents Model-Driven Development 

(MDD), an approach to software design and development that strongly focuses and relies on 

models. Interest and focus on models arise again today with a further emphasis due to 

developments that resulted on the establishment of important, widely known, and accepted 

standards. This chapter also presents the Model Driven Initiative (MDA) from Object 

Management Group (OMG), which fostered the research and establishment of software 

development practices based on models. It concludes with considerations about research 

efforts needed for effective model-driven development practice. 

Chapter 4: Presentation of the Projects. This chapter presents the two projects that this 

thesis uses to help to identify issues pertaining to software development for pervasive 

information systems. The projects, their common characteristics, issues, and challenges 

pertaining to software development of PIS are presented.  

Chapter 5: Approach to PIS Development. This chapter presents conceptual structures to 

assist the analysis of existing development projects or to the elaboration of new ones. It 

presents the Development Framework, the SPEM 2.0 Base Plug-In extension, Framing 

Structure, and the Development Framework Pattern. 

Chapter 6: Analysis of the Projects. This chapter revisits the projects in order to proceed to 

analyse the projects resorting to SPEM 2.0 and to the conceptions and structures, presented 

in chapter 5. 

Chapter 7: Conclusion. This chapter presents the conclusions about the work performed. It 

presents guidelines for future work and research in order to expand and solidify knowledge 

about model driven development for pervasive information systems. 
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2  

Pervasive Computing 

This chapter introduces pervasive/ubiquitous computing, a new paradigm for 

computing, presents its main characteristics and discusses some terminology. This 

new computing paradigm, while bringing some novel applications and business 

opportunities, also introduces some social concerns related to security and privacy. 

Also included in this chapter is the notion of Pervasive Information System (PIS). PIS 

results from the widespread adoption of new pervasive computing technologies into 

systems. Such leads to the need of pervasive information systems to cope with 

permanent technological evolutions and innovations and changes of requirements, 

which have strong impact on software development demands. 

2.1 Introduction 

Considered a major evolutionary step in computing (Saha & Mukherjee, 2003; 

Satyanarayanan, 2001) since introduction the of the Personal Computer, ubiquitous 

computing is closely related to (and is an evolution step of ) distributed computing and 

mobile computing fields that already identified and studied several technical issues related 

with pervasive computing (Satyanarayanan, 2001). 

Ubiquitous computing is not the same as mobile computing. Satyanarayanan 

(Satyanarayanan, 2001), illustrating the taxonomy of computer systems research problems in 

pervasive computing, identifies several research issues that make distinction of pervasive 

computing field from that of mobile computing. Pervasive computing includes research issues 

as effective use of smart spaces (spaces enriched with embedded computing), invisibility (the 
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removal of computing technology from  user’s consciousness), localized scalability (the 

reducing of interactions from distant entities), and masking uneven conditioning (the smart 

environments will be significantly different from each other, but operation must be 

continuously provided). 

Satyanarayanan (Satyanarayanan, 2001) characterizes pervasive (ubiquitous) computing as 

an evolutionary step following two earlier steps of distributed computing and mobile 

computing. He stated the research agenda (see Figure 2.1) as involving not only issues related 

with environments  saturated with computing and communication capabilities and its 

“gracefully” interaction with users, but also related with support for mobility of users. 

 

Figure 2.1 – Research agenda for pervasive computing (adapted from (Satyanarayanan, 2001)). 

Ubiquitous computing embodies a philosophy different of that inherent to the personal 

computers of the 70s. In essence, it aims for computing technology to be not the focus of 

attention of the user activity. It even does not require the need of carrying around any 

personal computer or PDA to access information; in this world, fully of connected devices, 

information will be available and accessible everywhere (Weiser, 1993a). The data, once 

entered in a computing system, will be readily available whenever and wherever needed (Ark 

& Selker, 1999), being accessible in an intuitive way through the use of devices eventually 

different from that one through which the data was entered. 

Decreasing emphasis of focus on the personal computer has already occurred with the 

emergence of the World Wide Web. For many users the computer is just a machine that 

provides a portal to the digital world where they have presence through their homepage, 

their email, or chat. In this way, computers are ‘disappearing’ and the focus goes beyond 

them (Davies & Gellersen, 2002). Ubiquitous computing brings then “the end of dominance of the 

traditional computing” (Ark & Selker, 1999), being computing embedded in more things than just 

our personal computer. 
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2.2 A New Computing Paradigm 

As Davies and Gellersen (Davies & Gellersen, 2002) noticed, since the initial work of Mark 

Weiser, there have been significant developments that improve our ability to deploy 

pervasive computing systems. Developments have been technological (improvements in 

processing power, storage, communications, miniaturization and portability, or in other IT 

technologies such as Global Positioning System (GPS), smart cards, or radio frequency 

identification tags). Developments have also been social (there is an increasing acceptance of 

introduction of IT technological systems to improve the quality of business process or 

people’s security or life).  

Beyond the traditional media, the Web has emerged as a new fundamental and valuable 

global information system, being widely adopted not only by organizations but also by the 

individual. Today, the web is easily accessible in all developed countries, in schools, private 

and public organizations, at home, and inside or outside buildings. Also notable has been the 

widespread adoption of cellular phones that, along with increasing computing resources, 

have acquired improved communication capabilities and new multimedia features. They 

allowed a new and quick way to contact and interchange information with people, to access 

to the World Wide Web everywhere, and to interconnect computing devices all around the 

world (even in the most inhospitable places). 

The advent of accessible commercial wireless networks and communications systems further 

contributed to dissemination of computing. The embedding of computing devices in objects 

or places for monitoring or control, enabled us to envision a “real” physical world enhanced 

with information and computing capabilities. These capabilities  can be used to facilitate and 

pleasure human life in its diverse facets (as the personal or social) or to improve business or 

other organizational process. Want, Pering, Borriello and Farkas (Want, et al., 2002) consider 

that the “four most notable improvements in hardware technology” during the last decade that directly 

affected ubiquitous computing are: wireless networking, processing capability, storage 

capability, and high quality displays.  

These factors, among others, contributed for a culture characterized not only by having an 

easy access to information, but also by demanding for information availability and 

consequently; consequently there is an implicit acceptance of surrounding and permanent 

computing or other IT devices. Nowadays, there is an increasing feeling that information is 
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omnipresent (we just need an IT device to access it) and that computing devices or 

applications are naturally part of our daily lives.  

Spite all the technological and social developments occurred in last decade, it is argued 

(Banavar et al., 2000; Davies & Gellersen, 2002; Saha & Mukherjee, 2003) that many aspects 

of Weiser’s vision of ubiquitous computing have not been yet achieved; it has been “more art 

than science” (Banavar, et al., 2000). There are some critics about the fact that the devices, 

computers, and the environment are seen in a traditional way: the mobile computing devices 

are used as “mini-desktops”, and the applications are simply programs (written for those 

devices) for which exists a virtual environment provided to perform tasks. Spite of the 

existence of critical elements for ubiquitous computing, it is also claimed that, to realize this 

vision, it  is needed a “seamless integration of component technologies into a system” (Satyanarayanan, 

2001). 

Pervasive computing has been interpreted, on its maturity evolution, from several different 

perspectives that led to different meanings and objectives to different people. In order to 

clarify what pervasive computing is about, Banavar (Banavar, et al., 2000) considered that 

pervasive computing respects to three things: (i) the way people view and use mobile 

computing devices to perform tasks; (ii) the way applications are created and deployed in 

support of those tasks; (iii) how the environment is enhanced by the emergence and ubiquity 

of new information and functionality. In order to achieve the true benefit and science 

perspective of pervasive computing, Banavar states that devices, applications, and 

environment need a different thinking. First, a device is “a portal into an application data/space and not a 

repository of custom software managed by the user”. Second, an application is “a means by which a user performs a 

task, not a piece of software that is written to exploit device’s capabilities”. Third, the computing environment is 

“the user’s information enhanced physical surroundings, not a virtual space that exists to store and run software”. 

Thinking about ubiquitous computing in this way bears more in mind with Weiser’s vision and 

helps to provide a base for reasoning about ubiquitous computing systems, their 

characteristics, and to establish research challenges. 

Characteristics of ubiquitous computing 

Considering the vision about ubiquitous computing, there are key characteristics of 

ubiquitous computing systems that differentiate these from traditional computing systems. 

Among these are: decentralization (autonomous small devices, taking over specific tasks and 

functionality, cooperate and establish a “dynamic network of relationships”), diversification (there is a 

move from universal computers to diversified devices for specific purposes), connectivity 
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(different type of devices connect among themselves to exchange data and applications) and 

simplicity (pervasive devices, being specialized tools, should be easy and intuitive to use − 

“complex technology is hidden behind a friendly user-interface”) (Hansmann, Merck, Nicklous, & Stober, 

2003). 

In ubiquitous computing, the environment take a relevant place in computing: in “contrast with 

most traditional computing, in which the environment is mostly irrelevant, the environment plays a fundamental role for 

ubiquitous computing; the environment has influence on the ‘semantics’ of computing”  (Ciarletta & Dima, 2000). 

There is the need of perceptual information about the environment (Saha & Mukherjee, 

2003), location of people and devices. Such information enables for an enhanced interaction 

with the users, allowing applications to adapt themselves to their environment, and 

constitutes an enabler element for the so-called invisible computing. Several characteristics 

about the environment are:  

(1) Enhanced physical world. “The nature of the ubiquitous computing implies a physical world enhanced with 

mobile or embedded computing devices or other IT kind.” Places and things are enhanced with sensing, 

processing, and communication elements (Kindberg & Fox, 2002). “The embedded aspects of pervasive 

computing suggest that sensors and actuators will play a significant role in many pervasive applications.” (Ciarletta & 

Dima, 2000) 

(2) Heterogeneity of devices, systems, and environments. In a ubiquitous computing world, 

diversity is a permanent characteristic of the elements that compose ubiquitous computing 

systems. There are diverse kinds of systems, computing devices, and other technological 

artefacts, varying at a great extend in processing and interaction capabilities. Resulting 

essentially from factors as organizational or social needs and limitations, there will be, for a 

long period of time, significant variations on the penetration of pervasive computing 

technology, resulting in differences on the smartness capabilities of environments 

(Satyanarayanan, 2001). 

(3) Mobility of users. The mobility of users implies that the surroundings of the users are 

always changing with the movement from a ubiquitous environment to another. 

Ubiquitous computing is about not only the enhancement of physical world with embedded 

computing devices, sensors, actuators, and other elements to provide communications 

among these. It also concerns the way computing is disposed in order to interact with users 

in support of their activities and goals. As stated by Weiser, “Ubiquitous computing takes place primarily 

in the background. (…) the ubiquitous computing leaves you feeling as though you did by yourself” (Weiser, 1993a); 

ubiquitous computing is gracefully and seamlessly integrated, allowing for people to not 
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(actively) realize that it is there. In this invisible computing, it can be found that: (i) ubiquitous 

computing applications “will cohabit with the user’s physical environments, providing unobtrusive support to user’s 

tasks, enabling them to focus on their work and to be not obliged to actively initiate active interaction with computers” 

(Banavar & Bernstein, 2002); (ii) there will be spontaneous interoperation of software 

components in changing environments (Kindberg & Fox, 2002)  (the environment contains 

infrastructure components and spontaneous components based on the devices that arrive 

and leave routinely); (iii) ubiquitous applications are omnipresent either by making 

technological devices move with the user or by having applications moving between devices 

tracking the user (Banavar & Bernstein, 2002). Thus, ubiquitous computing applications must 

be able to adapt to the dynamism of environments, device heterogeneity, resource 

constraints, and user’s intent. 

Pervasive vs. ubiquitous computing 

On its seminal article (Weiser, 1991), Weiser employed the term “ubiquitous” (which refers 

to the characteristic of existing or being everywhere at the same time, or being constantly 

encountered (Merriam-Webster)) to characterize the writing (an widespread information 

technology that can be found everywhere and which presence, not requiring active attention, 

conveys information conveyed ready for use).  Giving as contrast the presence and need for 

attention of the Personal Computer, Weiser envisioned a new way of computers integrate  

with people lives: a way in which computers, populating and taking into account the human 

environment vanish seamlessly into the background, becoming invisible to people.  

On several articles (Weiser, 1993a, 1993b), Weiser reinforced the widespread use of 

computing devices and its “invisibility”, allowing for a computing environment where each 

person is continuously interacting with hundreds of interconnect computers.  Weiser, clearly 

stating that computers in the workplace can be as ubiquitous as printed matter, establishes 

the goal of ubiquitous computing: “Ubiquitous computing has its goal the non-intrusive availability throughout 

the physical environment, virtually, if not effectively, invisible to the user” (Weiser, 1993a). Invisibility is 

constantly stressed out (Want, 2000; Weiser, 1994; Weiser, et al., 1999) in this new way of 

thinking about computing, which allows for and enhance people to focus on their real tasks 

and objectives.  

In the same line of thought regarding to writing and electricity (also considered by Weiser as 

a technology that with time also became ubiquitous (Weiser & Brown, 1997)), ubiquitous 

computing was coined to mean the widespread of computing in the world (in every places 

and objects) aiming to support  human activities. It exists in the “periphery” (Weiser & Brown, 
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1997) of attention of the user and is ready for use as needed. From this, two key ideas 

emerge about the definition of ubiquitous computing: the first, encompassing a world 

(things, places, and people) enhanced with networked computing technology, and the 

second, establishing the invisibility of computing to people as a principle. Nevertheless, it is 

common to find identical and indifferent use of terms ubiquitous and pervasive.  

As stated by Satyanarayanan (Satyanarayanan, 2001), “ubiquitous computing” is also called 

”pervasive computing”, and it can be found in the literature the synonymous and 

interchangeable use of these terms (Ark & Selker, 1999) (the term pervasive refers to the 

characteristic of becoming diffused throughout every part of (Merriam-Webster)).  

There are people that distinguish the use of those terms. Lyytinen and Yoo (Lyytinen & Yoo, 

2002) explicitly distinguishes ubiquitous computing, pervasive computing and mobile 

computing, considering that the movement to ubiquitous computing integrate the advances 

from both mobile and pervasive computing (see Figure 2.2).  
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Figure 2.2 - Traditional, Mobile, Pervasive and  Ubiquitous Computing  (extracted from (Lyytinen & Yoo, 2002)). 

Considering that, in the literature, the terms mobile and pervasive are often used 

interchangeably, they consider mobile computing as being about the capability of physically 

move computing services with us. These computing devices do not seamlessly take into 

account information about context where the computing takes place. Pervasive computing is 

considered about the capability of the computing device to obtain information of the 

environment, and reciprocally, the environment to be intelligent enough to be capable of 

detecting computing devices entering in it. Ubiquitous computing is stated as integrating 

mobility with pervasive computing. As such, ubiquitous computing means: “any computing device, 
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while moving with us, can build incrementally dynamic models of its various environments and configure its services 

accordingly” (Lyytinen & Yoo, 2002).  

Ciarletta and Dima (Ciarletta & Dima, 2000), consider that pervasive computing (resulting 

from the convergence of personal computing, embedded systems, and computing 

networking) distinguishes itself from computing in general by its emphasis on ubiquity, 

interconnection and dynamism. They state that, striving to be low-cost, embedded, 

distributed and non-intrusive, “Pervasive computing aspires to be ubiquitous ;(…)”.   

Gupta, Wang-Chien Purakayastha, and Srimani (Gupta, Wang-Chien, Purakayastha, & Srimani, 

2001) stated that “The word pervasive means having power to spread throughout“. They consider that 

pervasive computing, encompass technologies such as mobile and wearable computing, and 

is “an environment where people interact with various companion, embedded, or invisible computers(…) this environment is 

populated with networked devices aware of their surroundings and able to provide or use services from peers”. 

Friedemann Mattern (Mattern, 2001) notices that Weiser saw the term “ubiquitous 

computing” in a “more academic and idealistic sense as an unobtrusive, human-centric technology vision“. 

Nevertheless, industry has coined the term “pervasive computing” with a slightly different 

slant: “Even though its vision is still to integrate information processing almost invisibly into everyday objects, its primary 

goal is to use such objects in the near  future in the fields of electronic commerce and Web-based business processes”. 

Taking into account the aforementioned uses and meanings of the terms “ubiquitous” and 

“pervasive”, it becomes clear that is convenient some reflection and clarification about these 

terms. With the above considerations in mind, a search on a dictionary (Merriam-Webster) 

reveals that the term “ubiquitous” refers to the characteristic of existing or being everywhere 

at the same time, of being constantly encountered, while the term “pervasive” refers to the 

characteristic of becoming diffused throughout every part of. Therefore, it can be said that 

pervasive doesn’t mean to be at several places at the same time and that doesn’t bring the 

idea of invisibility, while ubiquitous does implies so through its constant  presence (and as 

such, being constantly encountered, fading into the background; and that’s the way Weiser 

defined it). Pervasive seems to have a stronger connotation with a physical, localized 

perspective, where computing technology penetrates things. Ubiquitous is more general, 

referring to a computing technology that is found seamlessly everywhere. Something may be 

pervasive but not necessarily ubiquitous.  

By its definition, the term ubiquitous seems more adequate than pervasive to express Weiser 

vision of computing, and Lyytinen and Yoo (Lyytinen & Yoo, 2002) provide a good contribute 

to express clearly the distinctions between the two terms. As Ciarletta and Dima (Ciarletta & 
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Dima, 2000) stated, pervasive computing tries and tends to be ubiquitous: always present 

everywhere, in the background, integrated seamlessly in an unobtrusive way. 

We can talk about embedded, mobile, pervasive, and ubiquitous computing. Through 

embedment and mobility, we reach pervasive, and through pervasive we achieve ubiquitous. 

Computers and IT devices alike, by themselves, are not ubiquitous; but they collectively 

provide support for pervasive systems and ubiquitous computing. Pervasiveness relates with 

the degree of penetration and dissemination of computing in our physical environment. 

Ubiquitous computing comes indeed as an emergent property of several interconnected 

computing (or other IT like) devices (embedded or mobile) pervasively integrated that are 

orchestrated in order to provide, in an invisible fashion, an unobtrusive and helpful assistance 

to users activities, and thus, enabling ubiquitous computing. 

Embedded and mobile devices allow us to compose pervasive systems, which conveniently 

orchestrated, can provide users with ubiquitous services/applications. By its strict meaning,  

“pervasive computing” does not necessarily imply the defining characteristics of Mark 

Weiser’s ubiquitous computing, such as the invisibility and engendering of calmness to the 

user. Ubiquitous computing encompasses, from an application perspective, a stronger focus 

on the way of interaction, on permanent availability, and on functionality provided by 

computing to the user. Table 2.1 reflects the appropriate usage of the terms regarding to 

pervasiveness and ubiquity. 

 

Terms Pervasive Ubiquitous Terms Pervasive Ubiquitous 

Technology Yes No Applications Yes Yes 

Devices Yes No Services Yes Yes 

Systems Yes Avoid Computing Yes Yes 

Table 2.1 - Appropriate usage of terms pervasive and ubiquitous. 

2.3 Business Opportunities and Social Concerns 

In order to explore and realize the necessary technology and the envisioned pervasive 

systems and technologies, industry and academy took several research initiatives. 
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In the development of pervasive technologies and systems, several aspects have been 

focused, such as social concerns (Stone, 2003) and the economic and political implications of 

its deployment (Langheinrich, et al., 2002). There has been a permanent research and 

innovation of pervasive systems in: (i) business domains, which try to improve businesses or 

even to enable new and innovative ways of carrying businesses; (ii) in personal or social 

domains, which try to improve the people’s life quality. The benefits and applications of 

pervasive computing are far from having reached an end. Other business domains, such as 

insurance companies or government agencies, can also take benefits of pervasive computing. 

What was initially confined in developing technology to make pervasive computing out of a 

vision (Lyytinen & Yoo, 2002), surpassed the initial restricted frontiers to reach the 

development of applications for organizational domains, enabling for enhancements of 

current business processes or even to assist the development of new business models 

(Langheinrich, et al., 2002). 

Business Concerns 

From a business perspective, ubiquitous computing brings the opportunity to  introduce 

changes in the way business and consumers interact with each other (Fano & Gershman, 

2002). It allows for an improvement on mutual intercommunications, richer and innovative 

interactions, and closer relationships. People become able to interact with services not only 

through telephone or PC but also through products. Fano and Geshman (Fano & Gershman, 

2002), through the “Online Medicine Cabinet” (Accenture, 2004d) and the “Mobile Valet” 

(Accenture, 2004e)  prototypes4, exemplify how ubiquitous computing could transform 

customer relationships and services, emphasizing the characteristics of awareness, 

accessibility, and responsiveness on relationships,  location and service scope, and duration 

and frequency of a customer interaction.  

Emerging technologies associated with ubiquitous computing enables new kinds of services. 

Gershman (Gershman, 2002) states that these new kinds of services will lead to a new era of 

ubiquitous commerce. These services will result from three primary capabilities of ubiquitous 

computing devices: (i) as service channels, “to provide a service channel for remote service providers (…)”; (ii) 

as sensors “to inform  these services of local context of the user (…)”;  (iii) and as effectors “to enable these 

services to affect things in the user environment (…)”. 

                                                                 
4 Those, as stated by Fano and Gershman, are prototypes developed at Accenture Technology Labs. 
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Strassner and Schoch (Strassner & Schoch, 2002) consider that three ubiquitous computing 

technologies have a direct and strong impact on business processes: (i) automatic 

identification; (ii) localization; (iii) and sensor technology. 

Products uniquely identified by invisible tags allow people to carry devices that 

instantaneously access additional information about the product, thus merging both physical 

and virtual worlds. A personal mobile device with computing capabilities will be, in future, a 

common clothing accessory like the wristwatches today and eventually, a usual interface to a 

variety of smart objects. 

As previously said, enhancement of objects with increasing sensing, computation, and 

communication capabilities, allow for richer interactions with people, services, and other 

objects. Capable of monitoring of their own critical parameters, products will be able to 

communicate, with responsible entities, abnormal or relevant parameters values or events; if 

possible, they will take corrective actions (Bohn, Coroamã, Langheinrich, Mattern, & Rohs, 

2004) in order to re-establish normality. Smart products will be able to communicate with 

their producers until they are sold, or eventually, during all their lifetime. Things that can do 

shopping themselves (as photocopiers ordering for paper), furniture that can monitor its 

usage (sofas that count the number of persons that sit on it), detailed history of products (as 

used cars that can offer a detailed history, of its production, use and repair) are examples of 

what is imagined as concrete applications of ubiquitous computing. As entities in the 

economic processes improve their capabilities on monitoring, gathering, retrieving, and 

processing information, it will ultimately become possible in real-time to witness and (in 

some extent) to control the lifecycle of products (from their manufacturing to their complete 

consumption) (Bohn, et al., 2004) .  

Business benefits and ubiquitous computing technologies have a mutual influence in each 

other:  ubiquitous computing technologies are seen has offering support for potential 

business benefits to organization efficiency, and those potential benefits constitute a driving 

force and key factors to further research and deployment of ubiquitous computing 

technologies (Bohn, et al., 2004); this leads to a permanent, vigorous, and rapid proliferation 

of information technology. 

Aware of those business benefits potentially offered by ubiquitous computing technologies, 

the industry has set their attention on the deployment of those technologies in supporting 

applications in diverse domains, pursuing imagined business benefits. Government agencies, 

insurance companies, organizations of several domains have been developing projects aiming 

to collect the potential gains of deployment of ubiquitous computing. Marketing, inventory 
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management, pay-per-use are examples of intervention areas. Museums (Fleck et al., 2002a), 

agriculture (Burrell, et al., 2004), restaurants (Stanford, 2003b), and health care (Varshney, 

2003) are examples of business domains that have been addressed by applications based on 

this kind of information technology. For example, in elder care (Stanford, 2002), systems have 

been deployed to improve the quality and the efficiency of care delivery to the elderly. This 

improvement came through the assistance to the staff in identifying people needing 

immediate attention and in monitoring trends, which resulted in an enhanced service and an 

enriched environment. 

As example of research and deployment of ubiquitous computing systems at Accenture 

Technology Labs (Accenture, 2004f), ubiquitous computing research initiatives resulted in  

projects that exemplify new applications with ubiquitous computing technologies (some of 

them envisioned to enhance business performance). Among such project examples are:  

(1) Networked automation (Accenture, 2004c). Demonstrated how innovative technology can 

enhance safety on a plant floor through automated machines that use technologies such as 

sensors and radio frequency identification (RFID) tags, as well as ad hoc network 

communication devices to provide information reporting capabilities, and to control objects.  

(2) Freight tracking (Accenture, 2004a). Improves the efficiency of cargo management “(…) by 

allowing rail companies, railroad yards and large suppliers with separate rail facilities to better control and monitor their 

freight movements. The prototype makes train wagons "intelligent" and allows them to assume inventory management 

responsibilities by reporting their exact location and sequence within a line of cars.” 

(3)Virtual Home Improvement Services (Accenture, 2004g). Focus on assistance in situations 

where expert helped is needed at point of need such as “machine repair, travel, cooking, shopping, fitness 

training, gardening, first aid and personal security”, using web services. 

(4) Manufacturing services (Accenture, 2004b). Manufacturing Services prototype show 

“(…)how the combination of embedded computing, sensors, and short-range wireless technologies makes for an “aware” 

environment. Such environments create intelligent pieces of equipment that are aware of their status and surroundings, 

interact with technicians, revolutionize how services are performed and automate the regulatory (or even tax) compliance 

process.” 

(5) Physical media tracking (Accenture, 2004d). Help to reduce the potential for theft and 

human error “(…) all while streamlining the entire inventory management process. (…) the prototype makes products 

“intelligent” and allows them to assume inventory management responsibilities by continuously reporting their exact 

locations, wherever they may be in the value chain.” 
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(6) Real-world Showroom (Accenture, 2004e). Application prototype enabling people to find 

information about products “(…) as they encounter them in their daily lives. If they wish, they can buy the item on 

the spot. With Real-World Showroom, commerce and interaction can take place wherever and whenever people see and use 

products, not in the store or on a website.” 

(7) Mobile Valet (Accenture, 2004e).  A palmtop computer demonstrates how to use mobile 

devices as a service channel. It “capitalizes on the ubiquity of sensors, tags, speakers and video screens which we 

encounter everywhere, making it possible to deliver a whole range of services—and in much greater detail and resolution 

than just though a mobile phone! ”. “Demonstrates how innovative services may be delivered to help people do what they 

are doing, wherever they happen to be.” 

(8) Online Medicine Cabinet (Accenture, 2004d). Shows how technology helps in our 

healthcare; “It combines sensors with the power of the Internet and embedded computers to create a "situated portal"— 

a smart appliance that continuously monitors the needs of people and responds with appropriate, individualized services.” 

A world fully interconnected with smart devices, tagging technologies, and aware personal 

mobile computing devices, along with widespread networking communications 

infrastructures, will lead to change of perception of our surroundings. Such change of 

surroundings perception (with new or improved ways of interaction among people, business 

or objects) will trigger social and economic changes, which will ultimately be of political 

relevance (Mattern, 2001). As Fano and Gershman (Fano & Gershman, 2002) says, “ubiquitous 

computing will change the way we live with technology”.  

Social Concerns 

Computing technology developments in last decade enabled information to migrate from 

paper to digital format, enabling it to be easily stored, reproduced, and published. 

Networking technologies developments allowed easier and faster communications and the 

ability of to provide of new networked-based services.  

Development in storage database technology unconstrained the amount of information that 

could be stored. Searching technologies jointly with analysis tools, allowed for this 

information be accurate and to be timely accessed and used.  

Development on input modalities beyond the traditional mouse and keyboard, on digital 

photography and video, and on sensing technologies, allowed for a broader forms and kinds 

of information to be digitally gathered and managed. Internet technologies and applications, 

such as the Web and electronic mail, offering a privileged means of efficient communication 
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among people and organizations, fostered the acceptance and introduction of digital 

information and processing on personal, social, and business life. Beyond laptops computers, 

personal digital assistants (PDAs) and smart phones came to light to offer an always present 

personal mobile computing, frequently with data wireless networking and voice 

communication. Beyond general computing and communication, those devices allowed us to 

deal with an increasingly number of available computing enhanced artefacts.  

Technology assisted us in digitalizing not only all the information and the processes that deal 

with that information, but also our presence and the presence of objects surrounding us. 

Context-aware systems and monitoring systems also became common in order to provide for 

easy systems interaction, improvement of efficiency or security. As Ark and Selker say (Ark & 

Selker, 1999), “we should not have to carry around devices containing our information. Rather, devices will recognize 

who we are and obtain information about us, through ‘remembrance agents’ or adaptive user models, Internet information 

storage, or other means.”  

Ubiquitous computing promises further technology penetration on human lives, through 

computing and network augmentation of the environment, enabling the merging of the 

physical and virtual worlds. Projects such as Cooltown (Barton & Kindberg, 2001; Debaty, 

Goddi, & Vorbau, 2005; Kindberg et al., 2000) are examples of research on this worlds 

merging. More and more the digital permeate the physical space in a seamless manner and 

the computing expected to be everywhere (Ark & Selker, 1999). The advent of ubiquitous 

computing systems enabled information technology to gain a further relevance in its role in 

human social lives (Dryer, et al., 1999), narrowing the relationship between humans and 

technology and fostering focus on human to human communication. 

As the field of ubiquitous computing matures, key issues start shifting away from technical 

issues to more business and social domains (Langheinrich, et al., 2002).  If assisting human life 

with computing capabilities seems commonly accepted as a good intention, the way to 

realize such remains unclear and generally not well agreed or comprehended.  

Computerizing our activities or personal information and, in particular, keeping digital track 

of part of those, while seen by some justified as personal, business, social convenience or 

necessity (e.g., for security), has also been seen by others as a potential risk for person 

privacy (and eventually security). Ubiquitous computing with its pervasiveness and sensing 

capabilities, along with its invisibleness, bring novel possibilities; for some people they are 

motive of contentment and for others they are motive of increased concerns.  
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Envisioning that this “embodied virtuality” would make “individuals more aware of other people on the 

ends of their computer links” (Weiser, 1991), Weiser  early noticed that ubiquitous computing have 

impact on the relationships of people and technology (Weiser, et al., 1999).  

Changing the focus of attention away from computers themselves to activities, ubiquitous 

computing could enhance human relationships, work practices, and knowledge sharing. 

Nonetheless, as he stated then, ubiquitous computing research also brought attention to 

other issues, such as its capabilities of monitoring and control, and privacy:  “If the computational 

system is invisible as well as extensive, it becomes hard to know what is controlling what, what is connected to what, where 

information is flowing, how it is being used, what is broken (vs what is working correctly, but not helpfully), and what are the 

consequences of any given action (including simply walking into a room).” (Weiser, et al., 1999).  

With its sensing capabilities, ubiquitous computing has impact on the social environments 

where it is introduced (Banavar & Bernstein, 2002).  Personal privacy will be affected since 

broadly accessible, available, and effective small sensors and processors “allow for a much more 

comprehensive automated surveillance of the environment, including what we do and say” (Mattern, 2001); and if 

Internet is extended into everyday objects, this will result in “enormous challenges for privacy” 

(Mattern, 2001). 

Several positions of concern about ubiquitous computing have been related  (Stone, 2003), 

being privacy and liberty issues one of the most focused. Others concerns include worries 

about  building of  an infrastructure that will enable for totalitarian control, and the 

transformations that this technology can bring to human existence (such as things getting too 

easier to be done, or the augmentation of human body capabilities (Stone, 2003) beyond 

reasonable common sense). Given the biotechnology and nanotechnology developments, 

almost anything can be expected.  

Technology developments and its widespread adoption leads to fear that as more as life 

becomes “technological”, it can also become less “human” (Dryer, et al., 1999). Brief 

accounts of criticism to the ambition of the ubiquity of computing are given in (Bohn, et al., 

2004).  

As an example of technology that raised concerns  related to its adoption, is the VeriChip 

(Stone, 2003). The VeriChip (VeriChip, 2006b) is a miniaturized Radio Frequency Identification 

(RFID) device implanted under the skin of human body. “About the size of a grain of rice” (VeriChip, 

2006b), it contains a individual unique verification number, which is transmitted by the chip 

when a scanner energizes it. This unique identification number can be used to identify 

uniquely an individual. Among the potential domains of application of this technology, is the 
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security domain, such as access control to facilities and equipment, and transactions 

requiring robust or immediate identification (VeriChip, 2006c).  

 

Figure 2.3- The VeriChip (extracted from (Verichip, 2006a)). 

Privacy has been, for decades, concern to people. The advent of modern photography, the 

printing press, the automated data processing, credit cards, and the Internet have sparked 

attention to privacy. Privacy  concerns took different focuses accordingly to technological 

developments, being recognized some forms of privacy: media privacy, territorial privacy, 

communication privacy, bodily privacy and information privacy (mentions of these forms of 

privacy − with exception to the media privacy − can also be found in (Beresford & Stajano, 

2003)). This last form of privacy – information privacy – is the one that these days most 

promote concerns (Langheinrich, 2001) (location privacy is considered a particular type of 

information privacy, and is defined as “the ability to prevent other parties from learning one’s current or past 

location” (Beresford & Stajano, 2003)). 

Issues related with the adequate collection, use, and dissemination of information have been 

for long time subject to considerations in human communication (Abowd & Mynatt, 2000), 

resulting on several legislations and recommendations5, such as: (i) the United States (US) 

Privacy Act of 1974, in which principles of fair information practices are established 

(openness and transparency, individual participation, collection limitation, data quality, use 

limitation, reasonable security and accountability); (ii) and the European Union (EU) Directive 

95/46/EC of 1995, which beyond the limitation of data transfers to non-EU countries, add the 

notion of explicit consent to the fair information practices, are two examples of privacy 

legislation (Langheinrich, 2001).  Organization for Economic Co-operation and Development 

(OECD) Guidelines (OECD, 1980)  and Safe Harbor framework (USDoC, 2000) – an U.S. 

Department of Commerce in consultation with the European Commission effort – are other 

initiatives on privacy legislation domain. The former, aimed to help harmonising national 

privacy legislation and, at the same time, to prevent interruptions in international flows of 

                                                                 
5 Other general previous legislation or recommendations on privacy in general, such as the England’s 1361 Justices of the Peace  Act, The Fourth 
Amendment to the US Constitution, the 1890 US Supreme Cout Justice Louis Brandeis and the 1948 Universal Declaration of Human Rights) can 
also be found referenced in (Beresford & Stajano, 2003). 
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data OECD Member countries. The latter, to bridge the different privacy approaches between 

European Union and United States.  

As reported by Langheinrich (Langheinrich, 2001), there is also criticism about the 

enforcement of privacy. Focusing on issues of feasibility, convenience, communitarian, and 

egalitarian, they argue that, often, life is better without privacy. Different motivations for 

protection of privacy in laws and standards (Lessig, 1999) have been noticed6 (Bohn, et al., 

2004; Langheinrich, et al., 2002). These are: privacy as empowerment (“to give people the right to 

control the publication and distribution of information about themselves”), as utility (“providing protection against 

nuisances such as unsolicited phone calls or emails”), as dignity (entails “being free from unsubstantiated suspicion” 

and “equilibrium of information available between to people”), and as constraint of power/regulating agent 

(“a tool for keeping checks and balances on a ruling elite’s power”). 

Besides the considerations reported by Weiser (Weiser, et al., 1999), the literature is fertile 

on appreciations about information privacy related to ubiquitous computing (e.g., (Abowd & 

Mynatt, 2000; Beckwith, 2003; Beresford & Stajano, 2003; Jiang & Landay, 2002; 

Langheinrich, 2001; Mattern, 2001; Want, Hopper, Falcão, & Gibbons, 1992)).  

Ubiquitous computing is generally considered has having impact on privacy, as it extends 

monitoring capabilities in both spatial scope and temporal coverage (as since from the pre-

natal diagnoses, through birth and growth to the oldness of people) (Bohn, et al., 2004). It 

may create new opportunities of outrage of privacy – or, as Gary Marx argued, the “border 

crossings”. Gary Marx (Marx, 2001) in its  work about public and private (and referenced in 

(Bohn, et al., 2004; Jiang & Landay, 2002; Langheinrich, et al., 2002)), states that, with respect 

to surveillance, “central to the acceptance or sense of outrage (…) are the implications for crossing personal borders”.  

He argues that, when violation of personal borders occurs, it involves the breach of one or 

more the borders. These borders are the natural border (what naturally achieve by our 

senses), social border (expectations of confidentiality in certain social groups), spatial or 

temporal border (expectation that part of lives can exist in isolation from others parts), and 

border due to ephemeral and transitory effects (related to spontaneous utterance or action 

expected to be rapidly forgot).  

Among these borders, the one that might be easier to satisfy in the design of ubiquitous 

computing systems is the natural border. The occurrence extent of border crossings will 

depend on a large extent of the searching capabilities of the ubiquitous computing systems; 

the monitoring and search capabilities of ubiquitous computing systems “will very likely provide 

                                                                 
6 These motivations reported were distinguished by Lawrence Lessig, as noticed by Langheirich and by Bohn. 
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their developers, owners, and regulators with a significant tool for driving the future development of privacy concepts within 

society” (Bohn, et al., 2004)  

Beckwith, to analyse risks on his work “Design for Ubiquity: the perception of privacy” 

(Beckwith, 2003), considers three aspects of personal information ( borrowed from a model 

of Adams (Anne, 1999)) that determine people’s reasoning about privacy. These aspects are: 

(i) information receiver (who will use it); (ii) information usage (how will it be used –data can 

be collected from various sources (such as sensors) and combined to derive secondary data, 

which may lead to problems as there may be various not imagined uses for data fused); (iii) 

information sensitivity (how sensitive it is). The interplay of these aspects is considered as 

determining how privacy and potential violations are perceived by people (Beckwith, 2003). 

Some insight into and a basis for assessment of issues pertaining the judging of privacy and 

the implication of pervasive technologies are exposed, through a proposed framework, by  

Jacobs and Abowd (Jacobs & Abowd, 2003) in order to help ubiquitous computing systems 

designers to better assess the implications of systems designs into privacy concerns.  

Given the general concerns, it seems necessary some attention to the design of ubiquitous 

computing systems. Some suggestions to the design of these systems are made. First, the 

sparse use of sensing technologies and careful attention to border crossings (communication 

concepts evaluated according to existent social borders; questioning of searching capabilities 

that allows spatial and temporal border crossings; introduction of the concept of ephemeral, 

transitory effects in the architecture, allowing for example that information slowly decays 

over time) (Langheinrich, et al., 2002). Second, to restrict data usage and to keep the 

potential consumers low (Beckwith, 2003). The deployment of ubiquitous computing systems 

“will in many cases have implications beyond the technical obvious ones” and “designers can greatly benefit 

from evaluating the effects of this deployment “using existing concepts in disciplines such as social, 

economic, and legal sciences” (Langheinrich, et al., 2002).  

At the present, computers are crucial to assistance of everyday life, providing support for 

activities or systems related to critical systems and communications. Our dependence on 

their correct and reliable functioning keeps growing as more and more these and other 

information appliances digitalize our world. And as Bohn (Bohn, et al., 2004) states, if today, 

in most cases, “we are still able to decide for ourselves whether we want to use devices equipped with modern computer 

technology”, in the future, “it might not be possible to escape from this sort of technologically induced dependence”. 

The proliferation of these technologies in our everyday life leads to the need of attention to 

less technical and more social aspects of ubiquitous computing systems (Bohn, et al., 2004).   
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In an environment full of thousands of smart devices dedicated to facilitate and to promote 

our activities and well-being, our dependence on ubiquitous computing systems requires us 

to demand from them, full reliability of the services offered and their correct behaviour 

accordingly to our needs and circumstances. In this perspective, these systems must satisfy 

aspects such as: (i) manageability (being able to be easily understood and controlled); (ii) 

predictability (relatively easiness of use and expected behaviour − ubiquitous underlying 

invisibility makes “fault detection and diagnosis fundamentally difficult”); (iii) dependability (ongoing 

support of activities in even is partial failures of individual device or service interruptions − 

this may be achieved through “alternative concepts and mechanisms (…) such as explicit diversification of 

functions” ) (Bohn, et al., 2004).  

As expressed by Bohn (Bohn, et al., 2004), beyond privacy and the afore-mentioned 

reliability, there are other issues that must be taken into account. Among these are: (i) 

delegation of control - “in order to minimize the need for human intervention, new concepts for delegating control 

are necessary”; (ii) content control -  who guarantees the information provided by the smart 

objects; (iii) system control - will the smart objects or systems always obey to their owner or 

will they enforce guidelines of third parties, such as insurances, manufacturers or judicial 

power (iv) accountability - with autonomous objects and systems, it is need to clarify who is 

responsible for business transactions and for informing users about transactions; (v) social 

compatibility - for human participation in highly dynamic systems, “their parameters have to be 

adjusted accordingly”; (vi) transparency - in a pay-per-use model full of  “short-term contracts and 

micropayments”, its necessary to devise how we could acceptably keep track of those; (vii) 

knowledge sustainability -  in highly dynamic systems, our nowadays information inertia 

(validity of  information for an extend period of time) tends to diminish, being the 

sustainability of knowledge risking to be lost (“an experience that was valid and useful one minute could 

become obsolete and unusable the next”), which may in the long term “contribute to an increased uncertainty and 

lack of direction for people in society”; (viii) fairness - marketing can provide for tailored offers 

accomplishing to eliminate unwanted offers, but there is a need attention to situations on 

which information is withheld from consumer because he is not worth for the offer (in 

opposite to the offer not being worth to the consumer), which may lead to reinforced 

injustices; (ix) acceptance -  “beyond any perceived sinister motives (…), a widespread public acceptance of 

ubiquitous computing also rests on issues of an almost philosophical nature (…)”; (x) feasibility and credibility - in 

order to not reduce acceptability of ubiquitous computing technologies, ubiquitous 

computing must effectively bring benefits to the stressed and hurry life of people and not 

stay for improved efficiency of them; (xi) artefact autonomy − networked and interaction 

dependent objects  (integrated in an environment) may be seem as being less autonomous 
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and inherently more error-prone; (xii) impact on health and on environment − a world fully of 

countless computing devices or information appliances raises concerns about the 

environment, which are related to “raw material consumption, energy consumption, and disposal” (the 

electromagnetic radiation resulting from the widespread availability of wireless 

communications also leads to worries about its possible and extend of negative effects on the 

human body); (xiii) relationship between man and the world − from a philosophical point of 

view, the augmentation of the environment can be seen as doing changes on it in a way that 

it will let off being the “environment”, the “natural world”, but a mere artefact of our 

extensions, losing fundamental properties. 

Questions are opened and they evolve along with new possibilities of interactions, services, 

and its integration as systems in our everyday lives. This results on the emergence of new or 

further advanced ubiquitous computing technologies. 

The concerns expressed and the expected vision’s benefits will remain as topics of debate 

and analysis on the community. Notwithstanding, it is a certainty that ubiquitous 

technologies will be increasingly integrated on everyday life and, simultaneously beyond of 

research, focus of attention of business, social, political and legal domains. 

2.4 Pervasive Information Systems 

Business competition among organizations requires that an organization, in order to be 

successful, opportunely meets market demand with the best suitable and competitive supply 

at minimal cost. Among others requirements, adequateness of business processes and their 

efficient implementation, constitute central issues to the organizations’ ability to be 

competitive and successful. Information and knowledge are (beyond land and natural 

resources, human labour, and financial capital) fundamental resources of an organization 

(Sage & Rouse, 1999). Information can be used not only as a resource  to the production of 

goods or services, but also as an asset  inherent to the organization structure, or even, as a 

product to be commercialized (Gordon & Gordon, 2004a).  In this context, information, 

information technologies, information systems, and information management play a crucial 

role.  

Widespread availability of affordable and innovative information technologies promoted the 

attention individuals and organizations to the efficiency and effectiveness of information 

management regarding to the way they acquire, process, store, retrieve, communicate, use, 

and share information (Gordon & Gordon, 2004a). In order to take full benefits of the 
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opportunities offered by information technologies, these  need to be “appropriately integrated 

within organizational frameworks” (Sage & Rouse, 1999), and hence, they will not only provide a solid 

basis to sustain the needed information and to achieve effectiveness at both individual and 

organizational levels, but also to leverage the investment on these information technologies.  

To deal with market pressures and competition, organizations must also to possess the 

capability to establish rapidly new or to change existing business requirements or processes. 

Such necessity, in conjunction with a reality of permanent technological innovations and 

developments, requires that organization’s supporting information systems and inherent 

subsystems be conceived to deal with change and evolution with minimal business 

disturbance and reduced costs. 

Information systems (IS), known as systems that “collect, process, store, analyse, and disseminate 

information for a specific purpose” (Turban, McLean, & Wetherbe, 2001), are planned, designed and 

deployed in an organization with the purpose to support its business operations, to assist its 

management activities, or to produce business’s valuable information assets or products. It is 

through the proper project and design of those information systems that it will be possible to 

satisfy efficiently the organizational or personal information needs in the pursuit of defined 

goals. Additionally, the correct definition and design of information systems are important to 

everybody’s satisfaction regarding to information security and privacy, and other social 

concerns, thus assuring a higher degree of reliance on the system deployed. 

Within an organization, and mainly from a management perspective, information systems 

were classified in several ways: 

(1) Gordon et al. (Gordon & Gordon, 2004a, 2004b) classify information systems according to 

two dimensions: their purpose and their scope. In the purpose dimension, several types of 

information systems are the automation systems, transaction-processing systems, 

management information systems (management reporting systems, decision-supporting 

systems, groupware, executive information systems). In the scope dimension, it is 

distinguished (Gordon & Gordon, 2004a) individual, departmental/functional, enterprise and 

inter-organizational systems.  

(2) Turban et al. (Turban, et al., 2001) classify information systems by organizational levels 

(departmental IS, enterprise IS and inter-organizational IS), functional areas (accounting IS, 

finance IS, manufacturing IS, marketing IS, human resources management IS), support 

provided (transaction processing systems (TPS), Management IS (MIS), Knowledge 
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management systems (KMS), Office automation systems (OAS), Enterprise IS (EIS), Group 

support system (GSS) and Intelligent support systems), and information system architecture. 

Along the years, organizational, technological, and social evolutions brought a shift from a 

usually monolithic organization’s information systems with well-defined and limited source 

inputs, into complex, distributed, and technologically heterogeneous information systems. A 

digital world emerges with prevalence over the real world. Everything has or produces 

information and increasingly acquires computational and communication capabilities. The 

world is ever more ruled with digital information and processes. More and faster information 

about everything and everyone become available; there is a permanent real-time information 

collecting, processing, and availability. 

Weiser’s statement “Applications are of course the whole point of ubiquitous computing” (Weiser, 1993b) 

reinforces that, among all the innovative  and outstanding ubiquitous technologies, the 

applications get the final focus on this novel computing vision. It is through these applications 

that the ultimate vision’s objective is achieved ─ the invisibility and engendering of calmness 

of computing on the support and enhancement of everyday activity.  

As  expressed by Abowd (Abowd, Mynatt, & Rodden, 2002), it is not a single application or 

service that will realize such objective; rather “(…)it is a combination of services, all of which available when 

needed, and all of which work as desired without extraordinary human intervention”.  

The use of spontaneous cooperating smart objects, with access to online/Internet databases 

or services, offer a great potential to applications (Mattern, 2001); it is not the enabling 

technology “(…) but the applications and the delivered services will have a strong visible influence on our high-tech 

culture” (Hansmann, et al., 2003). Abowd (Abowd, et al., 2002) believe that, to realize Weiser’s 

vision, beyond the understanding of “everyday practices of people” and the augmentation of the 

world with heterogeneous interconnected devices, it is necessary to orchestrate these 

devices in order to “provide for a holistic user experience”.   

In 1997, Birnbaum (Birnbaum, 1997), relating the concept “pervasive technology” with the 

notion of a technology “more noticeable for its absence than its presence”, relates pervasive computing 

with information systems and entitle his article as “Pervasive Information Systems”. Noticing 

the advance of information appliances, the emergence of a digital infrastructure fostered by 

the Internet, and the increasing expectation on readily available information services (for 

which quality of service is would be a “crucial competitive differentiator”), Birnbaum presented the 

pervasiveness of computing and anticipated what he classified as a new paradigm shift, the 

client-utility computing. In this client-utility computing, clients connect to the utilities and 



2.4 Pervasive Information Systems 

41 

where computing usage could be paid (in consequence, a new service industry could 

emerge). In this client-utility computing, the “standards-based open resources, located arbitrarily, are 

combined as needed for a particular job” (Birnbaum, 1997).  Through the statement, “I think it is only a 

matter of time before client-utility becomes the prevalent style in information systems (…). The consequence of pervasive 

information systems for business and society are enormous.” (Birnbaum, 1997), Birnbaum reveals the 

association of the term “pervasive information systems” to the idea of widespread and 

common use of services, which are at the core of this perspective of the term.7 Other 

references to the relationship between the pervasive devices and information systems can 

also be found in literature, such as “The Sensor-Net system using small wireless sensor nodes is a ubiquitous 

information system for monitoring real-time real-world phenomena.(…) “(Suzuki, 2004) . 

With all the interconnected computing and other information augmented objects, services 

are supported and deployed to enable higher-level applications that come in assistance of the 

user (either in a seamlessly or intensive interacting way). Additionally,   “we become aware of the 

presence flow and processing of information, not only by the individual computing devices, but also, and with a more deep 

significance, by the overall system that emerges from the interactions of all the computing devices, linking them together in a 

coherent fashion” (J. E. Fernandes, Machado, & Carvalho, 2004a).  

We can then recognize the presence of some sort of information system, which in this 

context of pervasive computing, we can denominate it as a pervasive information system 

(PIS). Indeed, all these systems dealing with information constitute some form of information 

system; they gather, collect, process, store and produce information aimed at contributing to 

an organization or personal needs in order to achieve a set of well-established objectives.  

These pervasive information systems, composed of heterogeneous, mobile, or physically 

integrated (embedded) devices, capable of collecting, processing, and instantaneously 

communicating and interacting among them or others systems, opens the possibility of 

processing large quantity of information  and realizing complex interactions or advanced 

functionalities. These pervasive information systems must be, in its essence, well designed, 

developed and deployed in order to, satisfying the requirements and exploring all the 

potential offered by the pervasive computing, maximize the revenue of these kinds of 

systems.  

A world full of smart devices and the widespread adoption of pervasive technologies as basis 

for new systems and applications, lead to the need of effectively design information systems 

that properly fulfil the goals they were designed for. These pervasive information systems 

                                                                 
7 In this context, and in face of no further reference to information systems, it could be argued that a more accurate terminology would be 
“pervasive computing services”. 
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and the applications that constitute them need to be able to accommodate the permanent 

technological evolutions and innovations that the heterogeneous devices are subject of, and 

the requirements changes that result from a faster and intense world of business 

competition. 

2.5 Conclusion  

Ubiquitous computing brings a novel vision for computing, one where computing devices 

(frequently with communication capabilities) are spread and available in the user’s 

environment. This vision establishes a paradigm where computing devices and their 

applications do not need active user’s attention for interaction with them. Whilst in the 

“periphery” of users’ attention and in contrast to traditional personal computing, they 

continuously assist and support users on their tasks, helping in getting that the focus of users 

attention stay on their task and goals.  

Pervasive and ubiquitous are terms used interchangeably when referring to ubiquitous 

computing; nonetheless the latter term can be seen as carrying a notion of invisibility that 

engenders calmness, which can be seen as a possible emergent property of pervasiveness.  

Technology improvements and innovations (such as in miniaturization, processing, storage, 

energy, communications, portability), widespread availability and use of benefits provided by 

World Wide Web, cellular phones, and wireless networks, contributed to an acceptance of 

computing as a common fact and a demandable property from the surrounding environment.  

Several pervasive computing characteristics, issues and challenges have been identified 

(Abowd & Mynatt, 2000; Lyytinen & Yoo, 2002; Saha & Mukherjee, 2003; Satyanarayanan, 

2001). Physical integration and spontaneous interoperation (Kindberg & Fox, 2002), quantity 

and heterogeneity of computing devices, services and applications that may be part at any 

moment of the system (Grimm et al., 2001), and the need of continuously available services 

(easily interrupted and resumed) (Abowd, et al., 2002) are several of those issues and 

challenges. Environment is also relevant to ubiquitous computing: context-awareness of 

applications and easy interoperability of devices and applications are identified as 

requirements for system support of  pervasive applications (Grimm, 2004). These are 

important specially when aiming an easily reconfiguration of the application to cope with 

presence or absence of computing devices (with distinct computing power or interface 
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capabilities, availability of services) and to respond rapidly to business changing needs. These 

characteristics need attention when designing a pervasive information system. 

From a business perspective, pervasive computing represents an opportunity to enhance 

current business models and even to create novel business models. Several projects arise on 

diverse domains, taking advantages pervasive computing. From  social perspective, a world of 

fully interconnect smart devices, able to monitor, register, and communicate all information 

of their surroundings, can be preoccupying and thus, arise security and privacy concerns. 

There is a fear that as the world become technological, it can also become less human. 

Research efforts so far have been mostly oriented towards physical and virtual integration, 

interaction models, deployment, communication technologies and connectivity, and software 

architectures. It is important that new pervasive systems also become subject of study and 

research from an information systems and software development perspective. 
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3  

Model-Driven Development 

 

This chapter introduces the model-driven approach to software development (MDD) 

and presents some issues regarding to the use and adoption of models on software 

development, as well as the benefits that can be expected with MDD. It takes a look 

into the OMG Model-Driven Architecture (MDA) initiative and exposes the 

fundamental concepts regarding this approach, such as PIM, PSM and model 

transformations. It ends exposing some research efforts to advance MDD. 

3.1 Introduction 

Since antiquity engineering disciplines have the activity of modelling as a fundamental 

technique to cope with complexity  (“The use of engineering models is almost as old as engineering itself.” 

(Selic, 2003a)). Modelling provides a way to facilitate the understanding, reasoning, 

construction, simulation, and communication about complex systems (usually composed by 

smaller parts) (Thomas, 2004). Software engineering,  in comparison with  other forms of 

engineering, is on a privileged position to attain benefits from modelling, as it is one whereby 

an “abstract high-level model can be gradually evolved into the final product without requiring a change in skills, methods, 

concepts, or tools” (Selic, 2003a). 

Software engineering is a discipline whose objective is the “cost-effective development of software 

systems” (OMG, 2003; Sommerville, 2001). Since the beginning of construction of software 

systems there have been several research efforts in order to reach greater performance and 
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convenience of development of these systems, as well as to achieve a better satisfaction on 

accomplishment of its requirements and expectations. The approaches undertaken on these 

research efforts brought improvements on programming and modelling languages, on 

algorithms, on techniques and paradigms (such as functional decomposition and object-

orientation), on processes and tools, on patterns, and on the “level of reuse in system construction” 

(Miller et al., 2004a) (sub-routines, objects, components and frameworks).  

Raising the abstraction at which software developers mainly work is another area of 

improvement. Several examples of such rising of abstraction are the movements from binary 

languages to assembly languages and from assembly languages to higher-level languages. The 

new abstractions, initially introduced as novel concepts, were later adopted and supported, 

and tools were developed “to map from one layer to the next automatically” (Miller, et al., 2004a). 

Nowadays, there is a promotion of another rising of abstraction at which development 

occurs; this one is based on changing of the main development efforts from code and 

programming to models and modelling.  

3.2 Models in Software Development 

Model-Driven Development (MDD) constitutes an approach to software design and 

development that strongly focuses and relies on models,  through which “we build software-

platform independent models” (Miller, et al., 2004a). This corresponds to a rising of abstraction from 

higher-level programming languages to modelling languages. 

Albeit some opinions consider that there is no “universally accepted definition of MDD is and what support 

for it entails” (Atkinson & Kuhne, 2003),  it can be said that MDD carries the notion that it can be 

possible to build, with modelling languages, a model that entirely represents the intended 

software system. This model can then be transformed, through well-defined transformation 

rules, into the “real thing” (Mellor, Clark, & Futagami, 2003).  Nonetheless, it’s noteworthy to 

point out that, to achieve or undertake model-driven development, “not all models need to be 

executable or even formal, but those that are can benefit from automation” (Mellor, et al., 2003)  and models do 

not need to be complete, as “it incompleteness or high degree of abstraction do not equate to imprecision” 

(Mellor, et al., 2003)).  

This raise of abstraction (see Figure 3.1) at which software is written (the shift of the level of 

abstraction from code and programming languages, to models and model languages (Sendall 

& Kozaczynski, 2003) ) implies that a software system will be mainly and fully  (as possible) 
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expressed by models. The models are the main artefacts of the development effort rather 

than computer programs (Selic, 2003b).  

Definitions of models are abundant on the literature; they can be found either on the 

software engineering field or others distinct fields such as architecture, building construction 

or other engineering fields.  

Basically, a model, which can serve as a description or a specification, is a representation (set 

of statements expressed in either textual or graphical form) of something under study 

(usually a system). It focuses, with an intended degree of abstraction, on some particular 

aspects (it can ignore some subject matters and details while emphasizing others) and is 

intended to be used with a purpose (analysis, specification, communication, documentation, 

etc.). 
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Figure 3.1- Raising the level of abstraction (extracted from (Miller, et al., 2004a)) 

Different models can be designed to represent different views of the system, and as such,  

containing pertinent aspects relevant to a particular perspective considered at a given time 

(Brown, 2004). Models provide abstractions of a system that allows to “reason about that system by 

ignoring extraneous details while focusing on the relevant ones” (Brown, 2004), and subsequently, enable us 

to understand and cope with complex systems.   

The elaboration of engineering models allow, through abstraction and consistent and 

coherent structuring, to better “understand both the problem and the effectiveness of potential solutions” and 

to analyse/mitigate potential risks of failure before starting the construction (usually 

expensive) of the final system (Selic, 2003a). Particularly, in the domain of software 

engineering where the overwhelming complexity of software systems has been steadily 

increasing, models can be even more advantageous. Software development primordially 
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consists of the expression of ideas, which is limited more by imagination than by physical 

laws or other physical restrictions that occur in other engineering fields.  

The raise of abstraction subjacent to the use of models allows for productivity improvement: 

“it’s cheaper to write one line of Java than write 10 lines of assembly language. Similarly, (…) it’s cheaper to build a graphical 

model in UML, say, than to write in Java” (Mellor, et al., 2003) .   

Models can be used either horizontally, to describe several facets of a system, or vertically, 

for abstraction refinement of a system’s model from higher to lower levels (at which can be 

found a representation of the technological implementation of concepts  (Sendall & 

Kozaczynski, 2003), or even further, the oneself system).  

Synthetically, models, in a descriptive or a prescriptive form, can then be used to: (i) 

understand or communicate a problem, a existing system, or a proposed solution; (ii) analyse, 

or predict on changes, systems properties or risk failures; (iii) productivity improvement; (iv) 

reduction of system’s development costs. 

Brown (Brown, 2004), resorting to an illustration of the spectrum of today’s modelling 

approaches, shows the different ways in which models are synchronized with code (see 

Figure 3.2) and characterizes current practice stating that “Today, a majority of software developers still 

take a code-only approach (…), and do not use separately defined models at all” (Brown, 2004). 
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Figure 3.2 -  The modelling spectrum (adapted from (Brown, 2004))8. 

                                                                 
8 As stated on the containing document, this figure is “based on a diagram originally created by John Daniels”. 
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For a model to be useful and effective, Selic (Selic, 2003b) considers that it must possess five 

key characteristics: (i) abstraction - being able to abstract detail irrelevant from a intended 

viewpoint, a model allows to cope with complexity of structure or functionality of a system; 

(ii) understandability - an intuitive model allows for a reduced intellectual effort on its 

comprehension, being relevant to this effort, the expressiveness (“the capacity of convey a complex 

idea with little direct information”) of the modelling form used; (iii)  accuracy - a model must faithful 

depict the true system, with no imprecision;  (iv) prediction - the model must allow to foresee 

the “non-obvious properties” of the system either through experimentation or other form of 

analysis; (v) inexpensive  - the model must be “significantly cheaper to construct” than the modelled 

system.  

These five characteristics can be augmented with other one particularly relevant to software 

development: maintainability. During software development, no model will be kept if it can’t 

be easily and advantageously maintainable.  

Model’s representation (a diagram, a structured text, or other form of manifestation) is 

expressed recurring to some sort of modelling language, either formal or informal. One of the 

most desired forms for model’s representation is achieved through the use of graphical 

modelling languages. These are composed by a coherent set of model elements ruled by well-

defined syntax and with precise, consistent, and complete semantics that allows for an ease 

construction of intuitive, expressive, and precise models (as needed).  

As models are the primary artefact in model-driven development approach, it is necessary 

that “a clear, common understanding of the semantics of our modelling languages is at least as important as a clear, 

common understanding of the semantics of our programming languages.” (Seidewitz, 2003). The Unified 

Modelling Language (UML) specifies the primary notation used in the current practice of 

modelling. UML allows for the creation of models that capture different perspectives of the 

system (being the transformations among these models “primarily manual”) (Brown, 2004). 

Modelling languages used to express models “exists at some abstraction level” (Mellor, et al., 2003): 

(i) models written in programming languages abstracts details such as  CPU’s registers 

handling  issues; (ii) models expressed by the Unified Modelling Language (UML) abstracts 

details issues related to the realization of relationships as associations. In both cases, those 

issues are left to the traditional compiler in the former  case, and with a model compiler or 

human designer in the latter case (Mellor, et al., 2003). 
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Models as sketches and non-maintainable knowledge 

Disciplines as civil engineering or architecture make extensive use of models (it “is de rigour in 

traditional engineering disciplines” (Selic, 2003b)) and no complex or noteworthy project is 

undertaken without resorting to models.  Notwithstanding, in software development, models 

are barely or deficiently used, despite the fact that “software is used to construct some of the most complex 

machines ever devised by man” (Selic, 2003b).  Models play a secondary role and are no more than 

simply drawing pictures “removed from real systems development and needlessly heavy on process” (Mellor, et 

al., 2003). They are usually mostly used as “simple sketches of design ideas” (Seidewitz, 2003) and, in 

traditional code-centric development models, they are discarded once the programming 

phase of the development is on progress since the code is considered the fundamental 

artefact: the one that actually “runs”.  

Along with organization evolution, several models (about business processes and data, 

organization structure, database schemas, etc.) built in the past are barely revisited or 

evolved on further developments or integration efforts, being the knowledge carried on 

those models lost, inapplicable, or redundantly remade. Also frequently, the knowledge 

residing on the minds of the organization’s modellers, developers or other workers, is not 

captured on models or other form of convenient documentation, and consequently,  easily 

forgotten, inaccessible, or lost as people go away from the organization (Denno, Steves, 

Libes, & Barkmeyer, 2003). 

The emphasis on models and the intensive adoption of those, as the primary artefact of 

software development, is criticized by some people that argue that models bring more 

hindrance than help.  Mellor et al. (Mellor, et al., 2003) present some of the arguments used: 

(i)“a model is often used to mean a blueprint that acts as an interface between developers”; (ii) “the analyst’s concerns 

are not the programmers’ concerns — so much so that analysis blueprints are merely advisory, and likely bad advice at that”; 

(iii) “the language in which modellers construct the blueprints is often ill-defined and difficult to translate reliably into 

code”; (iv) “the blueprints are out-of-date before they’re even finished”; (v) “modellers often intend these blueprints to 

predict the unpredictable — the creative act of inventing abstractions in code”. Mellor et al (Mellor, et al., 2003) 

state “these arguments are valid to the extent that models are transformed by passing through the developer’s mind”  

and that they will become less persuasive as models become “fully automated” or “successively 

extended by adding content”. 

Selic (Selic, 2003a) believes that one of the reasons for the unsuccess of models on software 

development is that they  often miss one or more key characteristics for models’ quality. 

They are frequently difficult to understand and are inaccurate, thus losing its usefulness for 
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the “truly trustworthy predictions about the characteristics of the actual system” (Selic, 2003a), which  leads to  

scepticism of its value in the practice of software development.  

Augmenting the difficulties of full adoption of models is the semantic gap that results from 

the obscureness of how are the concepts used in models mapped into the underlying 

technology (such as programming languages and operating system functions). This is 

aggravated by the imprecision of modelling languages (Selic, 2003b).  

A common problem usually found on software development is the fact that there is no way 

to ensure that the software artefact is actually a faithful representation of design models. 

During implementation, beyond semantic gaps, the design incompleteness and imprecision of 

models allow for introduction of particular programming styles or implementation decision 

changes  by programmers, which without being reflected back into to the source models, 

lead to outdated and unreliable models, and consequent rejection of those.  

Moreover, through models, it isn’t possible to see immediate results of running systems; 

code seduces by its easiness of writing and proximity to real running systems, whilst market-

pressures gives the need to quickly concretization of the systems.  

Also contributing to the inertia of further advance on the state-of-the-art of software 

development (from programming to modelling), is the scale of monetary and intellectual 

investments done on actual systems, which leads to a conservative mind set. There are 

millions of code lines written in traditional programming languages, which beyond needing to 

be maintained and upgraded, lead to continuous demand of professionals skilled on those 

programming technologies and whose competences are achieved through significant 

investments on time and effort. As alternative to fundamental evolutions on programming 

technology (which have been restricted to advances on the adoption of programming 

paradigms), there have been efforts on process, tools, and languages improvements (Selic, 

2003b).   

Nonetheless, seen by another perspective, the previous argument, the amount of 

investments and efforts involved also constitute a strong argument to advance this state-of-

the-art. A higher level of abstraction on programming technology and a profound adoption of 

models, as the primary basis and focus of software development and maintenance, can 

provide for higher levels of productivity and easiness of maintainability and further evolution. 
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Benefits of model-driven approaches 

Model-driven development (MDD) approaches promote the idea that through focus of 

development on models one can obtain better software system development and evolutions. 

For this, several contributions of MDD are: 

(A) Gains of productivity. Atkinson et al. (Atkinson & Kuhne, 2003) state that the productivity 

improvement  from development efforts is the “underlying motivation for MDD”. They 

consider that such productivity is attained along two dimensions that MDD must strategically 

consider. First, the short-term productivity (obtained through how much functionality a 

software artefact can deliver) in which the productivity increases as more executable 

functionality can be accomplished from a software artefact. This form of productivity is the 

most focused on current tool support, as "most tool vendors have focused their efforts on 

automating code generation from visual models”. Second, the long-term productivity 

(obtained by augmenting the longevity of the software artefact), in which achieving greater 

artefact longevity allows for increased returns of investment efforts and therefore, “a second 

and strategically more important aspect of MDD is reducing primary artefacts’ sensitivity to 

change”. 

(B) Concepts closer to domain and reduction of semantic gap. Selic (Selic, 2003b)  observes 

that software development, being made through models, uses concepts that are “much less 

bound to the underlying implementation technology and are much closer to the problem 

domain relative to most popular programming languages”, which eventually enables for non-

computing specialist to “produce systems”. MDD, through focus on models, allows for 

reduction or elimination of errors and semantic gaps in the passage from an abstract model 

at design into a final product for implementation, and an increased model accuracy since the 

“model is the system” (Selic, 2003a); furthermore, “there are no conceptual discontinuities 

that preclude backtracking” (Selic, 2003b). 

(C) Automation and less sensitivity to technological changes. Mellor et al. (Mellor, et al., 

2003) point out as potential MDD’s benefits: (i) automatic transformation of high-level design 

models into running systems, allows gains of productivity and inherent reduction of costs 

(beyond reduction of errors and elimination of semantic gaps);  (ii) the models, which are 

easier and maintain, are also “less sensitive to the chosen computing technology and to evolutionary changes to 

that technology”.  

(D) Capture of expert knowledge and reuse. Beyond the benefits of using higher-level 

concepts in a modelling language, MDD also enables the capture of expert knowledge 

through mapping functions that conveys information to the transformation of one model into 

another. This allows for its reuse when an application or its implementation changes and 
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enables an independent evolution of the models and leads to an extended longevity models 

(Mellor, et al., 2003).  

3.3 Model-Driven Architecture 

Regarding to the development of software systems, the Object Management Group (OMG)9 

(OMG, 2005a) introduced in 2001 the Model Driven Architecture (MDA) (OMG, 2003), an 

open and vendor neutral architectural framework to the construction of software systems. 

MDA constitutes a software development approach that, through the focus on models and 

defined standards (such as Model Driven Architecture, Meta-Object Facility (MOF), Unified 

Modelling Language (UML), XML Metadata Interchange (XMI)), separates the specification of 

the functionality of a system from the specification of its implementation on target 

technological platforms, providing a set of guidelines framing these specifications 

(Appukuttan, Clark, Reddy, Tratt, & Venkatesh, 2003). It enables the detachment of business-

oriented decisions from technological issues of eventual specific platforms (such as CORBA, 

J2EE, .NET) into which the system could be targeted, allowing for “a greater flexibility on the evolution 

of the system” (Brown, 2004). Model-driven architecture is considered a “model-driven” 

approach in the sense “code is (semi-) automatically generated from more abstract models, and which employs 

standard specification languages for describing those models and the transformations between them.”  (Brown, 2004). 

In essence, MDA proposes for the system development life cycle (SDLC), the development of 

a Platform Independent Model (PIM) of the system that, free from specific platform 

technological issues, details the structure and behaviour of the system. Given a chosen 

technological platform, this PIM can then be transformed into a Platform Specific Model 

(PSM) that incorporates all the necessary technological details inherent to the chosen target 

technological platform on which the system is to be implemented. From this PSM, system 

code foundations can be automatically generated for the target technological platform. This 

separation of concerns between PIM and PSM allows that, with no further modification to 

the PIM itself, other technological platforms can be easily targeted since the PIM still 

represents the desired system structure and functionality with no contamination with 

technological details. 

Models have a primary role on MDA as they gain emphasis over code. Code is intended to be 

a generated product (mostly automatically)  from models (“This does not mean that everything must be 

                                                                 
9 OMG is a non-for-profit software consortium that produces efforts aiming on reducing the complexity, lower costs and to hasten the introduction 
of new software applications. OMG produces specifications through an open and vendor neutral process which proposes and invites proposals and 
feedbacks. 
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specified fully or even semi-graphically – the definition of model allows one to drill down right to source code level.” 

(Appukuttan, et al., 2003)). Models hold the art and creativity of systems designers and 

architects.  

Through the architectural separations of concerns involving the use of PIMs, model 

transformations, PSMs, and automatically generated code, MDA aims to achieve for 

portability, interoperability, and reusability. 

From centring the development of models based on well-establish standards, it is expected to 

achieve a greater long-term flexibility on (OMG, 2003): (i) implementation (“new implementation 

infrastructure (…)  can be integrated or target by exiting designs”); (ii) integration (“since not only the implementation 

but the design exists at time of integration, we can automate the production of data integration bridges and the connection 

to new integration infrastructures”); (iii) maintenance (“the availability of the design in a machine-readable form 

gives developers direct access to the specification of the system, making maintenance much simpler”); (iv) testing and 

simulations (“since the developed models can be used to generate code, they can equally be validated against 

requirements, tested against various infrastructures and can used to directly simulate the behaviour of the system being 

designed.”) of systems.  

From an historical point of view of system software construction, MDA, through focus on 

models, represents another evolutionary step on the software field, abstracting software 

even further from underlying infrastructure. It follows other advances such as the 

introduction of subroutine concept by David Wheeler, the FORTRAN high-level programming 

language by John Backus, or even the data programming and execution models exposed by 

SQL, C#, Java. MDA raises the level of abstraction, constituting the software automation from 

models a key enabler of this raising, where the  models are subject of compilation in order to 

produce the running system (OMG, 2003). 

Brown (Brown, 2004) considers four principles that “underlies the OMG’s view of MDA”. These are: 

 (i) the use of models expressed in a well-defined notation to enhance the 

understanding of systems and communication of complex ideas: “Models expressed in a 

well-defined notation are a cornerstone to understanding systems for enterprise-scale solutions”;  

(ii) the building of systems can be achieved through  models and transformations 

among models, organized into “an architectural framework of layers and transformations.”;  

(iii) the use of metamodels to formally support models, which “facilitates meaningful 

integration and transformation among models, and is the basis for automation through tools.”;  
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(iv) industry standards are fundamental for “Acceptance and broad adoption of this model-based 

approach…“. 

In Sinan Si Alhir’s contribution (Alhir, 2003) to the understanding the MDA, it can be found a 

framing of MDA in a common system development life cycle (SDLC) process. Considering the 

SDLC process a “problem-solving” process10 that derives a solution form a assumed problem, the 

perspectives (conceptualization, specification, and realization or implementation) assumed in 

this process, the types of activities11 (requirements gathering, analysis, design, testing and 

deployment), and the types of models produced (requirements model, analysis model, design 

model and the proper implementation) are illustrated in Figure 3.3 .  
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Figure 3.3 - The system development cycle process (adapted from [Alhir, 2003]) 

The foundational concepts of MDA, namely the viewpoints (computational independent 

viewpoint (CIV), platform independent viewpoint (PIV) and platform specific viewpoint (PSV)) 

and models (computational independent model (CIM), platform independent model (PIM) 

and platform specific model (PSM)), can be accommodated on the considered SDLC process 

and activities; this is illustrated in Figure 3.4 .  

                                                                 

 
 
11 “There are many types of approaches or lifecycle models (iterative, waterfall, and so forth) for applying these activities (…)” (Alhir, 2003) 
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MDA core concepts 

The set of core concepts of model driven architecture must be understood in order to 

comprehend the essentials of this architecture. The MDA Guide (OMG, 2003) presents some 

basic concepts and terminology, which are depicted in Figure 3.5. 

 

Figure 3.4 - Foundational Concepts on the MDA (adapted from [Alhir, 2003]). 
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Figure 3.5 - MDA core concepts. 
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The MDA Guide (OMG, 2003) also describes how the model-driven architecture is to be used. 

Figure 3.6 presents a synthesis of the steps described and some inherent related concepts.  

Some of these basic concepts: 

(1) Computational Independent Model (CIM). The model-driven approach establishes that 

requirements for the system are modelled in a Computational Independent Model (CIM) ─ 

also referred as domain model or business model ─ that is independent of how the system is 

to be implemented.  

(2) Platform Independent Model (PIM). The PIM, based on the previously elaborated CIM, 

describes the system; however, the PIM model does not reflect any decisions or details 

concerning platform issues. Nevertheless, the PIM may be “suited for a particular architectural style, or 

several” (OMG, 2003). 

(3) Platform Model (PM). After the development of the PIM, a platform for its 

implementation is chosen. The chosen platform has an inherent model, the “platform model” 

(“often, at present, this model is in the form of software and hardware manuals or is even in the architect’s head” (OMG, 

2003)), which the architect will use to the specify the mappings from the PIM to the target 

platform model, resulting in the PSM of the system. 

(4) Platform Specific Model (PSM). The platform specific model reflects the platform 

independent model of the system, enriched with the concepts, services and details of the 

chosen target deployment platform that the system will make use of. A PSM may provide 

more or less detail, may be an implementation, or act as a PIM:  “A PSM may provide more or less 

detail, depending on its purpose. A PSM will be an implementation, if it provides all the information needed to construct a 

system and to put it into operation, or it may act as a PIM that is used for further refinement to a PSM that can be directly 

implemented.” (OMG, 2003).  

(5) Mappings.  The transformation from a PIM to a PSM model is done through a specification 

provided by a mapping. This specification is composed by rules and/or algorithms that 

determine how the transformation is to be prosecuted in order to obtain model elements of 

the PSM.  

 

 

 

 



3 Model-Driven Development 

 

60 

Mappings 

Mappings can fundamentally be categorized on two types:  model type mappings and model 

instance mappings.  

then perform
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Figure 3.6 - How MDA is to be used. 

Model type mappings 

Model type mappings specify mappings based on model types of the PIM and PSM languages. 

Being based on types, this kind of mappings consequently specifies transformations that 

apply to all respective instances.  Metamodels mappings − in which “the types of model elements in 

the PIM and the PSM are both specified as MOF metamodels” (OMG, 2003) −, are examples of model type 

mappings.  
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Besides metamodel mappings, other model type mappings may exist, as there may be the 

case where the types available on the PIM or PSM may be not expressed as MOF 

metamodels, but in other languages, eventually in natural language. Still in this case, the 

mapping can also be realized between those instances types. 

Mappings rules may also be expressed according to instance values or patterns of type usage 

found in the PIM model. Figure 3.7 illustrates model type mappings. 
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Figure 3.7 - Model type mappings. 

Model instance mappings 

Model instance mappings are defined with the purpose to define particular transformations 

to apply to some of the model elements of the PIM. In these kind of mappings, marks - “which 

represent concepts in the PSM” (OMG, 2003) - are applied12 to model elements of the PIM with the 

primarily purpose to indicate how those model elements of the PIM should be transformed 

(see Figure 3.8) or, eventually, to specify quality of service requirements on the 

implementation (instead of specifying the target of transformation, leaving it to the 

transformation itself, which based on the requirement specified chooses the appropriate 

target).  

A set of marks may be provided by a mark model which, being independent of any particular 

mapping, can be used in different mappings; if necessary, marks may have parameters. 

                                                                 
12  A mark is platform specific and is not part of the PIM (marks can be though as being applied to a “transparent layer” placed over the model.) 
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As a result of the process of marking PIM elements to be subject of particular 

transformations, a PIM element can be marked once or eventually, marked several times, 

which in this case, will have several marks associated to it. In the latter case, it means that 

the element participates in several mappings and it shall be subject of each of the 

transformations associated with the mappings.  

A mapping may involve several marked PIM elements; in this case each mark indicates the 

role that the PIM element is to accomplish on the mapping. 
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Figure 3.8 - Model instance mappings. 

 

Languages and templates 

Transformations described in mappings13 are expressed in some language. This description 

may be “in natural language, an algorithm in an action language, or in a model mapping language.” (OMG, 2003).   

A mapping may include templates, which are “which are parameterized models that specify particular kinds 

of transformations” (OMG, 2003). In model type mappings, they can be used in rules to drive the 

transformation of a pattern of model elements into another pattern of models elements 

(Figure 3.9).  

  

                                                                 
13 Mappings may also consist of the combination of the approaches described − instance and type mappings.  
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In model instance mappings, a template may have associated a set of marks in order to either 

specify instances that shall be transformed according to the template, or to provide values to 

parameters of the template (Figure 3.10) (OMG, 2003). 
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Figure 3.9 - Templates in model type mappings. 

Model transformation 

Model transformation generally refers to the process of converting a PIM, or a marked PIM, 

into a PSM. This process can be done manually, with or without computer’s tools support, or 

automatically.  

m
a

p
p

in
g

  ru
le

s

metamodel

model

PIM PSM

mapping including template

Templates 

with an 

associated 

set of marks

 

Figure 3.10 - Templates with an associated set of marks. 
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Typically, the model transformation process has as inputs the PIM/marked PIM and the 

mappings to be followed, and produces as output the PSM and a record of the 

transformation (showing the PIM elements and the associated resulting PSM elements 

produced in the transformation). This process is illustrated in Figure 3.11. 

 

Figure 3.11 - Model transformation. 

In model type transformations, which are based on type information, a target model is 

automatically generated; nevertheless, “the transformation tool asks a user for mapping decisions in the course 

of transformation where a rule specifies that information not available in the source model is required, and records those 

decisions as marking of the PIM.” (OMG, 2003). 

The approaches used to the transformation of models can broadly be synthesized in: (i) 

transformations based on a marked PIM (with or without combination with model type 

mappings) and its marks of instance mappings; (ii) transformation based on PIM and its types 

mappings, which rely on metamodels or types (not defined by an explicit metamodels). 

An alternative approach to model transformation is the direct transformation into code, 

which does not produce the PSM. Instead, it transforms the PIM directly into code on the 

chosen platform, as illustrated by Figure 3.12. 
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(Sendall & Kozaczynski, 2003) and thus allowing for the collection of the full benefits of this 

approach to software development.  

Beyond automation, other issues are considered pertinent to the success of MDD. The 

following paragraphs expand, besides automation, these issues. 

 

Figure 3.12 - Direct transformation to code. 

 (1) Automation. Automation represents “the most effective technological means for boosting productivity and 

reliability” (Selic, 2003b) and contributes to the enrichment of models’ role on software 

development, taking those from a role of merely documentation support (and usually on 

divergence from reality). It “formalizes solutions and raises the level at which we can apply creativity” (Mellor, 
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and world-wide accepted standards have emerged, such as those provided by the Object 

Management Group − such as the Unified Modelling Language (UML) or the Meta-Object 

Facility (MOF) (or de facto standards,  such as Extensible Markup Language (XML) and Simple 

Object Access Protocol (SOAP)), contributing for a better MDD positioning to be succeed in 

the software development (Selic, 2003b).  Selic (Selic, 2003a) understand that the most 

benefits of model-driven development are reached when MDD methods offer the capabilities 

of: (i) automatic code generation of the implementation from the corresponding higher-level 

model, meaning that “the model and implementation are one”; (ii) execution of models, which allows 

for the experimentation with models to acquire knowledge, in a quickly and inexpensive way, 

of a system’s properties. Atkinson and Kunhne (Atkinson & Kuhne, 2003) also refer an goal of 

MDD the automation of  “many complex (but routine) programming tasks –…– which have to be done manually 

today”. For these capabilities, the modelling languages used “must have the same semantic precision as 

programming languages” (Selic, 2003a) (which doesn’t necessarily mean having the same detail). 

(2) Tools. To MDD’ success, Selic (Selic, 2003b) calls attention to the importance of getting 

attention to issues, other than ”defining suitable modelling languages and automatic code generation”, 

namely, the need of tools that come in pragmatic support of model-driven development. 

Several tools are needed to support usefully support MDD, such as: (i) model-level reporting 

tools, to assist on the reporting and the debugging of errors at model-level, in analogy to 

what happens with traditional programming language compilers and debuggers; (ii) model-

merging tools  to enable the possibility to merge two or more models;  (iii) model difference 

tools to help to identify differences between two models; (iv) the possibility of execution of 

models (eventually incomplete), in a simulation environment or in the target platform, allows 

for early experimentation of the system under development, to analyse high-risks aspects or 

alternative candidate solutions.  

(3) Code generation. Efficiency of code generation from models does not represent a primary 

concern, since current technologies can generate code with “both performance and memory efficiency 

factors are, on average, within 5 to 15 percent (better or worse) of equivalent manually crafted systems” (Selic, 2003b). 

Generating complete code from models isn’t technically easy, but the same happened with 

code compilers when they initially introduced in the past. Nowadays, efficiency of generated 

code is typically not questioned; the same is to be expected one day of code generated from 

models  (Selic, 2003b). Whilst there may be eventual situations where hand-crafted code may 

be needed, it is expected that for next years this efficiency improves as technology gets 

evolved.  
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(4) Produtivity.  In order to increase productivity, Atkinson and Kuhne (Atkinson & Kuhne, 

2003) understand that model-driven development approaches must take into account 

changes that affect longevity of software artefacts. These changes are considered in “four main 

fundamental forms”:  (1) in personnel - developers have important development knowledge, and 

if not prevented, personnel fluctuations may lead to the loss of some of this knowledge; (2) in 

requirements -  there is an ever-increasing rate of new features requirements demanded for 

the system, with the restriction of minimal system interruption or change impact; (3) in 

development platforms - it is convenient that attention be provided so that the software 

artefacts don’t become exclusively tied to a proprietary development tool, platform or 

environment; (4) in deployment platforms - new technological platforms are always emerging 

which may imply changes to software artefacts, and so, the development of those must take 

this in consideration in order to increase their longevity. These kinds of changes, which can 

occur concurrently, lead to several needs that must be addressed by MDD infrastructures in 

order to decrease the sensitiveness to change of software artefacts. These needs include: (i) 

software artefacts described with clear and concise concepts, and with an understandable 

notation accessible to a wide range of people; (ii) high interoperability of tools and artefact 

storage on well-established non-proprietary formats; (iii) user-defined mappings to shield 

models from specifics of technological platforms. To attend these needs, it becomes 

convenient to MDD supporting infrastructure  techniques as visual modelling (as a way of 

effectively using human visual perception), object-orientation (support for dynamic user 

extensions to model concepts) and metalevel description techniques (allows to fully 

customize models to specific domains) (Atkinson & Kuhne, 2003). 

(5) Scability. MDD can be applied to large-scale applications (“the largest systems developed to date 

using full MDD techniques have involve hundreds of developers working on models that translate into several millions of lines 

of standard programming language” (Selic, 2003b)),  so it is necessary to take some attention to 

scalability issues in compilation time. Turnaround time, due to frequency of small changes, 

gets an important focus over the full-system generation time, requiring that “code generators have 

a sophisticated change impact analysis capabilities in order to minimize the amount of code regeneration”. The 

compilation phase − compiling program code using standard programming language 

compilers − is “significantly longer” than the code generation phase − translating models into code 

in some programming language (Selic, 2003b). 
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3.5 Conclusion 

To deal with the increasing complexity and demands of software systems (“The developed 

economies rely at a large extent on software…” (Miller et al., 2004b)), software engineers have resorted 

to models to increase the level of abstraction, and, in an elaborated and meaningful way, to 

abstract the details of the system through focusing on the select parts of the system under 

analysis or design. With models, software engineers, as engineers in other disciplines, expect 

to be driven to an easier way to conceive, develop, maintain, or integrate a system. 

Additionally, and in opposite to other disciplines, it is possible to automate some construction 

of the foundations of the applications.  

An appropriate approach to software development and correct use of modelling techniques, 

jointly with effective tool support, consistent and comprehensive systems models can be 

conceived, will ultimately allow for the possibility to deploy the same system to another 

target technological infrastructure with no modifications on the original model of the system.  

Nevertheless, as stated on the vision of Object Management Group (OMG)14 (OMG, 2005a) 

regarding to the development of software systems, the manifold modelling languages and its 

notations, along with imprecise and insufficient concepts and semantics, as well as a difficulty 

on keeping up to date the developed system’s models, drove to an unbelief on the real 

benefits of broad adoption of models in software development. As modelling languages have 

coalesced and converged to a unified notation (as the Unified Modelling Language (UML) 

(OMG, 2005b)), the focus of efforts turned into the evolution of one language and to creation 

of tools to its support on the development of software systems. Models become again focus 

of attention with the hope that, along with other meanwhile emerged standards, it can be 

now possible to accomplish the expected benefits of using models.  

 

                                                                 
14 OMG is a non-for-profit software consortium that produces efforts aiming on reducing the complexity, lower costs and to hasten the 
introduction of new software applications. OMG produces specifications through an open and vendor neutral process which proposes and invites 
proposals and feedbacks. 
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4  

Presentation of the Projects 

This chapter presents the two projects used in this thesis. The first project presented 

is the uPAIN project (Ubiquitous Solutions for Pain Monitoring and Control in Post-

Surgery Patients) and the second project is the USE-ME.GOV (USability-drivEn open 

platform for MobilE GOVernment) project. For each project, it is presented a brief 

introduction to the project and a description under pervasive and modelling 

perspectives. 

4.1 Introduction 

This chapter starts by presenting two projects developed in the field of ubiquitous and mobile 

computing that directed their software development to a model-based/driven approach.  

The first project presented is the uPAIN project (Ubiquitous Solutions for Pain Monitoring and 

Control in Post-Surgery Patients). It was conceived with the purpose to create a networked 

informational computing system that, making using of current wireless and mobile 

communication technologies, allowed to enhance hospital’s anaesthesiology services on the 

control and monitor at pain level on post-surgery (uPAIN).  It aims to enable for better 

assessment and treatment of the pain phenomena by the hospital staff.  It was submitted 

(and accepted) as proposal (uPAIN) to the Agency of Innovation (Adi) (Adi) in scope of the 

Program IDEA. The IDEA program aimed to stimulate the cooperation between enterprises 

and the Scientific and Technological National System (SCTN)’s entities in order to enhance 

results and technological transfers from STCN entities to productive sector. The uPAIN project 
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was framed on the area of Information and Technology Systems and developed by its 

consortium’s partners for a three years term (initially project to the time interval ranging 

from 1st October 2003 to end in September 2005). The scientific research and technological 

development entities forming the consortium responsible for the project prosecution were: 

University of Minho, through its Information System’s Department (UMinho-DSI); MobiComp 

(MobiComp), a Portuguese mobile computing and wirelesses solution’s provider; and the 

Hospital “Senhora da Oliveira”, localized on the city of Guimarães, Portugal (HSOG). 

The second project is the USE-ME.GOV (USability-drivEn open platform for MobilE 

GOVernment) project that aimed to create an open platform for mobile government services 

(USE-ME.GOV, 2003a). It was submitted as a proposal on the Sixth Framework Programme of 

the European Union, under the Action Line “IST-2002-2.3.1.9 Networked business and 

governments” (CORDIS), and was developed by its consortium’s partners for a two years term 

(from 1st January 2004 until 28th February 2006). 

 The entities that formed the partnership of this project were, as research partners: EDISOFT 
15(EDISOFT), a Portuguese company specialized on critical real-time command, control, 

communications, computer and intelligence (C4I) systems; Retevísion Móvil, commonly 

known as AMENA16 and at the time, the 3rd mobile operator in Spain;  University of Minho (in 

Portugal), through its research group GET (Telecomputing Engineering Group) (GET); Indra 

Systems (Indra), a leading Spanish company in Information Technologies and  Defence 

Systems; Poznan University of Economics (in Poland), through its Department of Information 

Systems17 (PoznanUE); Fraunhofer Institute for Applied Information Technology (FIT) (FIT) (in 

Germany); Arakne (Arakne) an Italian software company focused on pervasive computing and 

offering solutions in the healthcare, pharmaceutical, public administration, and bank fields; 

and IntuiLab (IntuiLab), a French company specialized in human-computer interaction, and in 

multimodality and mobility technologies. As end-user partners of USE-ME.GOV project were: 

Vila Nova de Cerveira (VNC-ANMP; VNC-CM; VNC-RTAM),  a small town (about 9000 

inhabitants) in north of Portugal and at the border to Galiza (Spain); Formatex (Formatex), a 

regional organization from the Spanish region of Extremadura, promoting interdisciplinary 

scientific, technical and industrial research, and working on several fields related to 

knowledge-based society; Gdynia (Gdynia), a city of Poland with about 255 000 inhabitants); 

and Bologna (Bologna), the seventh largest city in Italy (with about 400,000 inhabitants). 

                                                                 
15 As stated in the USE-ME.GOV project home page (USE-ME.GOV), EDISOFT acquired the Geograf, S.A. (which is mentioned in (USE-ME.GOV, 
2003a) as a project participant  and as belonging to the group PortugalSpace; PortugalSpace is by its turn referred as project participant on the 
project fact sheet (CORDIS)). 
16 AMENA was acquired by France Telecom in 2005 (JornaldeNegócios, 2005), and is nowadays (ElMundo) called Orange (Orange). 
17 At USE-ME.GOV project home page (USE-ME.GOV), this department is referred as “Department of Management Information Systems”. 
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4.2 Presentation of the uPAIN Project 

The uPAIN project was developed for the anaesthesiology services of hospitals. It consisted of 

an information system conceived to assist in monitoring and controlling pain of patients that 

stay in a relatively long period of recovery after being submitted to a surgery. During this 

period, analgesics are administered to them in order to minimize the pain that increases as 

the effects of the anaesthesia gradually disappear. This administration of analgesics is 

controlled by means of specialized devices called PCAs (patient controlled analgesia) based in 

the personal characteristics of the patient and the kind of surgery to which the patient has 

been submitted. The PCA can be described as “a medication- dispensing unit equipped with a pump attached 

to an intravenous line, which is inserted into a blood vessel in the patient’s hand or arm. By means of a simple push-button 

mechanism, the patient is allowed to self-administer doses of pain relieving medication (narcotic) on an ‘as need’ basis” 

(Machado, Lassen, Oliveira, Couto, & Pinto, 2007). 

The motivation of uPAIN project arises from the fact that different people feel and react 

differently to pain, and there is a considerable variability of narcotic doses efficiency from 

patient to patient. This makes anaesthesiologists interested in monitoring several variables in 

a continuous manner during patients’ recovery, as it allows them to increase their knowledge 

on what other factors, besides those already known, are relevant to pain control and in what 

measure they influence the whole process. 

The main idea behind the uPAIN system is to replace the PCA push-button by an interface on 

a PDA (personal digital assistant) that, while still allowing the patient to request doses from 

the PCA, create records in a database of all those requests along with other data considered 

relevant by the medical doctors. uPAIN system was thus intended to provide a platform that 

enabled for improvement of pain treatment services by allowing: (i) to establish automatic 

regular assessment and registering of pain level, and to provide for an enhanced and faster 

individual therapeutic prescription to pain symptoms; (ii) to provide support for written 

therapeutic protocols and storage of the therapeutics treatment given to patients; (iii) to 

facilitate to the Director of the Anaesthesiology Services: (a) the adjustment of the 

monitoring and controlling equipment to the particular capabilities of each different person 

composing his staff; (b) the supervision of all staff activities for nocturne or weekend periods. 
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4.2.1 The Pervasive Perspective 

Figure 4.1 illustrates the architectural solution for uPAIN project. It reflects the devices and 

communications technology needed to provide support for the information system that 

accomplishes the functionality expected from the uPAIN system.  

The uPAIN project connects, in a computer network system, the monitoring equipment and 

the PCA (patient controlled analgesia), and support communication among staff and patients. 

This enables, from the staff point of view, the ubiquity of the system’s functionality.  A central 

server (pSC) receives information sent by the patient PDA (pPDA). This server is responsible 

for the management of all services provided by UPAIN. It provides support for data 

acquisition from all medical equipment (like patient monitors and PCAs), for accessing 

databases, and for managing requests from all the pPDAs (patient PDAs) and sPDAs (staff 

PDAs).  

The uPAIN system was conceived to  allow for the hospital staff, through wireless networks, 

to remotely control and monitor the pain even outside the hospital network (through mobile 

phone networks). 

 

Figure 4.1 - General architecture for the uPAIN system. 
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4.2.2 The Modelling Perspective 

The uPAIN project emerged as an initiative in ubiquity arena, following as principles the 

requirements management based on effective necessity and the derivation system’s 

executable artefacts from transformation of system’s models. As such, an presentation of the 

project development under a perspective of modelling development is henceforward done. 

Considering that clients and developers have different points of view towards requirements, 

two different categories for requirements were considered:  

(1) User Requirements. User requirements result from an elicitation task focused in the 

problem domain (aiming to acquire and understand the needs of users and project 

sponsors with the ultimate purpose being the communication of these needs to the 

system developers); they are typically described in natural language and informal 

diagrams. 

(2) System Requirements. System requirements result from developer’s effort to 

organize user requirements at the solution domain. High-level abstract models of 

system are used to establish and structure these requirements, and represent a first 

system representation for use on design phase. 

To describe the uPAIN user requirements, developers constructed several use case diagrams. 

Figure 4.2 illustrates the contextual use case diagram that depicts the general functionalities. 

 

Figure 4.2 - Level 0 Use Case diagram for uPAIN (from (uPAIN, 2005a)). 
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The use cases defined in this diagram were refined with additional use case diagrams.  Figure 

4.3 illustrates one of these use case diagrams. 

{U0.1.1} Inject

Drug

{U0.1} Administer Drug

Patient

{U0.1.5}  Configure

Drug Parameters

Medical Staff {U0.1.4}  Validate

User

{U0.1.3}  Manage

Drug Administration

«uses»

«uses»

{U0.1.2} Request

Bolus
«uses»

PCA

«uses»

 

Figure 4.3 - Use case refined diagram for the “Administer Drug” use case (from (uPAIN, 2005a)). 

The desired dynamic behaviour of the system regarding its functional interaction is further 

illustrated, at the analysis phase, by several stereotyped versions of sequence diagrams built 

by the developers.  Figure 4.4 shows an example of a stereotyped sequence diagram. 
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Figure 4.4 - UML stereotyped sequence diagram for a uPAIN use case macro-scenario (from(uPAIN, 2005a)) 
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These stereotyped versions only involve actors and use cases in the interactions. They allow 

expressing “a pure functional representation of behavioural interaction with the environment and are particularly 

appropriate to illustrate workflow user requirements”(uPAIN, 2005a) and facilitate the validation of user 

requirements as they are easier understandable by the users. They differ from the traditional 

sequence diagrams as these last ones already incorporate system objects, which imply 

already modelled structural elements of the system.   

Additionally to the specification of user requirements through use case diagrams, it was 

considered relevant to give particular attention the validation of user requirements models. 

uPAIN development approach considered that static requirements models, expressed 

through use case models and stereotyped sequence, were not enough for having trustable 

and clear requirements. This happens due the possibility of these diagrams not being fully 

understandable by non-computer science educated stakeholders. These stakeholders may 

have difficulties in finding and coping with the all inter dependencies between the 

requirements that were elicited. Therefore, the approach, beyond using of static models to 

express user requirements, developed animation prototypes to validate, through a dynamic 

perspective, the user requirements.  

 Figure 4.5 shows an image of the animation prototype used for the uPAIN system user 

requirements validation. 

 

Figure 4.5 - Interactive animation prototype for uPAIN system (from (Machado, et al., 2007) 
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These animation prototypes present user-friendly visualizations of system behaviour. This 

approach to validation was “experimented with and proved to be very effective” (Machado, et al., 2007), 

promoting a deeper stakeholder’s involvement in the analysis phase and a better clarification 

and elicitation of workflow requirements. 

The static user requirements models (use case and stereotyped sequence diagrams) were 

used to derivate, through intermediating Coloured Petri-Nets (CPNs), the animation 

prototypes. Figure 4.6 presents a CPN responsible for the animation prototype interaction 

related to a use case of the uPAIN project.  

 

Figure 4.6 - CPN responsible for the prototype animation of a use case (from (Machado, et al., 2007)). 
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The behaviour for the animation prototypes used in this project resulted from a “rigorous 

translations of the sequence diagrams into Coloured Petri Nets (CPNs)” (Machado, et al., 2007).   

The link between UML diagrams and CPNs are not obtained directly, but in two steps: the 

first is supported by the fact that the “sequence diagrams are directly derived from the use cases”; the 

second is ensured by a “direct transformation of sequence diagrams into CPNs” (Machado, et al., 2007).  

Two simple rules were used for that translation: one for transformation of successive 

messages; other for the translation of alternative block of interaction messages. Figure 4.7  

the translation of successive messages. 

Message1

Message2

PreCond1

PreCond2

UseCase1

Message2

UseCase2 UseCase3

Message1

a) b)
 

 Figure 4.7 - Transformation of messages  (uPAIN, 2005b). 

The translation of an alternative block of messages is illustrated in Figure 4.8. The translations 

reveal a horizontal mapping between the UML sequence model and the CPN model. 

alt

Message1

UseCase1

Message2

UseCase2 UseCase3

Message3

a) b)

Message1

Message2

PreCond1

PreCond2

Message3

PreCond3

[true] [false]

 

Figure 4.8 - Transformation of an alternative block (uPAIN, 2005b)). 

From validated user requirements, the design phase defined the models that comprise the 

structure and behaviour of the intended system, starting by the logical architecture of the 

system and followed by other models.  
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The uPAIN project looked for the incorporation of principles of validation of requirements 

and the derivation of system’s executable artefacts from transformation of system’s models. 

To obtain the logical architecture from the validated user requirements, it was used the 4SRS 

technique. 

The 4SRS (4 Step Rule-Set) technique allows the transformation of user requirements into the 

logical system-level architecture (here represented by an object diagram) representing 

system requirements. Figure 4.9 presents the schematics of this technique; further 

information on the 4SRS technique can be found on (J. Fernandes & Machado, 2001).   

 

Figure 4.9 - 4SRS Technique (adapted from (J. Fernandes & Machado, 2001)) 
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The 4SRS represents a vertical mapping based on a set of rules for transformation of a user 

requirements models into the logical structure model. 

Figure 4.10 shows the logical architecture of the system. The logical architecture defines the 

high-level objects/components of the system, their responsibilities, and the relationships 

among them. This logical architecture is independent of implementation constraints.  

Several other artefacts (such as database models, sPDA and pPDAs models, pSC models, and 

other models of the uPAIN system) were developed along the development of the uPAIN 

project.  

 

Figure 4.10 - uPAIN logical architecture. 

4.3 Presentation of the USE-ME.GOV Project 

The USE-ME.GOV (USability-drivEn open platform for MobilE GOVernment) project was 

motivated by an understanding that the current availability of mobile communications and 

Internet technologies were not enough to promote and explore the potential of mobile 

access to appropriate e-government services. It was understood that public mobile services 
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should: (i) consider the specific needs and  capabilities of different users; (ii) offer a high level 

of usability and friendliness, taking into account context of users; (iii) be easy to configure 

and to deploy, and to be not dependent on expensive hardware, software, or demanding 

specialized skills by sharing the use of technical resources and skills; (iv) ease the promotion 

of services of local companies and public initiatives (USE-ME.GOV, 2003b). 

The USE-ME.GOV project focused on the development of a ”new open platform for mobile government 

services, supporting usability, openness, interoperability, scalability, thus facilitating service deployment and access, as well 

as attractive business models satisfying service providers, public authority and citizens”(USE-ME.GOV, 2003b). This 

platform was intended to facilitate the access of authorities to the mobile market by allowing 

them to share common modules (‘platform sharing’) and to deal with multiple mobiles 

operators independently of each one’s interface. 

Figure 4.11 and Figure 4.12 illustrate the concept of ‘platform sharing’ brought by the USE-

ME.GOV project.  

Besides these main outcomes, the USE-ME.GOV project contemplated scientific and 

innovation objectives:  (i) to contribute to new generation of open service platforms for mobile 

users; (ii) and to improve usability on mobile interfaces. 

 

Figure 4.11 - Situation before USE-ME.GOV (USE-ME.GOV, 

2003b). 

 

Figure 4.12- Situation after USE-ME.GOV(USE-ME.GOV, 

2003b). 
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The USE-ME.GOV system general architecture is illustrated by Figure 4.13. The design of the 

USE-ME.GOV system was conceived to allow “the delivery of content and e-services to users who use variety 

of mobile devices with different capabilities and connecting by various communication channels” (USE-ME.GOV, 

2006).  These services were designated as Added-Value Services (AVS) as they bring 

additional value to the platform and are not an integral part of the platform; they are 

delivered by third parties, and may be created “using virtually any technology and deployed on any machine 

as long as its functionality is accessible via designed interface” (USE-ME.GOV, 2006).  

The user connection to the platform is made through an access point that allows for 

communication using a defined communication channel.  The USE-ME.GOV Platform basically 

consists of two separate application system: (i) Core Platform, which is responsible for user’s 

platform access, user and terminal management; (ii) Service Repository, which is a central 

registry of services.   

 

             
 

Figure 4.13 - USE-ME.GOV System General Architecture (from (USE-ME.GOV, 2006)) 

The USE-ME.GOV system also contains what is designated by “platform services”: “services 

provided either by the platform operator or third parties, which extend the functionality of the USE-ME.GOV platform (…)”  

(USE-ME.GOV, 2006). Platform services included in the USE-ME.GOV system were: (i) Context 

Provision and Aggregation Services; (ii) Localization Service; (iii) Content Provision and 

Aggregation Service. These services enable the use of user’s context, user’s localization, and 

access and aggregation of data form external sources. 

Regarding the connectivity with external operators, it was developed interfaces for 

connecting the USE-ME.GOV platform to the national mobile operators (for those operators 

that do not have a ParlayX platform, specific connectors needed to be developed). 
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4.3.1 The Pervasive Perspective 

The USE-ME.GOV system is a system that has to deal with potential heterogeneous cellular 

devices of the users, which in time, is replaced by other more technologically evolved with 

new capabilities or improved resources that enable them to be able to fulfil new 

functionalities. USE-ME.GOV aims providing services availability everywhere in a particular 

regions, taking into account the users’ context, and thus, simplifying users access. It can be 

said that this availability is in the way towards service ubiquity.  

The users, accompanying by its mobile terminals (Figure 4.14), move through diverse 

locations and are exposed to different surroundings; consequently, users need information 

and services related to their environment. Useful services take into account their contexts, 

and facilitate the finding and provision of information and services. This represents an 

opportunity to enhance the involvement and interaction of user with real environment: “A 

compelling example is spontaneous community participation (Report complaint service), where the use of advanced mobile 

technologies is much more than just an additional channel and aims to raise new applications areas. (…)”  (USE-

ME.GOV, 2005)” 

 

Figure 4.14 - User mobile access through cellular networks (adapted from (USE-ME.GOV, 2004b)) 

USE-ME.GOV provides for user context and localization information, and based in this 

information, it turns out possible to find the most appropriate services for a user, and 

proactively provide for relevant information to the user. Taking into account the 

requirements of openness, usability, and interoperability, issues of relevance come about the 

representation of heterogeneous mobile capabilities and user profiles, as well as context 

information representation and services description and discovery.  

4.3.2 The Modelling Perspective 

The USE-ME.GOV project structured its development work in the following main tasks: (i) 

scenario definition and evaluation task; (ii) a series of development and (integrated) research 

tasks, typically disposed as “(…) traditional flow of activities for system development, known as waterfall model:  

(…)” (USE-ME.GOV, 2003b). These development tasks encompassed activities for 
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requirements and analysis, preliminary design and Mock-up (where research activities took 

place), detailed design and specification, implementation and integration and validation 

tasks. 

Scenario definition and evaluation task 

Preceding the definition of the various scenarios of the added-value services, it was 

performed an initial general requirement analysis for a first description of services and 

general requirements that USE-ME.GOV system should conform to. This analysis 

encompassed: (i) user requirements analysis; (ii) technical implementation requirements: (iii) 

review of available business models; (iv) reviews of state-of-art on intuitive mobile interface 

design and state-of-art on platform architecture and general design. 

User requirements analysis aimed to describe the general service requirements and 

constraints on the platform from the authority perspective (not the usability requirements 

for the mobile user). It assembled “examples of potentially beneficial mobile services described by the end-user 

partners”(USE-ME.GOV, 2004d). Technical implementations requirements took into account 

the needs of the users of the services (public administration service providers, third party 

providers, operators and citizens). It described the technical requirements for USE-ME.GOV, 

such as the use of standards and proven technologies (J2EE, SML, etc.) and proposed an  

architecture for USE-ME Platform and for AVS. Review of available business models  aimed to 

give “an overview of available business models in targeted markets such as public administration and mobile service 

provision” (USE-ME.GOV, 2004c). Reviews of state-of-art on intuitive mobile interface design 

and state-of-art on platform architecture and general design intended to bring a better 

understanding of the corresponding current state and research activities. The former focused 

on interaction styles, the latter focused on current trends in IT domains that can be of 

interest to the definition of an open platform hosting mobile services (USE-ME.GOV 2004e; 

USE-ME.GOV 2004h). 

The consortium of USE-ME.GOV understood that the initial number of services with potential 

interest to end-partners was too high for the scope and availability of resources of the 

consortium project. Therefore, based on previous synthesis of service features from user 

requirements analysis (USE-ME.GOV, 2004a), it was selected a restricted number of services 

to be prosecuted in the project. These services were termed as “Pilot services”. The USE-

ME.GOV project provided several pilot services:  (a) Healthcare service; (b) Mobile Student 

service; (c) Report of Complaint service; (d) City Information service.  
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Based on a user perspective, the service and use scenario definition task produced a detailed 

description of use scenarios for a set of targeted pilot services.  The scenario definition and 

use evaluation task focused on describing “the most fundamental actions between the mobile user and the 

service in order to obtain the information provided by the service” (USE-ME.GOV, 2004d) and leaved out 

issues related to interface design and technical implementations. This description, which “can 

be interpreted as first step into the design process, summarizing the underlying functional concepts and characteristics for 

each service” (USE-ME.GOV, 2004d), aimed to allow the driving of: (i) the platform requirements 

analysis; (ii) the usability requirements analysis; (iii) pilot service specifications. For the 

scenarios description, it was followed a structure consisting in two parts: (i) a narrative 

description of the scenario; (ii) use cases analysis.  The narrative description of the scenario 

was structured in three sections:  (i) Use Scenario (which main elements are: situational 

context; motivation for service use; fundamental tasks; expected outcome; context-

awareness); (ii) Service provision (which describes the motivation for the service from the 

perspective of the public entity); (iii) Service objectives and benefits (to the user and to the 

service provider).  

The use case analysis followed a “structured approach defined in terms of a template” (USE-ME.GOV, 

2004d), and aimed to describe the service behaviour from the user perspective, “capturing all 

visible events and interactions between the mobile user and the service that lead from the initial service request to the final 

achievement of the user goal” (USE-ME.GOV, 2004d). Figure 4.15 and Figure 4.16 are examples of 

models elaborated for the service “Report of Complaints”, one of the pilot services targeted 

for implementation. 
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Figure 4.15 - Use cases for service Report of Complaints ((USE-

ME.GOV, 2004d)) 

Start

Request

access
Deliver

interface
(list of options)

End

Citizen Local

Authority

Receive

complaint

request

Store

complaint

(service code)

Select location

Check status

of complaint

Make a

complaint

Request

notification

(service code, user id)

Acquire user

context

(location

information)

(location)

(complaint confirmation, access code)

Check Status

Deliver status

information

(service code, access code)

(complaint status)

Select a service

 

Figure 4.16 - Activity diagram for service (Report of 

Complaints ((USE-ME.GOV, 2004d)). 
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Usability is defined based on ISO 9241-11 as: “the extent to which a product can be used by specified users to 

achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use” (USE-ME.GOV, 

2004e). It is noted that for mobile contexts, the usability analysis and design need to take into 

account “mutable situations and goals, multitasking activities, simultaneous interaction with different devices and 

mutable physical and social environments” (USE-ME.GOV, 2004e) and that these changes can occur 

much more rapidly and frequently than in controlled and static environment.  It is stated that 

three dimensions of mobility affect the mobile experience as a whole: (i) device mobility, 

regarding the continuous access to services while moving the device; (ii) user mobility, 

referring to location and device independence service access; (iii) service mobility, regarding 

to the capability to provide a service irrespective of user and device.  

The main goal of the task of platform requirements analysis was “to define a logic architecture for the 

system that could capture all its functional requirements and its non-functional intentionalities” (USE-ME.GOV, 

2004g). Taking into account the work performed on the Service and Use Scenario Definition, 

it aimed to “highlight the system requirements that can affect the appropriate decomposition of the system” (USE-

ME.GOV, 2004g). An object model and an informal description of the objects expressed these 

system requirements. 

The approach taken for the specification of the system requirements was based on the 

methodology “4 Step Rule-Set (4SRS)” that guides the transformation of use cases into 

objects. The main result of the application of this methodology was an object model at 

system level. This approach requires that before applying the methodology, the functional 

model (use case model) that reflects the system’s services must be defined.  

User goals and corresponding scenarios definitions were translated into a set of use cases 

describing the set of functional requirements applied to USE-ME.GOV. It was identified a “set 

of functional requirements applied to a set of different application domains” (USE-ME.GOV, 2004g).  

Two orthogonal criteria were defined to breakdown platform functionalities: (i) one 

describing the main functionalities of the system (Figure 4.17 is an example of this criteria 

application); (ii) the other one defining the different application domains (Figure 4.18 

illustrates an example of this criteria application).  

  



Presentation of the Projects 

88 

 

The instantiation of functionalities into the specific application domains was obtained 

considering the combination of each pair (functionality, domain). The use cases identified in 

the level zero diagram were refined, as exemplified by Figure 4.19. 

 

Figure 4.17 - Level zero use case diagram by criteria of main 

functionalities. 

 

Figure 4.18 - Level zero use case diagram by criteria of 

application domain. 

 

Figure 4.19- Level one use case diagram of "send alert" use case. 

The non-functional requirements “captured through the analysis of the USE-ME.GOV system use cases and 

derived from the general objectives drawn in the project proposal” (USE-ME.GOV, 2004g) were documented 

along several topics: (i) Interoperability, flexibility (extensibility) and openness; (ii) 

Heterogeneity (device and networks heterogeneity); (iii) Scalability; (iv) Fault-tolerance; (v) 

Security. The cross-cutting concerns were also documented by topics: (i) System 

management; (ii) Service deployment and configuration; (iii) Multilingual support. 

 Figure 4.20 shows part of the object diagram for USE-ME.GOV. It identifies the high-level 

objects/components of the system. This object diagram “represents an ideal architecture for the system, 

because its construction is supposedly independent of any implementation constraint” (USE-ME.GOV, 2004g).  
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Pilot Services Requirements Specifications were developed after the user requirements 

analysis and service scenario description. 

 

Figure 4.20 - USE-ME.Gov raw diagram (part of). 

For each service, it was reviewed the service scenario and described interactions between 

(Figure 4.21 exemplifies an interaction) the user and the service. Based on that description, a 

list (in a tabular form) of functional requirements for each service was defined. 

Citizen Service

Access service()

Make complaint()

List of options() Recognise user()

Traffic lights malfunction()

Complaint confirmation()

Location()

More precise location within previous one()

Receive complaint()

These two could
be replaced by aquire

user location

 

Figure 4.21 - Sequence diagram for citizen making a Complaint in the “Citizen Complaint Service”  (USE-ME.GOV, 2004k). 

Preliminary Design and Mock-up 

Activities of preliminary design aimed to anticipated design decisions and pathways 

concerning to usability of interfaces for the selected scenarios and to platform design.  
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The activities in preliminary design and mock-up were: (i) Platform Architecture Design Mock-

Up; (ii) Usability-Driven and Mock-Up Evaluation; (iii) Prototype Implementation and 

Validation.  

 

Figure 4.22 - Part of the “Report of Complaints Service” requirements (USE-ME.GOV, 2004e). 

Regarding to user interface design, the approach was a usability-driven design and mock-up 

for the user interfaces of the pilot service previously identified.  These mock-ups were aimed 

to allow the identification of  critical design characteristics and the provision to project 

partners with “preliminary design for the kind of service applications considered by USE-ME.GOV”(USE-ME.GOV, 

2004f). The work in this task followed a design-evaluation-redesign cycle.  

Platform Preliminary Design and Mock-up Evaluation had the objective of providing “a general 

analysis of preliminary design of the Use-Me.Gov system together with the evaluation of mock-ups of the system (...) “ 

(USE-ME.GOV, 2004h). This preliminary design derived into an analysis model which was 

intended to evolve later into a design model.  

 

Figure 4.23 - High-level USE-ME.GOV diagram(USE-ME.GOV, 2004b) 

Number Description 

SR4-01 This service is available for all users in the platform. There is no need of registering this particular 

service. 

SR4-02 The service has the following options available: 

   - Make a complaint or suggestion 

   - Request voice call from PA to specify details of the complaint 

   - Request list of complaints. Within this one: 

         - Request for complaint status 

         - Request for complaint follow-up reports 

         - Cancel a complaint 

SR4-03 When the PA receives a complaint it may call the user (voice call) in order to obtain more detailed 

information even if the user didn’t requested it.  

SR4-04 When making a complaint the user selects the kind: 

   - Holes on the street 

   - Holes on the side walk 

   - Electricity and illumination poles 

   - Garbage collectors damaged or full 

   - Traffic Lights malfunction 
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In a posterior document called “Platform Architecture Design” (USE-ME.GOV, 2004g), the 

overview of the architecture of the USE-ME.GOV provided in this document was expanded 

and deeper described/explained. 

 

Figure 4.24 - Sequence diagram "Make complaint” (USE-ME.GOV, 2004b). 

The Platform Architecture Design presented the fundamentals of the architectural design 

established for the USE-ME.GOV system.  It presented the reference architecture, 

architectural factors and decisions that might have influence on the system architecture, the 

functional perspective of the main components sub-systems, and the structure of systems 

components (which were further detailed is a posterior task of detail design).  The 

architectural model of USE-ME.GOV has its foundations on the Web Services Architecture 

(WSA) and in particular on Service Oriented Model.  The USE-ME.GOV consists of the 

following components (USE-ME.GOV, 2004i): (i) Core platform; (ii) Platform Services; (iii) 

AVServices; (iv) Service Repository. Core Platform is the user entry point in the system.  It 

communicates with the user via mobile operator network and Internet; it dispatches to the 

AVServices the incoming user requests. Platform Services are services registered within 

Service Repository; they extend the standard set of platform functionality: “Platform Services 

expose their functionality to other platform services as well as AVServices via common interfaces registered in the Service 

Repository. (…) USE-ME.GOV is to provide minimal set of platform services (user localization, contextualization, content 

provision, and content aggregation)” (USE-ME.GOV, 2004d).   AVServices are services directly 

accessible by end-users and that services their requests. Service Repository provides a 

directory of services and allows for discovery and lookup of services. 
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Regarding system clients, the USE-ME.GOV platform aimed to work with heterogeneous 

devices  “regardless the different terminal capabilities arising from used: OS and software version, physical limitations 

(like screen or keyboard size), and diversity of available bearers or communication channels.” (USE-ME.GOV, 2004d). 

As such, it was chosen a thin client model as basis for the client application: “Platform Entry 

Screens, Platform Administrative Screens (accessible by the user) and most of AVServices are designed to conform to micro-

browser specifications (…) ”  (USE-ME.GOV, 2004d).  Nonetheless, the platform was conceived to 

support AV Services based on a thick-client model: “(….) AVService exposes interfaces which allow for 

application download. In such a case [, the] platform role in the communication constraints to user authentication (granting 

ticket). The client communicates directly with the AVService” (USE-ME.GOV, 2004d).  

 

Figure 4.25 - User Management use 

cases. 

 

Figure 4.26 - Subscription states. 

 

Figure 4.27 - Authenticate User activities 

diagram. 

The factors that might had influence on the architecture of the system were also presented in 

a tabular describing the factor, its impact, and its solution. The functional perspective of the 

USE-ME.GOV system regarding the Core platform and Service Repository was presented 

through use cases models (use case diagrams, state chart diagrams, and activities diagrams 

were used).  Some examples of the diagrams elaborated are presented below. For Core 

Platform the following diagrams are illustrated: use case diagrams (Figure 4.25), state chart 

diagrams (Figure 4.26) activity diagrams (Figure 4.27).  

For Service repository, Figure 4.28, Figure 4.29, Figure 4.30 illustrate use case diagrams for 

service provision, service authentication and service authorization. 

Detailed Design and Specification 

The activities in Detailed Design and Specification were for: (i) Pilot Services Detailed Services 

Specification; (ii) Detailed Components Interface and Application Specification; (iii) Meta 

Protocol of Services Design; (iv) Platform Functional Design (an implicit research task).  
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The previous work on Pilot Services Requirements were, in a first phase, further described by 

a Pilot Services Detailed Specification task  (USE-ME.GOV, 2004l) and in a second phase, 

detailed by a task of Platform and Application Detailed Design.  The pilot services were, in 

general, described and detailed with information/diagrams about a general description, 

service architecture, data model, scenarios (expressed with sequence diagrams), and classes. 

Figure 4.31, Figure 4.32, Figure 4.33, Figure 4.34, Figure 4.35 illustrate some of these 

artefacts for the Complaint Service. 

 

 

Figure 4.28 – Use case model for Service 

Provision. 

 

Figure 4.29 - Use case model for Service 

Authentication. 

 

Figure 4.30 - Use case model for 

Service Authorization. 

 

Figure 4.31 - High-level Service diagram (USE-

ME.GOV, 2004g). 

 

+sendMessage(in platformMessage)

+processInteractiveRequest(in platformRequest, in userName, in terminalID, in terminalModel)

-getComplaintOptions()

-selectComplaintOption(in complaintOption)

-setVoiceRequest(in terminalID, in timeInterval)

-setDescription(in description)

-cancelComplaint(in complaintID)

-getComplaintUserList(in terminalID)

-selectComplaint(in complaintID)

-setComplaintNotification(in complaintID)

-getComplaintStatus(in complaintID)

-getLocationOptions(in userContext)

-selectLocation(in location)

complainInterface

-getComplaintChanges()

-receiveComplaintChanges()

notificationProcessor

+processContext()

-storeContext()

userContextInterpreter+PAsetComplaintOptions()

+PAupdateComplaintTI(in complaintID, in complaintStatus)

+PAgetComplaintList()

+PAselectComplaint(in complaintID)

localAuthorityInterface

-triggerComplaintChanges()

+store(in object)

+retrieve() : object

dbAccess

PA Complaint Application

AVService

 

Figure 4.32 - Service Architecture diagram (USE-ME.GOV, 2004g). 

 

Figure 4.33 - Platfom interfaces to implement 

(USE-ME.GOV, 2004g). 

 

Figure 4.34 - Main menu user 

interface (USE-ME.GOV, 2004g). 

{01.2.3d} ComplaintDescription

PK ComplaintID

TerminalID

ComplaintDate

LastStatus

FK1 OptionID

PlatformRequest

ComplaintTypeID

FK1 ComplaintType

{01.2.1.d} ComplaintOptions

FK1 OptionID

ComplaintTypeID

Description

FK1 ComplaintType

{01.7.5.d}CancelComplaintData

PK CancelID

ComplaintID

CancelDate

Description

{01.4.d}TechnicaComplaintInformation

PK ComplaintID

StateChangeData

State

Expedition

Description

PAEmployee

{01.4.2d}VoiceCallRequest

PK VoiceReqID

FK1 ComplaintID

TerminalID

TimeInterval

TimeStap

PhoneNumber

{01.2.5.d}UserInformationData

PK TerminalID

TerminalModel

UserID

UserName

CreationDate

{01.1.d}ComplaintOptionInformation

PK OptionID

PK ComplaintType

ComplaintParameter

ParameterValue

Description

{01.3.1.d}UserContextData

ContextData

ComplaintID

FK1 TerminalID

{01.7.3.d}ComplaintStatusInformation

PK StatusRequestID

TerminalID

ComplaintID

RequestDate  

Figure 4.35 - Data model diagram (USE-

ME.GOV, 2004g). 

The Platform and Application Detailed Design detailed and complemented previous work 

regarding USE-ME.GOV architecture and was intended to serve as basis for construction 

phase of the project.  

Useme 

Plattform

AVService

PA 

Complaint 

Application

PA 

Complaint 

Report 

Service

Interface Description/Implementation 

public PlatformResponse 

processIntaractiveRequest(PlatformRequest req, UserName 

userName, TerminalID terminalID, TerminalModel 

terminalModel) throws UserNotAuthenticatedException 

Receive first contact from the platform to 

the AVService. 

This should be implemented in the 

AVService component. 

Additional description in [6]. 

public  processMessage(PlatformMessage msg) This should be implemented in the 

AVService component. 

Additional description in [6]. 

public String getDescription() This should be implemented in the 

AVService component. 

Additional description in [6]. 

public XACML getAccessPolicySet() This should be implemented in the 

AVService component. 

Additional description in [6]. 
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The USE-ME.GOV platform consists of two separate application systems, Core Platform and 

Service Repository(USE-ME.GOV, 2005). 

 

Figure 4.36 - USE-ME.GOV System General Architecture. 

 

Figure 4.37 - Service Repository General Architecture. 

The Core platform and Service Repository were organized through general subsystems/layers 

diagrams and detailed through class and sequence diagrams (Figure 4.38, Figure 4.39 and 

Figure 4.40 illustrates some of the diagrams elaborated for the Core platform). 

Meta-Protocol of Service Types have had the purpose to define a framework for “meaningful 

communication among platform components and dynamic services execution of services’ operations” (USE-ME.GOV, 

2004j). Platform Functional Design concerns research activities and describes research 

findings and decisions. 

 

Figure 4.38 - Core Platform Layers View. 
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Implementation and integration and validation 

Implementation and integration had the purpose to define the development environment, 

the process for integration, the test plan, and perform the integration.  Validation aimed to 

specify how to validate the USE-ME.GOV system against the objectives. 

 

 

Figure 4.39 - Class diagram for  HTTP Server Adapter(Layer 1) 

 

Figure 4.40 - Sequence diagram for doGet request of 

HTTPServerInterface. 

4.4 Common Facts, Issues and Challenges 

This section aims to express particularities that are common to the projects and to anticipate 

challenges that these kinds of projects seem to face, in order to better cope with the 

consistent use of models and the specific characteristic of pervasive information systems, 

such as resources heterogeneity and volatility of functionalities. 

Despite of the significant difference of their size, it is possible to notice common facts about 

the projects. Among these are the following: 

 They defined the overall process elements that sustain the software development 

project. 

 They aimed to make use models along the project. The modelling language 

generally adopted was UML (Unified Modelling Language), and they resort to use 

case models for synthesizing functional requirements.  

 : 

HTTPServerInterface

 : 

HTTPRequestProcessor

 : 

HTTPAccessPoint

 : Connection  : 

ServiceRepositoryService

ServiceA : 

AVService

doGet(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)

getConnection(javax.servlet.http.HttpServletRequest)

processHTTPRequest(javax.servlet.http.HttpServletRequest)

convertToPlatformRequest(javax.servlet.http.HttpServletRequest)

getServiceByRequestUri(String)

processInteractiveRequest(PlatformRequest, String, String, String)

AVService

PlatformResponse

convertToHttpResponse(eu.usemegov.coreplatform.common.PlatformResponse)

HttpResponse
HttpResponse
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 They aimed to achieve ubiquity of the services. Services were conceived to be 

accessible through common computer networks or cellular networks, allowing for 

its users to access anywhere to the service. 

 They dealt with potentially heterogeneous devices susceptible to be replaced or 

evolved. The cellular phones or PDAs are by its nature heterogeneous and 

susceptible of frequent evolution. 

 They defined the main phases/activities of the process need to be executed in the 

development process.  

 They use the 4SRS technique to achieve the transformation of requirements into a 

first object model of the logical architecture of the system.  

The observation of the projects revealed some come issues that may be pertinent to the 

effectiveness of the fully adoption of strong model-based approach and to the suitability to 

deal with some of the characteristic or pervasive information systems. Among these issues, 

mainly due to an absence of detailing and formalization, are the following: 

 Some tasks are not explicitly defined in the project definition. They can be later 

found in the development description or by the work products that come into 

existence. 

 Some isolate but inappropriate use of process element terminology. It can be 

found some misused of the conceptions process in the process definition. 

 Some lack of clearly separation and clarification of distinct activities and results.  

 Some lack of proper formalization in the project process of several work products. 

 Some lack of proper formalization of work products inputs and outputs of 

activities. 

 It is not clear the interconnection of work products use in order to express model 

navigation since the beginning to the end of the development. 

 It is not clear that there is suitable approach that takes in account the evolution of 

the pervasive system, characterized by frequent addition and/or changes in 

resources abilities and demanded functionalities.   

Taken into account the facts and issues aforementioned, some challenges can be anticipated 

in order to identify how these kinds of projects could enhanced in order to sustain an better a 

proper software development project for PIS. The challenges can be stated by the following 

needs: 

 The need to define the overall quality properties that a software development process 

model-based/driven has to possess. Among these properties is the completeness of 
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work and work products definition, the proper atomicity and level of activity 

definition, the level of overall formalization of activities, the coherence, and 

consistency of process elements’ use. 

 The need to express or formalize activities. 

  The need to be able to express and to measure the model-based/driven visibility. 

 The need to establish orientations or procedures to deal with aforementioned 

characteristics of pervasive systems.  

4.5 Conclusion 

This chapter presented the two projects that were subject of this work. Both of them 

consisted in a project developed in the field of ubiquitous and mobile computing that 

directed their software development to a model-based/driven approach.  

The first project presented is the uPAIN project (Ubiquitous Solutions for Pain Monitoring and 

Control in Post-Surgery Patients). It was conceived with the purpose to create a networked 

informational computing system that, making using of current wireless and mobile 

communication technologies, allowed to enhance hospital’s anaesthesiology services on the 

control and monitor at pain level on post-surgery (uPAIN).  The second project is the USE-

ME.GOV (USability-drivEn open platform for MobilE GOVernment) project that aimed to 

create an open platform for mobile government services (USE-ME.GOV, 2003a). 

For each of the projects, it was presented the pervasive and modelling perspectives, which 

expressed respectively the pervasive characterization and the modelling activities and 

artefacts produced.  

After that presentation of the projects, and as result from its observation some common facts 

and pertinent issues were expressed. A reflection over those facts and issues lead to the 

statement of some challenges that could anticipated for these kinds of projects, aiming to be 

developed with a strong model basis and suitable to robust pervasive information systems. 
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5  

Approach to PIS Development 

This chapter presents a conceptual development framework used to assist in the 

analysis of the projects. The framework proposed, conceptions of functional profiles, 

resources categories, and abstraction dimensions functional profiles instances, global 

development process and elementary development process are introduced. Taking 

into account the conceptions and structure, it is introduced a SEPM Base Plug-In 

extension, a framing structure, and development framework pattern. These 

conceptions and structures also constitute a basis for structuring a proper approach to 

software development for PIS. 

5.1 Introduction 

Model-driven development (MDD) of software systems takes an approach to development 

strongly based on models and transformations among models. Such approach: (i) allows 

reduction of semantic gaps among the developed artefacts; (ii) enables higher independence 

and resilience of domain models from particular characteristics and changes on system’s 

technological platforms; (iii)   promotes automation of the development tasks, enabling reuse 

of knowledge relative to either best practice on software development or to the information 

systems in the organization. 

MDD topics of relevance are diverse and comprise different knowledge and techniques: 

models, ontologies, modelling languages, domain-specific languages, development methods, 

model transformations, architectures/frameworks, patterns, automatic code generation, 
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supporting tools, aspects, among others. It is expected that the application of MDD concepts 

and techniques to software development for pervasive information systems (PIS), will 

enhance the efficiency of the software development, the resilience, the robustness, and the 

evolution of the system.  

The approach to software development for PIS must take into account relevant 

characteristics of PIS such as: (i) the elevated number of devices that can be involved; (ii) the 

potential heterogeneity of the devices; (iii) the pace of requirements changes due 

technological or business innovations; (iv) the potential complexity of interactions among 

devices. Therefore, some issues that arise may influence the strategy taken on the approach 

to MDD for PIS. The following paragraphs expose some of these issues. 

In the same PIS, the devices can, simultaneously fulfil different functionality. Devices may 

participate in several systems simultaneously, having identical functionality in some systems, 

and different functionality in others. When activating a device on a PIS, the pervasive system, 

attending to device’s characteristics and with a minimal configuration (on the system and/or 

device), should be able to assign a suitable functionality (of interest to the system). The PIS 

should then set up the needed reconfiguration/tune up of the system to allow integration of 

the device in the normal operation of the pervasive system.  

A device, along its life, can be enhanced with new capabilities, or be constrained on its 

capabilities. As consequence, in order to reflect the change and accommodate the resulting 

device capabilities, it is necessary to proceed with functionality reconfigurations. 

Devices can be replaced for new devices. The replacement can be due to malfunction, 

technologically outdate performance, energy consumption, capability, or change in business’s 

processes, among others. Even when the devices are assigned to fulfil the same functionality 

of the older devices, they may be based on different computational platform from the older 

device. The functionality assigned to the old device must now be supported on a different 

platform. The developed PIS must be able to accommodate easily platform changes on the 

devices that integrate the system, and as such be able to deploy functionality on different 

computing platforms.  

Besides traditional coordination of system’s functionality and information’s flows, 

independent and autonomous device-to-device interaction may be used to obtain additional 

functionality to the system, allowing for, among others, enhanced system’s efficiency, and 

robustness.   
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All these issues sustain the necessity of one being capable to conceive/change and deploy 

software to devices in a way that allows easy accommodation of functional requirements 

changes or technological platform changes. Supported by these issues, some questions 

emerge regarding the construction of PIS, among which it can be found:   (i) How to provide 

for coherent and consistent construction, maintenance, and evolution pervasive information 

systems that allows for proper accommodation of new or changed requirements, 

functionalities, technology, or structure of devices composing the system? (ii) How to design 

in order to simultaneously accommodate different functionalities on the same device? (iii)   

How to design software for a PIS that, besides traditional coordination of system’s 

functionality and information flows, allows specific device-to-device interaction to obtain 

additional functionality? (iv) How high can be the abstraction level at which software 

developers have to perform their main work? How should be an adequate approach suitable 

to software development to PIS? 

Pervasive information systems should be able to adapt to changes on the devices or on the 

structure of devices that compose the system. The design of the PIS must encompass an 

approach that recognizes those issues and that structures the needed concepts and adopts a 

proper strategy that allow fast development/integration of new/changed functionalities. 

These functionalities may correspond to new/changed system’s requirements, device’s 

capabilities, or device’s computational platform technology. 

MDD concepts and techniques centre development on models, thus raising the traditional 

level of abstraction for system’s conception and design. They tend automate, as much as 

possible, the transformation of models and the generation of the final code, and they provide 

for a higher independence of the technological platform that support the realization of the 

system. MDD seems to offer key pathways that enable software developers to cope with 

complexity inherent do PIS. CASE tools, which are of primary importance to an effective MDD 

development, have continuously evolved to support MDD concepts and techniques. It can be 

expected from them an enhanced support to: creation, verification of PIMs and PSMs; 

models’ transformations and code generations; changes’ management; and documentation 

for all artefacts and to design decisions. However, spite of the fundamental effort of using 

MDD concepts and techniques supported by suitable CASE tools, this is not sufficient. To a 

proper construction of PIS, it is needed an approach that, while adopting modern and 

appropriate MDD concepts, techniques, and tools, be capable of establishing a suitable 

development’s strategy for the development of PIS, framed on appropriate structure and 

procedures. The following sections expose the concepts, issues, and strategy that such 

approach can assume. 
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5.2 Development Dimensions and Framework 

Due to the complexity of pervasive information systems, software development for PIS can be 

facilitated by an approach that properly focuses the system, and the system development, 

with perspectives that help to abstract their relevant properties. The approach to PIS 

development proposes a framework that encompasses concepts suitable for the model driven 

development of pervasive information systems. This framework introduces and describes the 

concepts sustained on a few perspectives of relevance to the development, called dimensions, 

which are described in the sections that follow. 

5.2.1 Resources Dimension 

For a suitable organization and comprehension of the resources that PIS may comprise, it is 

proposed that the resources to be used in the system (such as computational devices or other 

entities able to perform activities), be grouped into resources categories. These resources 

categories shall reflect common characteristics, properties, or capabilities of the resources, 

which allow them to be generically able to take on identical/similar functional responsibilities. 

Examples of groupings that form the categories, are the cellular phones, the smart phones, the 

laptops, or others groupings. Figure 5.1 illustrates an example of categories and subcategories 

of resources. Categories may be further classified through specialization relationships into 

subcategories of resources. 

Category A
(PDAs)

Category B
(smart and cellular phones)

Category C
(PCs)

Category D
(Server)

SubCategory B1
(smartphones)

SubCategory B2
(celular phones)

Category E
(Embedded devices)

a1
1

a2
2

3
a34
a4
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b2

b3

b4
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Resources Dimension

 

Figure 5.1 – Resources dimension. 

Resources belonging to a category (or subcategory) are expected to be able to support 

common functionalities that may be assigned to that category. This perspective of looking for 

and grouping resources constitutes the resources dimension. 
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5.2.2 Functional Dimension 

The classification of resources into categories according to its properties or capabilities is just 

one of the dimensions concerning to the global development of a pervasive information 

system. The overall functionality PIS functionality can be seen as being achieved by the 

collaboration of a set of functionalities projected in the PIS and that are assigned to its 

resources; these thereby take on the responsibility to undertake those particular 

functionalities. The resources have then a behaviour regulated by a set of functionalities 

assigned to them as part of their responsibilities acquired from the PIS in which they 

participate.  

A set of functionalities, defined in the system for assignment to resources are herein termed of 

“functional profile”. A functional profile is intended to be conceived and expressed, as far as 

possible, in a resource independent form. Considering that a model is a (textual or graphical) 

specification or representation, under some perspective, of a system, this resource 

independent form can be seen as resource independent model.  This perspective of defining 

and viewing set of functionalities susceptible to be assigned to resources constitutes the 

“functional dimension”. Figure 5.2 depicts this dimension. 
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Figure 5.2 - Functional dimension. 

This functional dimension brings the perspective of looking and seeing sets of functionalities 

that can be allocated to resources for realization. Taking into account that resources are 

grouped into categories, the assignment of a functional profile to a resource category has the 

meaning that each resource in a certain category must be capable to realize the functional 

profile assigned to the category. 

Figure 5.3 illustrates the framing of the resources and functional dimensions. It shows the 

functional profiles along the axis of the functional dimension, and the resources category along 

the axis of the resources dimension. 



5 Approach to PIS Development  

106 

 

Several functional profiles can be assigned to a category of resources, meaning that the 

resources on the category must be capable, in principle, to somehow realize all those sets of 

functionalities.  
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Figure 5.3 – Framing of Resources and Functional dimensions. 

Some of the functional profiles assigned to a category may be redundant, as some of the other 

categories (which have been specified as primary performers) that are in charge of servicing 

those functional profiles may already provide them. Such situation may happen as result of a 

design decision in order to accomplish specific objectives. Among these are: (i) to ensure 

enhanced fault tolerance of crucial functionality; (ii) to expand system flexibility on services 

provision; (iii) to accommodate functionality assigned to categories of devices that are 

deactivated and marked for either replacement by new devices or subject to a technological 

update. 

The assignment of a functional profile to a resource corresponds to an instantiation of the 

functional profile, carrying the meaning of responsibility assignment to that resource. The 

instantiation process based on the functional profile and the resource category general 

characteristic, results in a tailored functional profile for that resource category.  

Figure 5.4 illustrates an example of instances resulting from the assignment of functional 

profiles to resource categories. It particularly illustrates that it is possible to occur situations 

where: (i) there are several instances for the same functional profile, as depicted by instances 

2B and 2C (these are both related to functional profile 2, and to categories B and C 
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respectively); (ii) there are instances of different functional profiles for the same resource 

category, as illustrated by instances 1A and 3A (these are both related resource category A, 

and respectively related to functional profiles 1 and 3). 
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i j Instance of functional profile i for resource category j

 

Figure 5.4 –Example of functional profiles Instances for resource categories. 

The result of instantiation process can be considered, a kind of platform independent model 

(PIM) (or depending of the perspective, it could be seen as a PSM), as it is expected to be later 

subject of possible model transformations to platform specific models (PSM). Further 

development takes place based on this model, giving origin to a specific development 

structure related to the specific functional profile instance. This “development structure” 

reflects a pathway of software development in order to realize a functional profile assigned to 

a category of resources.  

Figure 5.5 illustrates a schematic representation of these development structures spread by 

space that emerge from the integration of the resources dimension with the functional 

dimension (in the figure, the development structure is identified as “DS functProf_id 

devCateg_id”, being and functProf_id identified by a number and devCateg_id identified by a 

letter). 

These delimited units of development structures allow for comfortable incorporation and 

accommodation of changes or innovations. Consequently, it can be achieved an enhanced 

resilience of the system, facilitated expansion of the system, and easier control of changes and 

its impacts. 
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5.2.3 Abstraction Dimension 

Taking into account that, for each development structure there is a subjacent top-bottom 

abstraction course during its development, we can devise another dimension on software 

development for PIS: the “abstraction dimension”. At the abstraction dimension, developers 

use abstraction techniques to construct the systems. They have focus on PIM, PSM (and other 

relative inner PIMs/PSMs), model transformations, code generation  (see Figure 5.7), and  

other techniques in order to come to a realization of a piece of software that meets the 

functionality set by the corresponding functional profile of that development structure. 
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Figure 5.5 - Development structures for functional profile instances. 

For each of the development structures, development work is performed at a modelling level 

of abstraction. Some modelling levels can be distinguished:  

(1) Top modelling level. At this level, there is a PIM for each of category of resources. This PIM 

results from instantiation of functional profiles models resulting from initial development of 

the system as a whole (where all resources are integrated and orchestrated in order to provide 

functionality to the system).  

(2) Intermediate modelling levels. At these levels, there are PSM models that can be either 

associated to subcategories of resources or to design decisions (reflecting particular choices 

regarding to platforms, technologies or techniques) that may somehow introduce a certain 

degree of platform/technological dependence.  

Depending from the point of view, an intermediate model can be seen as a PIM or a PSM: a 

model can be seen as a PSM when looking from a preceding higher abstraction model level, 

and can be seen as a PIM when looking from next lower abstraction model level. For some 
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development structures these levels may eventually not exist, as it is possible to directly 

generate the bottom-level PSM or even the code itself (in Figure 5.6, DS a, DS d, DS e do not 

have intermediate model levels).  

For illustration purposes, Figure 5.6 considers a simple case where a functional profile was 

assigned to (and corresponding development structure created) each of the categories 

represented. Nonetheless, a category may have several functional profiles, and consequently, 

several development structures.  
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Figure 5.6 - Structure of PIMs and PSMs inherent to the previous resources’s classification. 

(3) Bottom modelling level. At this level, there are the lowest-level PSMs from which the final 

code will be produced (either automatically generated or handcrafted). From a PSM, it may be 

possible to derive one or more different code artefacts due to platform differences where the 

code will be deployed; such task is delegated on the proper compiler or code generator. 

A PIM may be directly transformed into code (or even eventually directly executed; in such 

case there is no code generation), and therefore, there is no need to exist a PSM before code 

generation, as illustrated by Figure 5.8. 

The transformations between models are realized through model mappings. Two kinds of 

model mappings can be identified in the development structures, namely, the vertical and 

horizontal model mappings:  

(1) Vertical model mappings. Between modelling levels, there are vertical model mappings, 

these are based on well-established transformations that allows the mapping of a model into 

an equivalent model at a lower abstraction level. This is the mechanism that brings a more 

abstract system’s model to a more concrete and refined system’s model; this lower level 
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abstraction model may incorporate technological aspects and is nearer to final realization 

(Figure 5.7 illustrates these kinds of mappings).  
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Figure 5.7 - Illustration of the abstraction process. Figure 5.8 - Direct code generation. 

(2) Horizontal model mappings. Horizontal model mappings are those mappings that, keeping 

the models at the same modelling level of abstraction, have the purpose to achieve, through 

specific transformations, other goals than the one of decreasing the abstraction level. For 

example, these horizontal model mappings may be used to facilitate validation activities. 

Figure 5.9 illustrates an example of horizontal mapping. 

In synthesis, the tree dimensions pertaining to PIS software development are resources 

dimension, functional dimension, and abstraction dimension, as depicted by Figure 5.10.  

5.2.4 Development Framework  

The dimensions and their concepts need to be integrated in a development framework for PIS. 

A suitable development framework should consider issues concerning the overall system 

development as well as issues concerning the development structures. 

In (Booch et al., 2007), the concepts of “macro  process” and “micro process” are used in the 

framework proposed for the software development process. They represent perspectives of 

the overall software development cycle (the macro process) and of the analysis and design 

process (the micro process). 
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Whilst the macro process aims to guide the overall development of the system and its scope is 

“from the identification of an idea to the first version of the software system that implements that idea” (Booch, et al., 

2007), the micro process cover the analysis and design activities. Activities of analysis focus on 

behaviour and not on form, and produce an initial solution from system requirements. 
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Figure 5.9 – Example of a horizontal model mapping. Figure 5.10 - Dimensions on the development 

approach. 

Activities of design have the purpose to devise elements to provide behaviour and produces, 

based in the results from analysis, a specification that can be implemented.  

 The macro-process presented is based on the RUP lifecycle (see Figure 5.11). 

 

Figure 5.11 - Macro Process Milestones, Phases, and Iterations (from (Booch, et al., 2007)). 
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The micro process is performed in the context of the macro-process: the macro process  “drives 

the scope of the micro process, provides inputs to the micro process, and consumes the outputs of the micro process”(Booch, 

et al., 2007). Figure 5.12 illustrates the bond between these processes. 

Two dimensions are used to describe the macro-process: (i) the content dimension respects to 

what is done (it can be described with disciplines and related notions as roles, tasks and work 

products); (ii) the time dimension respects to when it is done (it can be described by 

milestones, phases and iterations). The micro process is also described in terms of two 

dimensions: (i) the level of abstraction, at which analysis and design activities are performed; 

(ii) the content dimension, which considers two key areas of concern, the architecture and the 

individual components. 

 

Figure 5.12 - The Micro Process within the Macro Process (from (Booch, et al., 2007)). 

The consideration of different process perspectives for the description of software 

development, spite of not being coincident, it is also in the basis of the proposed development 

framework. The development framework proposed follows two main perspectives: one 

concerning the overall development process, and a second concerning to individual 

development process associated to each of the functional profile instance. Figure 5.13 

illustrates a schema of such framework. 
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Figure 5.13 - Development framework for PIS. 

The “development framework” is essentially structured in a global development process and 

several elementary development processes: 

 (1) Global development process. A global development process is responsible for modelling 

requirements and for establishing high-level and global system models (such as the logical 

architecture model of the whole system and the use case model of the system that expresses 

the functionality expected from the system). From these, combinations of functional profiles 

and categories of device are established, and the high-level PIM for each combination needed 

on the system is specified. The global development process can establish milestones that each 

individual structure development has to accomplish. The global development process has the 

responsibility for making all the necessary arrangements for integration of the several artefacts 

that result from individual threads of development and for final composition, testing, and 

deployment of the system. 

(2) Elementary development processes. Development structures do not have to follow the 

same development process to carry out the development of that part of the system; for each 

of the development structures, an adequate development process can be chosen, as long as it 

respects the principles of the approach globally adopted. Therefore, elementary development 

structures for functional profiles may be subject of their own thread of development process.  

The implicit strategy to this development framework enables the adoption of development 

process and techniques most suitable to development of that individual development 
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structure. It also eases the assignment of those structure units to different collaborating teams 

and, eventually, the outsourcing of the development. 

Besides the traditional documentation, the development approach should provide 

documentation for each development structure. Among this documentation, it is expected to 

be found information about the platform independent models (PIMs) at the top model-level, 

the PSMs at the intermediate model-level, the PSM at the bottom model-level, the mappings 

(either vertical or horizontal) and inherent transformation techniques used on the model’s 

transformations, as well as information regarding to code generation. It becomes clear that it 

is convenient the use of suitable CASE tools to support global and individual development 

process developments as herein proposed. It is also expected the use of well-established 

standards on languages and techniques for modelling (models and transformations models), 

support for code generation, change management, and documentation of all artefacts and 

design decisions. 

The global process and the elementary process are not prescribed to be performed by any 

particular existent development process, being the choice of process development left to the 

developer. The global process can be see can be seen as being similar to macro process, as it 

respect to the overall development process, and fed the elementary processes as the macro 

also does for the micro process. The elementary process is somehow different from the micro 

process as it has a distinct scope: it respects to a whole development structure, which can be 

seen by itself as a system for which it can be applied a development process that can 

inclusively include the strategy of development associated with the macro and micro concepts 

presented.  

5.3 Extension to SPEM 2.0 Base Plugin Profile 

Software and Systems Process Engineering Meta-Model 2.0 (SPEM 2.0) provides to process 

engineers a conceptual framework for modelling method contents and processes.  

SPEM2. 0 is defined as a meta-model as well as a UML 2 Profile (concepts are defined as meta-

model classes as well as UML stereotypes). SPEM 2.0 meta-model describes the structures and 

the structuring rules needed to express and maintain development method content and 

processes. It is a MOF-based model and reuses some elements from UML 2 meta-model (key 

classes from UML 2 Infrastructure (OMG, 2010)).   

The SPEM 2.0 UML Profile provides an alternative representation to the SPEM 2.0 meta-model. 

It defines a set of stereotypes that allows presenting SPEM 2.0 methods and processes using 
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UML 2, and relies on the SPEM 2.0 meta-model to define all of its constraints. In addition to 

SPEM 2.0 Profile, the specification also defines a “second non-standard convenience profile called ‘SPEM 2.0 

Base Plugin Profile’” (OMG, 2008) that provides other useful stereotypes (OMG, 2008). 

In the context of the approach presented for software development of pervasive information 

systems, it is proposed additional stereotypes to this SPEM 2.0 Base Plugin. Next paragraphs 

present these additional stereotypes; these are related to “Activity Kind” and “Work Product 

Kind” stereotypes already defined in SPEM 2.0 Base Plugin. 

Regarding to Activity Kinds, in addition to the predefined “Process”, “Phase”, and “Iteration”, it 

is proposed the stereotypes “FrameworkSupport” and “Transformation” with its 

specializations “ModelTransformation” and “CodeGeneration. Additionally, to the “Process” 

Activity Kind, it is proposed as its specializations the “GlobalProcess” and “ElementaryProcess” 

stereotypes.  

Figure 5.14 illustrates the inclusion of these new Activity Kinds (in white boxes are the 

predefined activities kinds; in grey boxes are the proposed additional activity kinds). 

 

The purpose of each of the Activity Kinds stereotypes proposed is next briefly exposed: 

 “GlobalProcess”. The “GlobalProcess” stereotype allows the representation of a global 

process that encompasses all the development of the system. 

 “ElementaryProcess”. The “ElementaryProcess” activity allows the representation of 

processes of development occurring in the global development process and framed by 

specific devised functionalities and resources categories. 

 “Transformation”. The “Transformation” stereotype is an abstract generalization 

projected allowing to generically represent the activities of transforming models (or 

other artefacts) either to other models or into code; these are, respectively, 

represented by “Model Transformation” and “Code Generation” stereotypes. 

 “ModelTransformation”. The “ModelTransformation” stereotype intends to represent 

activities that can be termed as model transformations. 

 “CodeGeneration”. The “CodeGeneration” stereotype intends to represent code 

transformations activities (to source code, to executable code, or to other executable 

artefact). 

 “FrameworkSupport”. The “FrameworkSupport” stereotype intends to represent 

special activities related to deployment of the development framework, such as the 

definition of the resources categories, the functional profiles, the functional profile 

instances, or the elementary development processes. 
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Figure 5.14 – Inclusion of new Activity Kinds. 

 

Regarding to Work Product Kinds, in addition to “Artefact”, “Deliverable”, and “Outcome” 

stereotypes, it is proposed the addition of “FunctionalProfile”, “ResourceCategory”, 

“FP_Instance”. 

Figure 5.15 illustrates the inclusion of these new Artefact Kinds (in white boxes are the 

predefined artefact kinds; in grey boxes are the proposed additional artefact kinds).  
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Figure 5.15 - Inclusion of new Artefacts Kinds. 

The purpose of each of the WorkProduct Kinds stereotypes proposed is next briefly exposed: 

  “ResourceCategory”. The “ResourceCategory” stereotype intends to representation of 

a resource category. 

 “FunctionalProfile”. The “FunctionalProfile” stereotype intends to represent a 

functional profile. 
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 “FP_Instance”. The “FP_Instance” stereotype intends to represent a functional profile 

instance. 

5.4 Approach to Software Development of PIS  

This section aims, in the context the proposed approach, to provide a set of guidelines and 

auxiliary tools to be used either to software development of new PIS or to analysis existing 

projects developed on a model-based/driven basis and in context of a pervasive information 

system. As a note, what is hereafter said about performing analysis can be applied to the 

definition of new processes as long as the convenient considerations or adaptations are taken 

into account. 

In the context of a pervasive system, a development project based/driven by models should: (i) 

stress out clearly the use of model transformation activities, activities interconnection, and 

inputs/output of activities; (ii) provide a way to deal with heterogeneity and changes on the 

resources on which software units are deployed for execution; (iii) provide a way to deal with 

changes on the functionalities to be deployed on the resources. A development process can be 

put in perspective through its activities or through the work. Therefore, an analysis approach 

of model-based/driven projects for PIS can be sustained either by analysis of work products or 

activities performed that promote the evolution of the system’s definition.  

Software & Systems Process Engineering Meta-model Specification (SPEM) 2.0 (OMG, 2008) 

can be used as an important auxiliary tool for the definition, diagnosis, and optimization of 

processes.  The system of concepts subjacent to its meta-model allows the capture of relevant 

structure of existing processes for which one may want to deepen the knowledge. This 

structure is a fundamental basis for observation and for analysis of the process, from which 

further robust rationale can be realized about the process properties.  

SPEM 2.0 specification provides, not only the metamodel, but also a set of corresponding 

stereotypes of the metamodel concepts that can be used to easier illustrate the process 

elements. Additionally, it also provides several examples of representation of workflow of 

activities and work products, and of how these two representations can relate to each other 

(including change of states of the work products).  

The analysis of the projects, or the definition of new ones, has to take into account two 

different points of view that highlight issues or peculiarities pertinent to model-based/driven 

development and to pervasive information systems. These points of view are:  (i) the pervasive 

point of view, which takes into account elements relating to consideration of pervasive issues; 
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(ii) the model-based/driven point of view, which take into account elements related to the 

models produced, model transformations applied, other modelling techniques/strategies or 

conceptions used, and the suitability of the process approach utilised. 

To pursuit this goal, it’s introduced: (i) the framing structure as an auxiliary tool for the 

identification of the functional profile instances; (ii) a development framework pattern, which 

to assist on the analysis an existing SPEM 2.0 development process diagram or to define new 

projects based on the conceptions of the proposed approach.  

The proposed approach for software development of pervasive information systems suggests a 

strategy that assists in coping with the heterogeneity existing in pervasive systems and in 

sustaining structurally model-based/driven software development. This strategy incorporates a 

set of useful conceptions for its deployment; some of these conceptions were expressed in the 

proposed extension of SPEM 2.0 Base Plug-In. This perspective searches for that parts of the 

project model that may be potentially susceptible of application of those conceptions; these 

parts are candidates for further attention as they may be subject of considerations and 

eventual propositions for changes or enhancements. 

The motivation for this perspective is twofold. First, to assist in identifying facts, issues, or 

pertinent parts that have impact on the effectiveness of a strongly model-based approach and 

on the suitability for dealing with pervasive information systems. Second, to contribute for the 

improvement of software development of pervasive information systems and to exemplify, in 

the projects, where and how this approach and its conceptions can be deployed. 

How to do it? The analysis is based on the SPEM diagram of the project development process, 

and as such, in the case that it does not exist, one must elaborate it. There are two levels of at 

which the analysis/definition can be made: a structural level and a process’s element level. At 

structural level, one has the purpose of: (i) fitting the structuring concepts of the framework 

that give a basis to organize models development; (ii) copping with resources’ heterogeneity of 

pervasive systems. At process’s elements level, one has the purpose to identify, enhance, or 

promote work units to be formalized and defined, as far as possible, as transformations in 

order to support an approach strongly based on models. The following paragraphs further 

detail these issues. 

Structural level 

At a structural level, the main goals are to identify/establish a well-defined structure in 

accordance to the proposed approach whose benefits were expressed in previous sections of 

this document. Several conceptions were introduced earlier in this chapter and in previous 

chapter; based on these, a crossing of conceptions can be made to produce useful result. 
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Figure 5.16 depicts a conception crossing of instances of functional profiles for resource 

categories, development framework for PIS, with the SPEM model of the project.  

Global development 

process

F
u
n
c
ti
o
n
a
l 
d
im

e
n
s
io

n

DS a.1 DS b.1 DS m.1

D a.2

Resources dimension

A
b

s
tra

c
tio

n
 d

im
e

n
s

io
n

DS b.2 DS m.2

DS a.n DS b.n DS m.n

Elementary 

development processes

Requirements Model

System

High-level System Model

XX

Project 
Management

Management

Dissemination

Requirements 
Analysis and 
Elicitation

Characterization of 
the Environment

Elicitation and 
classification of user 
requirements

Formalization of system 
requirements

Refined Planning

Research and 
Technological 
Development

Definition of architecture's 
solution

Development of comPCA

Development of software 
for sPDAs pPDAs

Development of software 
for the pSC

Development of 
anesthesiology database

Technological integration 
and  prototype 
installation

AV Communications 
(streaming)

Development of data 
mining techniques

Test and correction

Extension for 
GSM/GPRS/UMTS

Exploration and Evaluation 
of the Application

Characterization of the 
information system before the 
prototype

Exploration of the 
prototype

Evaluation of support 
offered by the system

Medical 
Research

Preparation of 
psycho-socio-cultural surveys

Execution of individual surveys to
 volunteers for test and 
improvement

Pain assessment in patients 
from HSO with uPAIN 
prototype

Context Diagram 
development

Use Case Diagrams 
development

Context Diagram

Use Case Diagrams 
[initial]

Problem Description

Use Case Diagrams 
development

Sequence Diagrams 
development

Use Case Diagrams 
[refined]

Sequence Diagrams

Petri lattices 
development CPNs

Refined activities plan

Components 
diagram

Executable prototype 
construction for 
requirements validation

Executable prototype for 
requirements validation

System architecture

System Requirements

Refined activities plan 
elaboration

Refined activities plan

Electrical and Electronic 
Project construction Electrical and 

Electronic Project

Image processing software 
development Image processing software

comPCA

Software components 
development for sPDAs

Software components for 
pPDAs

Software components 
for sPDAs

Software components 
for pPDAs

Software for sPDAs 
and pPDAs

Software components 
development for PSC Software components 

for PSC

Integration of sPC and 
SONHO DB Results from Integration with 

SONHO DB

Software for PSC

Anesthesiology DB 
development

PHP application development 

for surveys support

Anesthesiology DB

PHP application for 
surveys support

Anesthesiology DB

Technological 

integraion

Prototype instalation

Prototype #1

Results from Prototype #1 

installation

Prototype # 1 - initial 
version

Data mining techniquesData mining techniques 
development Data mining 

techniques

Multimedia services 
development Multimedia services

Multimedia services

Testing and Correction

Prototype # 2
Prototype # 2Expansion for 

GSM/GPRS/UMTS

Prototype # 1 completed 
and corrected

Prototype # 1 completed
and corrected

4SRS execution

User Requirements

 «composition»

 «output»

 «input»

 «composition»

 «composition»

 «nesting»

 «output»

 «input»

 «nesting»

 «output»

 «predecessor»

 «input»

 «output»

 «composition»

 «nesting»

 «output»

 «input»

 «composition»

 «nesting»

 «output»  «composition»

 «composition»

 «nesting»

 «predecessor»  «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «output»
 «nesting»

 «output» «nesting»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «composition»

 «nesting»  «output»

 «composition» «nesting»  «output»

 «composition»

 «output» «nesting»

 «output»

 «composition»

 «input»

 «composition»

 «nesting»

 «output»

 «composition»

 «nesting»
 «output»

 «composition»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «output»

 «composition»

 «nesting»  «output»

 «input»

 «composition»

 «nesting»

 «output»
 «composition»

 «output»

 «input»

 «output»

SPEM model of the projectConcept of Development structure

Cat. A Cat. B Cat. C Cat. ... Cat. M

F
P

 1

F
P

 2

F
P

 3

F
P

..
.

1A

2C

F
P

 n

...

2B

3A

nM

i j Instance of functional profile i for resource category j

Concept of functional profile instances  

Figure 5.16 - Crossing conceptions. 

The crossing of these conceptions results on a conceptual structure that allows the definition 

and framing of functional profile instances. This conceptual structure can be expressed by a 

schema similar to the one presented in Figure 5.17. It can be seen that all the relevant 

functional profiles are listed at the left side of the framing structure, and the resources 

categories identified are listed at the middle top.  

The definition of functional profile instances are signalled in the proper intersections of lines of 

functional profile with the columns of resource categories. For each functional profile instance 

there will be an associated development framework (not depicted in the figure); for each of 

these development frameworks there will be a corresponding elementary development 

process.  

There are starting and ending activities of the global development process that produces the 

high-level and low-level models/specifications/artefacts, (it is important to notice that in 

parallel with the elementary development process activities, there may be in course other 

global development processes activities; this proposal constitutes structuring framework and 

not a methodology). An example of the application of this technique will be presented latter 

when revisiting the projects. 
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Figure 5.17 - Framing structure for a project. 

Taking into account the project framing structure, the SPEM 2.0 Base Plug-In extensions, the 

project’s SPEM model, and the guideline actions of this perspective; it is possible to proceed to 

analysis, definition, analysis, or rearrangement of the SPEM-based model. Figure 5.18 

illustrates a pictorial representation of the use of those concepts in this SPEM model 

rearrangement. 

Depending on the project, the restructured project’s SPEM model will include a number of the 

stereotypes of the extension of the SPEM Base Plug-In. Figure 5.19 presents a synthesis of the 

earlier proposed extending stereotypes to the SPEM Base Plug-in.  

Trying to realize a first time attempt, all the conceptions behind this rationale, can be a difficult 

endeavour; a pragmatic guidance of how these conceptions can be deployed in the SPEM 

diagram would be of value. A possible guidance could be in having, beforehand, a probable 

configuration of the stereotypes’ concretization at the time of the models (re)definition. To 

assist this purpose, a pattern is proposed. 
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Figure 5.18 - Rearrangement of a project’s SPEM model. 
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Figure 5.19 - Synthesis of extending SPEM stereotypes. 

Taking into account the extension of SPEM 2.0 Plug-In, the conceptions aforementioned, the 

context  software development for PIS, it is suggested a SPEM-based PIS’s development 
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framework pattern to assist in the task of defining or restructuring a SPEM-based software 

development approach. Figure 5.20 illustrates the pattern.  

This pattern arranges the extending stereotypes in the following way: 

 An activity kind instance stereotyped as «global process», named with project’s name. 

It includes, besides all the major activities of the project that are deemed as being 

global process activities, a special activity named “Framework creation” that is 

stereotyped as «FrameworkSupport».  

 An activity kind instance stereotyped as «FrameworkSupport», named as “Framework 

Creation”. This is instance central to the incorporation of the several concepts of 

development framework. It includes activities for resources categories definition, 

functional profiles definition, functional profiles instances definition, and elementary 

process creation. 

 An activity instance stereotyped as «FrameworkSupport», named as “Resources 

Categories Definition”. This activity instance has the responsibility to provide the 

definition of the resources categories, which is materialized by the artefact “Resource 

Categories” that includes a work product instance stereotyped as «ResourceCategory» 

for each of the resource categories (symbolically named as A, ..M). 

 An activity instance stereotyped as «FrameworkSupport», named as “Functional 

Profiles Definition”. This activity instance has the responsibility to provide the 

definition of the functional profiles, materialized by the artefact “Functional Profiles”, 

which includes a work product instance stereotyped as «FunctionalProfile» for each of 

the functional profile (symbolically named as 1, ...n). 

 An activity instance stereotyped as «FrameworkSupport», named as “FP Instances 

Definition”. This activity instance has the responsibility to provide the definition of the 

functional profiles instances, materialized by the artefact “Functional Profile 

Instances”, which includes a work product instance stereotyped as «FP_Instance» for 

each of the functional profile instance (symbolically named in the pattern as 1A…, 

...nM). This activity has as input the artefacts “Functional Profiles” and “Resource 

Profiles”. 

 An activity instance stereotyped as «FrameworkSupport», named as “Elementary 

Processes Creation”. This activity instance has the responsibility to provide the creation 

of the elementary processes. It includes one activity instance stereotyped as 

«ElementaryProcess» for each of the defined functional profile instances, and each 

giving origin to a conceptual development structure (these elementary processes are 

symbolic named in the pattern as 1A…, …nM). This activity has as input the artefact 

“Functional Profiles Instances”. 
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Complementing the presentation, and belonging to the definition of this pattern, some notes 

are stated about the use of the pattern application and, additionally, some guidance actions 

are also provided.  

First, it is possible to intersperse activities among the patterns activities. For example, in the 

redefinition of SPEM diagram of a development process, it is possible to put an existing major 

development activity between the «GlobalProcess» activity and the «FrameworkSupport» 

activity named “FrameworkCreation”. Nonetheless, the structural organization of the pattern 

should be present and recognized in the overall SPEM model.  

Second, it is not represented in in the pattern, as it is assumed as implicit, the fact that each of 

the activities (with exception for the ones corresponding to the global process), it is available 

the existent higher-levels models specifying requirements and system architecture.  

Third, the realization of this pattern is considered complete after the identification of the 

transformations. Fourth, after the complete realization of the pattern, other actions can be 

undertaken, being these ones out of the scope of this pattern definition. 
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Figure 5.20 - PIS development framework pattern. 

 

For the realization of the pattern, some guidance actions are provided in form of steps. Table 

5.1 list these steps, grouped in four tasks; each of this task has a variable number of steps.  
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Task 

Id. 

Task name  

/ Step id. – Step name. Step description 

T1 Elements identification 

S1.1 – Identify global process activities. Identify the activities that should be considered as belonging 

to the scope of global process. 

S1.2 – Identify elementary process activities. Identify the activities and respective structure that shall 

be considered as belonging to elementary processes. 

S1.3 - Identify resources categories. 

S1.4 - Identify functional profiles. 

S1.5 – Define functional profile instances. Define the functional profile instances that shall come to 

existence. You may use a framing structure to visualize the functional profile instances. 

T2 Pattern creation 

S2.1 – Create the pattern structure. Create in the SPEM diagram, the raw pattern structure, 

materializing the «GlobalProcess», «ResourceCategory», «FunctionalProfile», «FP_Instance», and 

«ElementaryProcess» stereotype instances with the information available. All «FrameworkSupport» 

can be materialized with the name used in the pattern (nonetheless, if deemed relevant, other names 

can be given). 

T3 Pattern framing 

S.3.1 – Include global process activities. Include in the «GlobalProcess» activity instance, all the 

identified global process activities. 

S3.2 - Include elementary process activities. Include each of the «ElementaryProcess» activity 

instances, as well as any corresponding activity structures of them. Make the adaptions and 

rearrangements needed. 

T4 Transformations identification 

S4.1 – Identify transformations. After the (re)arrangements for proper pattern framing, it should be 

identified the existing activities that are susceptible to be classified as a transformation; for the ones 

that are validated as such, replace the activity by and activity instance stereotyped as 

«ModelTranformation» or «CodeGeneration» as appropriate.  

S4.2 – Formalize the transformations. For each of the transformations, formalize, in a separate SPEM 

diagram, the transformation. 

Table 5.1 - Tasks for pattern realization. 

These guidance actions for pattern realization can be also formalized in a SPEM 2.0 model, 

using the concepts of activity, tasks, and steps. Figure 5.21 depicts the pattern realization 

SPEM 2.0 model. 
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Framing structures nesting for large projects 

Projects vary in size and complexity. There may be huge projects involving the definition of 

large subsystems, for which there is the interest to define their own functional profiles and 

resources categories.  

 

 

Figure 5.21 - Pattern realization SPEM 2.0 model. 

For such cases, a framing structure can be defined for the system and a framing structure for 

each of the subsystems. The system framing structure will contain elements with a system 

level granularity, while the subsystem framing structure will have their own suitable subsystem 

level granularity. The nesting of framing structures allows dealing with any project dimension. 
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 Figure 5.22 depicts the nesting of the framing structures to deal with the size of huge projects. 
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Figure 5.22 - Nesting of framing structures for huge projects. 

Their deployment in the SPEM model can be achieve through proper realization of the 

proposed development framework pattern for PIS for each of the framing structures, 

independently of the part of the system they respect to. Each of the framing structures 

implicitly defines its own namespace for its constituent elements. 

 

Process’ elements level 

At this level the attention is centred in the identification/definition of individual elements, 

focusing on its structure or properties. The elements of major interest are those belonging to 

the kind of work unit.  

These kinds of elements are the ones that have the main contribution to an effective 

deployment of a model-based approach, and that are on the crux of the matter of the 

transition from qualifying an approach as model-based or model-driven development 

approach (or in the middle of the two). These work unit elements define the inputs, outputs, 

and task/steps that materialize the activity. The inputs are used as available, but in what 

respects to the outputs produced, the activity can elaborate on its content, form, and quality. 
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These outputs are the ones that made available and are posteriorly used as inputs in 

succeeding activities.  

The quality of the specification of the inner tasks/steps is of crucial relevance to the process 

and may provide the grounding for a model-based “navigation” along the process. Among 

quality properties of the activity specification are the activity elements and sequence 

formalization, the precision, the clearness, and completeness.  

SPEM 2.0 diagrams can be used as means to formalize and to assist in achieving/analysing 

quality properties of activities. Figure 5.23 is an example of a SPEM 2.0 materialization of the 

4SRS technique; it aims to produce an object system model representing the logical 

architecture of the system, essentially based on an input use case model representing 

functional requirements of the system.  

 

Figure 5.23 - 4SRS model transformation technique under a SPEM 2.0 perspective. 
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As it can be seen in the SPEM diagram depicted in Figure 5.23, 4SRS defines its inputs, outputs, 

tasks of processing and roles, and provides a guidance to assist the technique implementation. 

As far as possible and convenient, the activities in the process should then be described by a 

SPEM 2.0 diagram in order to access or improve their quality, and properly distinguish from 

the others. 

 

5.5 Conclusion 

This chapter presented an approach to software development of PIS based on model-

based/driven development concepts and techniques. It was introduced: (i) three dimensions of 

system development that are relevant to the approach; (ii) a development framework to 

support the approach; a SPEM Base Plug-In extension; (iii) a development framework pattern 

for PIS; (iv) considerations relative to the framing of MDD concepts and techniques; and 

supporting artefacts to the construction of PIS. It is expected that this approach suitably brings 

the model-driven benefits to the development of pervasive information systems. 

 
Some of the main concepts introduced in this chapter are summarized in Table 5.2.  
 

Concepts Meaning 

Category of resources Heterogeneous resources (e.g. computational devices) are grouped in category of resources 

reflecting common basic resource and capabilities of the resources. 

Development 

structure 

Different development structures for the different functional profiles of the category of devices 

reflect pathways of software development in order to satisfy major categories of functionality. 

Modelling levels For each of the development structures and transversal to all of the development structures, there 

are several modelling levels. 

 At the top level, the platform-independent model (PIM) for each of class of devices is derived from 

models resulted from development of the system as a whole. 

 At intermediate levels, there are PSM models. 

 At the bottom model level, there are the lower-level (Platform-Specific Models) PSMs from which the 

final code is produced (either automatically generated or handcrafted). 

Dimensions The approach for the development of PIS has three dimensions: resource, functional, and abstraction 

dimensions. 

 The resource dimension focus on classification of resources in categories according to common 

properties or capabilities of these resource. 

 The functional dimension focus on functional profiles specified for categories of resources. 

 The abstraction dimension focus on the abstraction modelling levels; these  involve transformations 

of models from higher-levels to low-levels of abstraction.  
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Concepts Meaning 

Modelling levels Three modelling levels can be distinguished: high, intermediate, and bottom modelling levels. 

 The high modelling level. At this level, there is a PIM for each of category of resources. The PIM 

derivates from models resulting from initial development of the system as a whole. 

 The intermediate modelling levels. At these levels, there are PSM models that can be either 

associated to subcategories of resources or to design decisions that may somehow introduce a 

certain degree of platform/technological dependence. 

 The bottom modelling level. At this level,  there are the lowest-level PSMs from which the final code 

will be produced (either automatically generated or handcrafted). From a PSM, it may be possible to 

derive one or more different code artefacts due to platform differences where the code will be 

deployed. 

Global development 

process 

Global development effort is responsible for modelling requirements and for the establishment of 

high-level global system’s models. From these, combinations of functional profiles and resources 

categories are determined, and the high-level PIM for each combination needed on the system is 

specified. 

Elementary 

development process 

Individual development structures corresponding to the referred combinations, and are subject of its 

own thread of development process referred as elementary development processes. 

Types of model 

mappings 

Between models, two types of model mappings can be identified: vertical and horizontal model 

mappings. 

 Vertical model mapping. Between the model levels, there are vertical model mappings, which being 

based on well-established transformations, bring the abstract system’s models to a more concrete 

and refined system model (nearer to technological aspects and to its final realization). 

 Horizontal model mappings. These mappings have the purpose to achieve, through specific 

transformations, other goals than the one of a decrease of abstraction. For example, these horizontal 

model mappings may exist in order to facilitate validation goals. 

Table 5.2 - Main concepts of the proposed approach to the development PIS. 
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6  

Analysis of the Projects 

In this chapter, the projects of study in this thesis, projects uPAIN and USE-ME.GOV, 

are revisited in order to be analysed. For each project, a pictorial description 

illustrates generically illustrates the main activities and artefacts, a SPEM model 

describes further detail the elements of the process development, and having in mind 

the conceptions and structures introduced in chapter 5, it is performed analysis and 

considerations about the project. The chapter then ends with reflections and 

considerations considering both projects. 

 

6.1 Introduction 

Revisiting the projects presents an opportunity to observe them with attention focused on 

particular items of interest in order to achieve the proper analysis. This analysis resorts to 

SPEM 2.0 for building the diagrams that depict the structure of projects, making graphically 

visible their main activities, artefacts, and relationships among them. Therefore, for each of 

the projects, it was built a SPEM model of the project that is presented in this document. 

Resorting to SPEM 2.0 for looking into the projects revealed, as it will be perceived, a proper 

way to bring to light the understanding of the process internals.  

Due to the size of project models and aiming to facilitate the presentation, the SPEM model 

of each project is further divided and presented through diagrams related to specific main 



Analysis of the Projects 

134 

phases/activities. Additionally, preceding and complementing the presentation of the SPEM 

model, an auxiliary pictorial description is provided; it aims to ease the general understanding 

of project activities and deliverables/artefacts.  

The analysis use selective parts of the model (or diagrams) to stress points where issues are 

verified or interventions are needed, or to make proper exemplifications. It is considered that 

the use, where needed, of selective parts of the model instead of its totality, is proper and 

sufficient for the presentation of the knowledge that the analysis intents to express, and does 

not affect its precision or the proper expansion of the rationale for the whole project model. 

To pursuit the goal of the analysis, it’s presented for each project: (i) the SPEM 2.0 model, 

illustrating the main activities and artefacts; (ii) the framing structure as an auxiliary tool for 

the identification of the functional profile instances; (iii) the application of the development 

framework pattern, which allows to easier analysing an existing SPEM 2.0-based 

development process its structure in the light of the approach conceptions; (iv) Reflection 

and considerations about issues and facts of the project.  

The remainder of this chapter is structured in three parts: (i) a first part related to analysis of 

the uPAIN project; (ii) a second part related to analysis of USEME.GOV project; and (iii) a third 

part in which is expressed and synthesized the knowledge that emerges for from these 

project analysis.  

6.2 Analysis of uPAIN Project 

uPAIN grouped the activities by major concerns into five phases (as illustrated by Figure 6.1).  

Project Management

Requirements Analysis and Elicitation

Research and Technological Development

Exploration and Evaluation of the Application

Medical Research

 

Figure 6.1 - Phases of uPAIN project. 

In each of the phases, several activities were carried out that were designed to produce 

several deliverables (SPEM diagrams, latter in this uPAIN section, will depict these activities). 
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6.2.1 Pictorial Description of Major Activities and Deliverables 

The deliverables designed to be produced in phases of “Project Management”, “Exploration 

and Evaluation of the Application”, and “Medical Research”, are those illustrated by Figure 

6.2.  

Exploration and Evaluation of the Application

Refined specification of 

the information system

Databases with information 

from  the protoype exploration

Report of usefulness, usability 

and technology impact

Medical Research

Psycho-socio-cultural 

surveys 

Realized tests Pain assessment

Project Management

Periodic assessments of 

project progress

Technical Meetings Project financial 

management

Promotion and dissemination 

of project results

 

Figure 6.2 - Major results in Project Management, Exploration and Evaluation of the Application, and Medical Research phases of 

the uPAIN project. 

These three phases don’t have the relevance for this study as the remaining others, as they 

do not have activities that directly concerns to creation of artefacts that software 

development of the system. As such, they are not subject of further analysis. 

The phase of “Requirement Analysis and Elicitation” was designed to produce the 

deliverables presented by Figure 6.3. 

 

Figure 6.3 - Major results in Requirements Analysis and Elicitation phase of the uPAIN project. 

Requirements Analysis and Elicitation phase is described (uPAIN, 2008) as having the tasks of 

“Characterization of the environment”, “Elicitation and classification of user requirements”, 

“Formalization of system requirements”, and “Refined planning”. These produce, 

respectively, the deliverables “Problem Description”, User Requirements”, “System 

Requirements” and “Refined Activities Plan”. The relationships between the phase, activities 

and deliverables are better perceived through the SPEM diagram presented later. 

 

Requirements Analysis and Elicitation

Problem Description User Requirements System Requirements Refined Activities Plan
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The phase of “Research and Technological Development” was designed to produce the 

deliverables presented by Figure 6.4. 

Research and Technological Development

System Architecture comPCA Software for sPDAs Software for PSC Anesthesiology DB

Prototype # 1 

(initial version)

Multimedia services Data mining techniques Prototype # 1 (completed 

and corrected)

Prototype # 2

 

Figure 6.4 - Major results in Research and Technological Development phase of the uPAIN project. 

Research and Technological Development phase  is described (uPAIN, 2008) as including the 

several tasks. Among these, it can be found the “Definition of architecture's solution”, 

“Development of comPCA”, “Development of software for sPDAs pPDAs”, “Development of 

software for the pSC”, “Development of anaesthesiology database”, “Technological 

integration and  prototype installation”, “AV Communications (streaming)”, “Development of 

data mining techniques”, “Test and correction”, and “Extension for GSM / GPRS / UMTS”. 

These tasks produce the deliverables illustrated by Figure 6.4.The relationships between the 

phase, activities and deliverables are perceived better through the SPEM diagram presented 

later.  

6.2.2 SPEM 2.0-Based Description of Activities and Artefacts 

The uPAIN project phases, main activities, tasks, artefacts, deliverables, and their 

relationships are graphically visible through the SPEM model presented in Figure 6.5. In the 

figure, the graphical elements are in a small dimension in order to one being able to see the 

global picture; later illustrations will show, in visually comfortable diagrams, separated parts 

of this model.  

Among the several phases that constitute the project, “Requirements Analysis and 

Elicitation”, and “Research and Technological Development” have greater dimension. They 

are depicted with detail, as they are the ones of more interest in this study. 

The rectangular shadow shape signals the tasks and artefacts that were not 

explicitly/formally defined in the project. 
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Analysis and Requirements Elicitation 

The SPEM diagram depicting the phase of “Analysis and Requirements Elicitation” is 

presented in Figure 6.6. The main tasks of this phase (represented in the diagram as 

activities)) are “Characterization of the Environment”, “Elicitation and classification of user 

requirements”, “Formalization of system requirements”, and Refined Planning.  

 

Figure 6.5 - uPAIN development process under a SPEM 2.0 perspective. 

The activities, with their specific results (expressed in the diagram as deliverables), are 

generally structured in smaller units of work (represented in the diagram as tasks). These 

tasks, having specific purposes, produce results (represented in the diagram as artefacts) that 

usually belong to the deliverable and are consumed by other tasks. For example, the activity 

of “Characterization of the Environment” is structured/decomposed in two tasks: a first task 

that has the purpose to develop the context diagram artefact; and a second task that, based 

on previously produced context diagram artefact, aims to develop a first set of use cases 

expressed in a use case diagram artefact. 
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In this diagram, the project has made explicit only the phase, the activities, and the 

deliverables. The tasks and artefacts were not made explicit, but were referenced during the 

project development or implicit related to a work product realization. The rectangular 

shadow shape signals these tasks and artefacts. 

 

 

Figure 6.6 - SPEM 2.0 diagram of the phase “Requirements Analysis and Elicitation" of uPAIN project. 

Research and Technological Development 

The SPEM diagram depicting the phase of “Research and Technological Development” is split 

(for legibility) into two parts that are shown respectively in Figure 6.7 and Figure 6.8. Figure 

6.7 shows several activities that, based on results produced in preceding phase of 

“Requirements Analysis and Elicitation”, conduct to the development of a first version of the 

system prototype. The rectangular shadow shape signals the tasks and artefacts that were 

not explicitly defined. 
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While the activities and results are explicitly defined in the project, the tasks and the 

artefacts consumed by the tasks for the production of the resulting artefacts are not. The 

exception is on the well-defined and explicit 4SRS activity, which consumes as input the use 

case diagram produced in the previous “Requirements Analysis and Elicitation” phase and 

produces the components diagram representing the system architecture. As implicit inputs 

for the remainder activities, are the use case diagrams and the system logical architecture 

produced by the 4SRS technique.  

 

Figure 6.7 - SPEM 2.0 diagram of the phase “Research and Technological Development" of uPAIN project (part 1of 2). 

Figure 6.8 presents the second part of the SPEM diagram, which includes the activities that 

conduct to the creation of the second version of the system prototype.  
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Regarding this second part of the model, the same considerations of the first part apply (the 

tasks and artefacts that were not explicitly defined are signalled by the rectangular shadow 

shape). 

 

Figure 6.8 - SPEM 2.0 diagram of the phase “Research and Technological Development" of uPAIN project (part 2of 2). 

Project Management, Exploitation and Application Evaluation, and Medical Research 

These phases are herein presented (Figure 6.9) are deemed to be not relevant for the focus 

of this work and thus are not further analysed. They are presented here only in order to allow 

a better legibility of the several parts of the SPEM model of the project. 

 

Figure 6.9 - SPEM 2.0 diagram of the phases “Project Management”, “Exploitation and Application Evaluation”, and “Medical 

Research” of uPAIN project. 
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6.2.3 Development Framework Pattern 

Attending to the projects dimension and for the purposes of this perspective, in either its 

structural level or its process’ elements level and where suitable, only a part of the model will 

be used for illustration purposes (this does not affect the rationale to be taken for the whole 

model). 

Figure 6.10 illustrates the framing structure for uPAIN project. It shows the functional profile 

instances that get existence in the project.  

A B C D

1A

4C

6D

2B 2D

ComPCA PDA Server Desktop

ComPCA

Staff

Patient

pSC

Anesthesiology DB

System architecture

3B

5C

Requirements specification

Prototype #2

Prototype #1

1

2

3

4

5

6

FP – Functional Profile
1A – ComPCA FP
2B – sPDA FP
2D – staff desktop

3B – pPDA FP
4C – pSC FP
5C – Anesthesiology DB
6D – Survey’s support application

Survey’s support 
application

 

Figure 6.10 - Framing structure for uPAIN project. 

The realization of the PIS development framework pattern had as input, the SPEM model 

previously defined for the uPAIN project and this framing structure. Figure 6.11 and Figure 

6.12 present the diagrams that illustrate the main results. The remainder SPEM model is not 

presented; nonetheless, it follows a light and coherent rearrangement reflecting the 

restructuration meanwhile realized.  

Figure 6.11 highlight the results of performing Tasks T1, T2, and T3, excepting the step S3.2 

(“Include elementary process activities”) that is later presented in Figure 6.12. As it can be 

seen in Figure 6.11, between the «GlobalProcess» instance “uPAIN” and the 

«FrameworkSupport» “Framework Creation”, it was interspersed the “Research and 

Technological Development” activity instance. 

The resources categories, functional profiles, and functional profiles instances are in 

conformity with the framing structure presented in Figure 6.10.  
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The structure of the pattern is easily recognized, since it follows an identical disposition. It 

can be noted that, relatively the original SPEM diagram of the project, some 

precision/completeness deemed of interest is introduced, either in functional profiles 

(through “Survey’s support app) or in the elementary processes (through distinction between 

“2B - sPDA” and ”3B-pPDA). 

 

Figure 6.11 – uPAIN’s restructured SPEM diagram (major structuring elements). 

Figure 6.12 highlight the results from performing step S3.2 (“Include elementary process 

activities”) of task T3, and the steps of task T4. For each of the elementary processes, it was 

included the corresponding activity previously identified in step S1.2 (“Identify elementary 

process elements”); for those that were not explicitly identified an activity, it was defined one 

with a consistent name, which is to be appropriately accommodated with the remainder 

elements in the SPEM diagram.  
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Figure 6.12 also highlight the identification of a transformation corresponding to the 4SRS 

technique; this transformation was previously formalized, and as such, is not here again 

further detailed. 

Some short notes about the uPAIN project’s development process:  (i) uPAIN’s designated 

phases should be designated as activities (phases as connotation to time, and activities are 

connoted to doing work; for example, for project management it is more suitable the 

classification as an activity than as a phase); (ii) It should be clearly made distinct the 

objectives and the results (in the template definition of the project, objectives and results are 

mixed together); (iii) It should be defined separated tasks (and not to be implicitly the 

objectives/results) for each developed artefact (such as a task for sPDAs and another for 

pPDAs); (iv) It should also be explicit stated as tasks implicit artefacts development (such as 

the Survey’s supporting application). The inclusion of the development framework pattern 

was simple; it did not pose any special difficulty. 

 
 

Figure 6.12 -   uPAIN’s restructured SPEM diagram (transformations and elementary process activities).
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6.3 Analysis of USE-ME.GOV Project 

USE-ME.GOV project established several efforts for the development of the system. The most 

relevant of these from the point of view of this study are: (i) an initial work to clarify 

requirements and settle the logical architecture of the system; (ii) development of the core 

platform subsystem; (iii) development of repository services; (iv) development of the four 

target pilot services, namely, the “Healthcare” service, the “Mobile Student” service, the 

“Report of Complaint” service, and the “City Information” service. Figure 6.13 illustrates 

these development efforts. 

Project Management

Service Scenario Definitions and Evaluation

Preliminary Design and Mock-Up

Requirements Analysis

Detailed Design Specifications

Implementation and Integration

Validation

Recommendations

 

Figure 6.13 - USE-ME.GOV major development efforts. 

6.3.1 Pictorial Description of Major Activities and Deliverables 

The deliverables designed to be produced in the phases of “Project Management”, 

“Validation”, and “Recommendations”, are those illustrated by Figure 6.14. 

Validation

Validation Plan Validation Review 

Report

Recommendations

...for  “Business 

Planning”

...for “Implementation 

Planning”

...for  “Standardizations 

and Regulations”

Platform Requirements 

Analysis

Project Management

Quality Assurance Plan

 

Figure 6.14 - Deliverables in Implementation and Integration, in Validation, and in Recommendations. 
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These three phases do not have the relevance to this study as the remaining others, as they 

do not have activities that directly concerns to creation of development artefacts of the 

system. As such, they are not subject of further analysis. 

The phase of “Service Scenario Definitions and Evaluation” was designed to produce the 

deliverables presented by Figure 6.15. 

Service Scenario Definitions and Evaluation

User Requirements Analysis Review of Available Business 

Models

Review of state of art for Intuitive 

and Mobile Interface Design
Review of state of art for Platform 

Architecture and General Design

Service Use and Scenario Defintion

...for  “Broadcasting of Critical 

Information”

...for “Reports and Complaints”...for “The Mobile Student” ...for  “Local Event Promotion”...for  “Health Care Information”

Technical Implementation 

Requirements

 

Figure 6.15 - Deliverables for Service Scenario Definitions and Evaluation. 

The phase of “Requirements Analysis” was designed to produce the deliverables presented 

by Figure 6.16.  

Requirements Analysis
Platform Requirements 

Analysis

Usability Requirements Analysis

...for  “Broadcasting of 

Critical Information”

...for “Reports and 

Complaints”

...for “The Mobile 

Student”

...for  “Health Care 

Information”

Pilot Service Requirements Specifications

...for  “Broadcasting of 

Critical Information”

...for “Reports and 

Complaints”

...for “The Mobile 

Student”

...for  “Health Care 

Information”

 

Figure 6.16- Deliverables in Requirements Analysis. 

The phase of “Preliminary Design and Mock-Up Evaluation” was designed to produce the 

deliverables presented by Figure 6.17. 

Preliminary Design & Mock-Up

Platform Preliminary Design 

and Mock-up Evaluation

Usability-Driven and Mock-Up Evaluation

...for  “Broadcasting of 

Critical Information”

...for “Reports and 

Complaints”

...for “The Mobile 

Student”

...for  “Health Care 

Information”

 

Figure 6.17 – Deliverables in Preliminary Design and Mock-up. 
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The phase of “Detailed Design and Specification” was designed to produce the deliverables 

presented by Figure 6.18. 

Detailed Design and Specification

Platform and Application Detailed Design

Core Platform ...for “Reports and 

Complaints”

Service Repository ...for  “Health Care 

Information”

...for  “Broadcasting of 

Critical Information”

Managment Console...for “The Mobile 

Student”

Platform Services External Data 

Sources

Pilot Services Detailed Services Specifciation

...for  “Broadcasting of 

Critical Information”

...for “Reports and 

Complaints”

...for “The Mobile 

Student”

...for  “Health Care 

Information”

 

Figure 6.18 - Deliverables in Detailed Design and Specification. 

The phase of “Implementation and Integration” was designed to produce the deliverables 

presented by Figure 6.19. 

Implementation and Integration

Integration and Test plan Integration and Test Report

 

Figure 6.19 - Deliverables in Implementation and Integration. 

6.3.2 SPEM 2.0-Based Description of Activities and Artefacts 

The USE-ME.GOV project’s phases, main activities, tasks, artefacts, deliverables, and their 

relationships are graphically visible through the SPEM model presented in Figure 6.20. In the 

figure, the graphical elements are in a small dimension in order to one being able to see the 

global picture; later illustrations will show, in visually comfortable diagrams, separated parts 

of this model.  

The rectangular shadow shape signals the tasks and artefacts that were not 

explicitly/formally defined in the project.  

The project references the consumption/production at deliverable level and uses coarse work 

units, which is reflected in the SPEM model (artefacts are they are usually part of some 

deliverable and tasks are part of the structure of some activity).  
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Where appropriate in this document, segments of the SPEM diagram are shown with those 

modelling artefacts and associated tasks. 

 

 

Figure 6.20- USE-ME.GOV development process under a SPEM 2.0 perspective. 
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Scenario Definition and Evaluation 

Figure 6.21 illustrates the main activities, deliverables and other outcomes related to 

“Scenario Definition and Evaluation Activity” (mentioned as ‘work package’ in the project). It 

had as milestone the production of service scenarios for each of the pilot services of the 

project.  

 

Figure 6.21 - SPEM 2.0 perspective over Service Scenario Definitions and Evaluation in USE-ME.GOV. 

To achieve such milestone, several activities were performed, from gathering user 

requirements (from the public authorities’ perspective), reviewing state-of-the-art, to 

defining technical implementation requirements.  

“Technical Implementation Requirements” established, among other technical definitions, a 

first schema for the platform architecture and for the added-value service architecture. 

“Service Use and Scenario Definition” elaborated, for each target service, an initial use case 

model enriched with activity diagrams.  
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Requirements Analysis 

Figure 6.22 illustrates the main activities, deliverables, and other outcomes from 

“Requirements Analysis”. All the activities had the “Service and Use Scenario Definition” 

deliverable as input artefact. A relevant activity, included in “Platform Requirements 

Analysis”, is the model transformation technique called “4SRS”, which formalizes the passage 

from use cases models to an object model representing the logical system architecture.  

 

Figure 6.22 - SPEM 2.0 perspective over Requirements Analysis in USE-ME.GOV. 

“Requirements Review” was the name of the activity that produced the “Pilot Services 
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the each of the target pilot services (this specification was latter used for detailed service 
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diagrams were used); additionally, a list of functional requirements were specified for each 

service. 
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such as the high-level system diagram or the core platform layers view. Class diagrams and 

sequence diagrams are among typical UML diagrams used. 

Figure 6.23 illustrates the main activities, deliverables and other outcomes related to 

Preliminary Design and Mock-Up. 

 

Figure 6.23 - SPEM 2.0 perspective over Preliminary Design and Mock-Up in USE-ME.GOV. 
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decisions taken. Figure 6.24 illustrates the main activities, deliverables, and other outcomes 

related to “Detailed Design and Specification” activities. 

 

Figure 6.24 - SPEM 2.0 perspective over Detailed Design and Specification in USE-ME.GOV. 
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installation were also included activities. Figure 6.25 illustrates the main activities, 

deliverables, and other outcomes related to “Detailed Design and Specification” activities. 

 

Figure 6.25 - SPEM 2.0 perspective over Implementation and Integration in USE-ME.GOV. 
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Validation, Project Planning, Recommendations, and Dissemination  

The activities in “Validation”, “Project Planning”, “Recommendations”, and “Dissemination”, 

illustrated by Figure 6.26 and Figure 6.27, are deemed not relevant for the focus of this work.  

 

Figure 6.26 - SPEM 2.0 perspective over Validation in USE-ME.GOV. 

 

Figure 6.27 - SPEM 2.0 perspective over Project Planning, Recommendations, and Dissemination in USE-ME.GOV. 
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6.3.3 Development Framework Pattern 

Taking into account the projects dimension and the purposes of this perspective in either its 

structural level or its process’ elements level, only a part of the model (where appropriate) 

will be used for illustration purposes (this does not affect the rationale to be taken for the 

whole model). 

The USE-ME.GOV project is extensive and includes several subsystems services. In the light of 

the approach proposed, these subsystems can be seen as a system for which a whole 

development process can be applied. As such, the analysis/restructuration of this project will 

have certain nuances from the analysis performed for the previous project. It will have a 

context framing structure identifying the major subsystem’s functional profile and 

subsystem’s resource category groupings. Then, for each of the subsystems functional profile 

instance (the crossing of subsystem’s functional profile with subsystems’ resources category 

grouping) is developed a new framing structure. This framing structure will consider as the 

high-level models the ones regarding to the specific subsystem’s functional profile instance. 

For each subsystem’s functional profile instance, there will be their functional profiles and 

resources categories, as expected (unless there is another level of subsystems, in which case, 

the rationale is applied again). This last framing structure is similar to what was conceived for 

previous project.   

The USE-ME.GOV SPEM diagram from USE-ME.GOV project assisted in the definition of 

several framing structures. The following paragraphs show the context framing structure of 

USE-ME.GOV and the redefinition of the SPEM diagram to reflect the pattern realization at 

this contextual level. For one of the identified subsystem’s functional profile instances, the 

respective nested framing structure is illustrated. Further nested framing structures of this 

last one will not be presented here, once that the rationale behind is analogous to the one 

performed for previous project, where no subsystems were included. 

Figure 6.28 illustrates the framing structure for the system level. It shows the subsystem’s 

functional profile instances that get existence in the project. The global process 

models/artefacts designated as “Requirements specification” include the results from 

project’s SPEM activities of “Service Scenario Definition and Evaluation” and the results from 

“Requirements Analysis” (with the exception of the results from “Platform Requirements 

Analysis” which is included in the global process activity “Platform Architecture”). The global 

process artefacts/products “Integrated System” and “Final Executable System” are not clearly 

explicit from the SPEM model. The figure represents them because the finalization of the 

development process implicitly involves them.  



 6.3 Analysis of USE-ME.GOV Project 

 

155 

 

The framing structure has two major subsystems’ functional profiles: “Platform” and “Pilot 

Services”. The resources categories related to subsystem functional profiles (as it also 

happens at the system level), have symbolic names of “Category group A”, “Category group 

B”, and so on. In these cases, it is acceptable to make no explicit 

identification/characterization of the resources categories. The framing structure assigns 

each of the subsystem functional profiles to only one18 resource group, giving origin to a 

single subsystem functional profile.  
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Figure 6.28 - Framing structure at system level for USE-ME.GOV project. 

 

The “Platform” functional profile instance has also a corresponding framing structure. Figure 

6.29 shows the faming structure for Platform functional profile instance. The figure shows 

that the Platform subsystem (corresponding to the previous functional profile instance) has 

its own functional profiles “Core Platform”, “Service Repository”, “Platform Services”, 

“Management Console”, and “External Data Sources”. 
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Figure 6.29 - Functional profile instance for Platform subsystem. 

                                                                 
18  The absence of resource group characterization and the reasonable assumption that a subsystem needs only one supporting resource category 
group gives origin to a single resource category group for a subsystem functional profile. 
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As before, the assignment of each subsystem functional profile to a resource category group 

results in a new subsystem functional profile instance, and consequently, a new 

corresponding framing structure. Figure 6.30  represents, as an illustration of a nested 

framing structure, the framing structure related do “Pilot Services”.  

The Pilot Services has several subsystems, one for each of the services of “Complaint 

Information Broadcasting”, “Mobile Student”, “Healthcare Information”, and “Citizen 

Complaint”. Again, as before in the preceding framing structure, there are resource 

categories groups.  

Symbolic names identify the several elements of the framing structure; Figure 6.30 shows 

these names. Note that there is no conflict on the names used for resource categories 

groupings, functional profiles, or functional profiles instances. The framing structure 

(possessing an own identification, in this case, ‘2B’), implicitly defines a namespace. 

Therefore, for example, “Category group A” has, in the global scope of all framing structures, 

the identification of “Category group 2B.A”. This naming scheme extends for other nested 

framing structures.  

Each of these functional profiles instances gives origin of another framing structure. Since 

none of these framing structures includes subsystems, the procedure is now similar to the 

one carried in the previous project. As such, this document does not present or further detail 

these framing structures. 
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2B - Functional profile instance for Pilot Services subsystem

City Information Broadcasting

Mobile Student

Healthcare Information

Citizen Complaint

Category group Category group Category group

4D

 

Figure 6.30 - Framing structure for Pilot Services subsystem of USE-ME.GOV. 

Notice that there are other global development process activities carried in the development 

process. The results of these activities, spite of being not exclusive to a particular subsystem, 

are of interest to the subsystems. For example, among the activities identified (some 

explicitly and others implicitly in the deliverables) in the SPEM diagram, are the “Meta-

Protocol of Service Types Definition” and the “Platform Functional Design”. 
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As seen, the size and the system decomposition in subsystems result in the definition of 

several nested framing structures. For each framing structure, the SPEM model instantiates a 

development framework pattern. 

The original organization of the complete USE-ME.GOV development process elements, spite 

of its waterfall-like major activities disposition, is not clear. USE-ME.GOV, sometimes, 

expresses the process elements in chunks of implicit development activities or work 

products. The SPEM model built tries to reflect this organization. As consequence, it needs 

extensive rearrangements in order to accommodate the rationale behind the use of the 

development frameworks patterns (which are associated to the framing structures 

identified).  

This section presents the application of the first pattern related to the framing structure at 

system level. For the remaining framing structures, the rationale of the corresponding 

realizations of the development framework patterns is identical to this pattern or to the one 

already presented in the earlier project. For the realizations of the patterns in the SPEM 

model, the approach reorganizes, modifies, or properly creates the existing activities.  

 

Figure 6.31 - USE-ME.GOV’s restructured SPEM diagram (major structuring elements at system level). 
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The global process activity of “Project Management” includes “Project Coordination” and 

“Project Assessment” activities. “Recommendations” global process activity includes 

“Business Planning”, “Implementation Planning”, and “Standardization and Regulations” 

activities. The restructuration has to distribute (and eventually to redefine) the activities of 

“Preliminary Design & Mock-Up”, “Detailed Design ad Specification”, and “Implementation 

and Integration” by the several elementary processes regarding diverse subsystems. 

Figure 6.32 illustrate the nesting of a framing structure achieved through new realization of 

the development framework pattern in connection to an elementary process of a higher 

framing structure. This elementary process assumes in the pattern the place usually allocated 

to the global development process. Note that there is a namespace established by the 

framing structure, reflected in this case by the symbolic designation of the element that is 

representing the global process, in this case the elementary process “1A-Platform”. As such, 

the absolute name of another relative identified element in the diagram will be, its element’s 

type reference followed by a tag in the form 1A.relative_id_of_diagramElement. For example, 

“elementary process 1A.3C” refers to the elementary process “3C-Platform Services”. 

 

Figure 6.32 - USE-ME.GOV restructured SPEM diagram (major structuring elements at Platform subsystem level). 
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Figure 6.33 illustrates another nesting of a framing structure, through further realization of 

the development framework pattern in connection to an elementary process of a higher 

framing structure. In this case, it respects to the “Pilot Services” subsystem.  

 

Figure 6.33 - USE-ME.GOV’s restructured SPEM diagram (major structuring elements at Pilot Services subsystem level). 
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 Some activities do not have proper names and are not consistent with the respective 

work product output (ex: "Requirements Revision" task and its resulting "Pilot Services 

Requirements Specifications"). 

 Work products should have had a clear, distinct formalization on the project structure. 

 

6.4 Lessons Learned 

Resorting to SPEM 2.0 diagrams allowed, along with the conceptions and structures of the 

proposed approach, to reveal the internals of projects. Based on intervention on the SPEM 

model of each the projects, the scattered observation of the SPEM structure and the analysis 

of the suitability of approach’s conceptions accommodation, it was possible to stress out 

pertinent issues. 

Among several issues detected are the following: the lack of explicit artefacts, activities, or 

relationships among them; the inconsistent or improper naming; the incoherent sequence 

activities; the improper formalization of process elements; the misused process conceptions; 

the improper granularity of activities and artefacts; the inappropriate structural organization 

to deal with pervasive issues.  

Considering the projects goals, the resulting artefacts, as well the means of achieving those in 

the projects, several facts, and pertinent issues about can be point out. Regarding 

pervasiveness of the systems, some questions may raise up, such as: (i) how well the system 

will adapt for new resources (as or new kind of mobile/embedded computing devices or 

smart phones); (ii) how much and how coherently structured development effort will be 

needed in order to reflect those changes, or changes on functional requirements.   

The projects revealed a structure of development that can difficult its resilience to deal with 

some perverseness issues, such as addition of different resources categories or addition of 

functionalities specific one or several resources. The projects used models to express their 

development work, and in some parts, explicit model transformations were expressed. The 

model-driven/visibility of the projects, while explicit at a high-level of activities and products, 

could be improved at its and clarity a low or more detailed level. The PIS development 

pattern allowed perceiving how they could be structured in order to enhance their capability 

to deal with pervasiveness.  
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The following paragraphs synthesises some of the lessons learned. 

Need for explicit manifestation of model-driven approach for PIS. The projects did not make 

explicitly clear in the project design the strategy to accommodate a model-driven approach 

appropriate for PIS, spite of using models in the several phases of the project. 

Ensure properly defined elements. The use SPEM 2.0 to represent a project facilitates the 

analysis of a project in order to correct mistakes or poorly defined elements. It is important 

pay attention for several issues. Among these, is the lack of explicit artefacts, activities, or 

relationships among them; the inconsistent or improper naming; the incoherent sequence 

activities; or the misused of conceptions. The attention given to them is the belief that they 

are a core level at which is fundamental to assure that the process is well defined in order to 

pursuit, at higher levels, the goals of model-driven development. A SPEM like standard can be 

used to specify/verify the project. 

Formalize of activities as model transformations and other elements with correctness. 

Without having a coherent, consistent, and clear formalization of the several projects 

constituents’ elements, it will not be possible to establish, with an acceptable quality, a 

model-based/driven process development. Without the existence of coherently 

interconnected and precise process elements, it is hard, even impossible, to a large extent 

and depth of the process to achieve a model-based/driven development orientation. This is 

consequence of the difficulties in: (i) incorporating new activities or optimizing the existing 

ones with model transformations techniques; (ii) reorganizing or redefining the process in 

order to pursuit a clearer and enhanced model-based/driven quality. A SPEM like standard 

can help to formalize the model transformation. 

Seek model-driven semantic continuity/visibility. How much model-based/driven is a 

software development process? When does a software development project go from 

being model-“based” to being model-“driven”? Towards the answers to these questions, it 

is suggested that model-based/driven extension and depth can be made visible in SPEM 

2.0 diagrams, allowing one to reason about the robustness of process and suitability of 

activities and artefacts regarding its use on a model-based/driven orientation. The 

suitability of an artefact is related to its expression and ability to be consumed/reused on 

subsequent modelling tasks. The suitability of an activity is related to its ability to 

incorporate formal/explicit model transformation techniques that (optionally) consume 

models and produce models. The robustness of the process is related to the degree of the 

modelling semantic continuity provided by the chains of activities, from the beginning to 

the end of the development process. The links among model artefacts and model 
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transformation activities (or well-structured and formalized activities) of the process 

define the visibility. The longer the path, the more model-driven is the development 

process. So, to enhance model-based/driven visibility, it is needed to pay attention to 

activities (or tasks) and the realization and flow of models. This perspective allows to 

materialize, through graphical presentation, the concept of model-based/driven visibility 

of a process Visibility can be expressed in a SPEM diagram. This concept constitutes a tool 

that can assist an approach to process analysis or optimization. Figure 6.34 depicts (as a 

non-SPEM-based example) a general schematic (not exhaustive) of the structure of the 

models, transformation models, code generation, and code resulting from and insight into 

artefacts produced on the project development. 

Structure the design of the project in order to properly support PIS. The way the elements 

are structured can have a positive impact to way the project cope with heterogeneity in 

devices and in functionalities of PIS. Consider to use a SPEM 2.0 diagram (or an equivalent 

representation) as a mean to express the intended/designed software development project 

for PIS. Use the proposed development structure approach, which provides assisting 

techniques to deal with pervasive characteristics such as heterogeneity of devices and 

changing functionalities. Among these techniques, is the framing structure that helps to 

 

Figure 6.34 – Models, model mappings/transformations, and code generation in the development of the uPAIN system. 
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define resources categories, functional profiles, and functional profile instances. The 

proposed PIS development framework pattern makes use of them later. The application of 

this pattern assumes a SPEM 2.0 diagram. Nevertheless, the application of the patterns can 

resort to other forms of representation as long as there is respect to the principles of 

patterns’ conceptions and architecture. To each of the elementary process of the pattern, 

connect the development process aimed for that development structure (related to a specific 

functional profile instance). 

Verify the structural quality of the project. For the global and elementary process activities, 

and recursively its constituents, verify if they reflect quality properties that avoid the issues 

aforementioned. Some guidelines can provide some useful orientations to assure a robust 

development process definition. These guidelines take the form of questions to help to look 

for and to measure relevant properties that contribute for the perception of the quality of 

the approach, and establish solid ground for project development. These properties are next 

presented, complemented with guideline question(s) to assist in discovering the proper value 

those:  

 Comprehensiveness and depth – Do all the phases and major activities, explicitly 

define the tasks, subtasks, artefacts, deliverables and other process elements? 

 Semantic correctness – Does the process structure definition use correctly the process 

elements types?  

 Naming coherency and consistency – Do the names of the process elements 

adequately reflect its contents? Are the names consistently structured/build among 

the same types of process elements?  

 Flows clearness – Does the process clearly define the flows of execution among units 

of work, expressing precedence, parallelism or other execution flow dependency? 

 Input/output clearness – Does the project clearly and completely express, for each 

unit of work, artefacts used as inputs and produced/changed as outputs? 

 Work unit’s robustness – Are the work unit’s inner construction based on explicit 

steps and robust techniques for the transformation of inputs into the expected 

outputs? Are they, or can they, be specified in SPEM 2.0 like specification? 

 Overall rationale robustness - Does the overall structure provide a convincing 

rationale for efficient project development? 

 Seek to achieve a significant for model-based/driven visibility. 

Projects of these types, aiming to embrace a model-based driven perspective to develop 

software for pervasive information systems, have to give attention to the issues 
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aforementioned. It is expected that model-based/driven visibility concept constitute an 

effective contribution for the acceptance of model-based/driven development, not as a 

utopia, but as a viable practice into which firm convictions and deeper efforts can be made. 

Among these efforts are directed research investment, gradual and normative adoption of 

modelling/process best practices and standards. 

6.5 Conclusion 

This analysis resorts to SPEM 2.0 for building the diagrams. It enables to depict clearly the 

structure of projects, making their main activities, artefacts, and relationships among them 

graphically visible. Resorting to SPEM 2.0 for looking into the projects revealed a proper way 

to bring to light the understanding of the process internals. In this chapter, the projects are 

observed with the conceptual framework constructed by the approach developed in previous 

chapter. For each of the projects, this document presented the built SPEM model of the 

project, and the deployment of the approach conceptions elaborated in chapter 5. This 

allowed deducing relative considerations and generalizations.  

The proposed approach revealed to be an effective, well-structured, and reasoned way to 

assist in the analysis of existent SPEM-based projects or to development of new pervasive 

information systems based on a model-based/driven approach. As it can be reasoned out 

from the approach use in projects, the development framework pattern deals well either in 

the context of small or large projects. It allows to: (i) clearly sustain a structured and well-

organized set of development process elements; (ii) to suitable cope with the heterogeneity 

and quantity of computation devices (through the concepts of resources categories, 

functional profiles, and functional profile instances); (iii) to promote a model-based/driven 

approach to software development (through use of transformations and the conception of 

mode-based/driven visibility). 
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7  

Conclusion 

This chapter is the conclusion of this work. It contextualizes the work in the thematic 

of pervasive and modelling. It then synthesizes the research efforts, the results that 

express the contributions of the thesis, and proposes future work. 

7.1 Focus of the Work 

Information accessibility is a key factor for efficient use and integration of information on an 

organization. Over networked computing devices, software systems store, process, and 

interchange information with other applications, fulfilling a planned and established role in 

the overall organization’s information system. Pervasive systems and technologies have been 

increasingly employed in business domains, trying to improve the way business is done or 

even to enable new and innovative ways of carrying business. In in more personal or social 

domains, they have been employed to improve the people’s life quality. Nowadays, pervasive 

computing systems are still considered a "special" kind of systems; however, in a near future 

they will be so common that nobody will consider them “special" anymore. This will demand 

a completely transparent capability of designing computing solutions by means of model 

manipulations and technology abstraction. 

Considering the potential large number of computational devices, their high heterogeneity, 

and increasingly frequent changes needed on software at device and system levels, it turns 

out that it is needed attention to design methodology in order to define and apply best 
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approaches and techniques to software development for pervasive information systems. In 

opposite to the past, applications are no longer conceived to be standalone applications 

scarcely needing repair, integration, or evolution. Applications must be built to last, to be 

integrated, and/or subject to revision or evolution. Their conception and development must 

be done with conscientiousness that reality is such adverse that there is a need to have 

flexibility to cope with changes on the previous established requirements or in technology.  

Software supporting pervasive information systems is target of frequent modifications due 

either to technological evolutions or to requirement changes. This requires that software 

development process and process elements (for example, activities, tasks, and artefacts) 

must be, in its essence, well-structured, designed, and developed. By this way, it will be 

possible to satisfy requirements and explore the potential offered by the pervasive 

computing, maximizing the revenue of this kind of systems. In particular, model-driven 

development (MDD) approaches, currently in research at academic and industrial arenas, 

offer potential benefits that can be applied to design and evolution of these pervasive 

information systems. Model-driven development approaches promote the idea that, through 

focus of development on models, one can obtain better software systems development and 

evolutions. They also allow for higher independence of technological platforms, reduction of 

semantic gaps, greater development productivity, and longevity of software artefacts. MDD 

approaches essentially centre the focus of development on models, involving concepts such 

as Platform-Independent Models, Platform-Specific Models, model transformations, and use 

of established standards. 

This thesis focus on software development of for pervasive information systems, aiming to 

contribute to an increased efficiency and effectiveness on development of ubiquitous 

services/applications, supported on pervasive information systems (PIS). These PIS are 

composed of conveniently orchestrated embedded or mobile computing devices. The 

definition and correct use of model-based/driven MDD-based conceptions, techniques, and 

procedures to software development for PIS assume major importance on current days.  

The thesis uses two projects. The first project presented was the uPAIN project (Ubiquitous 

Solutions for Pain Monitoring and Control in Post-Surgery Patients), and the second project is 

the USE-ME.GOV (USability-drivEn open platform for MobilE GOVernment) project. From 

these projects, facts were presented along with methodological contributions, issues, and 

challenges pertinent to software development of pervasive information systems on a model-

driven basis.  
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7.2 Synthesis of Research Efforts  

The effort on analysing real projects whose main purpose is the development of pervasive 

computing systems, should be kept by the scientific community to allow a thoroughly 

understanding of the fundamental issues that model-based/driven methodologies should be 

capable of dealing with.   

The work carried out and reflected in this document was achieved through the development 

of the following major activities stated in the following paragraphs.  

Beginning the work, it was a presentation of an introductory context of the thematic 

involved, the goals, the strategy, contributions, and the structure of this document. After this 

introduction, several efforts were carried.  

It was performed a research on the state-of-art in the area of ubiquitous computing and 

model-driven development. This allowed to characterize ubiquitous computing and pervasive 

systems and to clarify the distinction between the terms ubiquitous and pervasive, which are 

in the literature interchangeably used with the same semantics. It was also expressed 

business opportunities brought by pervasive computing, either to improve existent business 

models or to enable new business models. It was revealed some social concerns that arise by 

the penetration of computing technology in the daily life, which implies the danger of its 

misuse in gathering people sensitive information and in controlling or restricting people from 

living freely. It was introduced and justified the expression “Pervasive Information Systems” 

to refer to information systems that, incorporating pervasive technology and aiming to take 

advantage of their potential, have do deal with the characteristics, issues and challenges 

inherent to them and to their use. 

The projects, uPAIN and USE-ME.GOV, were presented. They represented two projects 

dealing with the same pervasive issues a model-based development, but being significantly 

different on its size. For each project, it was presented the pervasive and modelling 

perspectives and the common facts, issues, and challenges of them. 

Aiming so assist in the project analysis and, at the same time being able to be used for the 

development of new projects, it was introduced new conceptions, conceptual framing 

structures, and an extension to SPEM 2.0 Base Plug-In to help to deal with pervasiveness 

issues of systems. The resulting knowledge from those conceptions, conceptual framing 
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structures, and SPEM extension were materialized into a development framework pattern 

conceived for the effect. 

The projects were revisited in order to proceed to their analysis. Each project was expressed 

in a SPEM diagram. This form of expression of the structure allowed turning graphically 

visible their main activities, artefacts, and relationships among them. This helped in 

understanding the project’s development process internals. The analysis was performed 

using as auxiliary tool the development framework pattern, preceded by framing structures.  

7.3 Synthesis of Scientific Results 

Based on the SPEM 2.0 model of the project, the scattered observation of the SPEM structure 

and the analysis of the suitability of approach’s conceptions accommodation, it is possible to  

stress out pertinent issues in the context of the perceived generic project orientations.  

For sake of enforcement of a methodological model-development orientation, it is needed 

greater clarity and well-defined establishment of the structure and elements of a 

development process. Avoiding some flaws or omissions on process definition brings several 

important benefits as it can contribute for a better development project, either structurally 

or dynamically in the course of the project development. Solid project structures ease 

process analysis, facilitate the adoption of efforts for optimization, make processes 

consistently reusable, allow processes to be more resilient to occasional but necessary 

process changes, and give higher confidence to stakeholders regarding processes’ quality and 

success. In the course of the project development, it is assured that are no 

misunderstandings regarding interpretation objectives, activities, artefacts, and the flow of 

either activities or the input/output artefacts among activities. The communication among 

stakeholders is clearer, and process planning can be more complete and precise in the 

definition of its elements, which may result on better estimation of time and effort to 

conclude the project. 

The consideration of these issues and challenges, in the context of achieving an effective way 

to develop software for PIS, allows one develop consistent and coherent efforts in order to 

improve software development for PIS projects. By this way, one can expect a progression 

towards the establishment of well-established foundations for smooth model-based/driven 

software development suitable the effective construction of pervasive information systems. 

This thesis provides several contributions. Among these contributions are: 
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 Development Framework. Due to the complexity of pervasive information systems, 

software development for PIS can be facilitated by an approach that properly focuses 

the system, and the system development, with perspectives that help to abstract their 

relevant properties. The approach to PIS development proposes a development 

framework that encompasses concepts suitable for the model-based/driven 

development of pervasive information systems. This framework introduces and 

describes the concepts sustained on a few perspectives of relevance to the 

development, called dimensions of development .Besides the dimensions of 

development, there are the functional profiles, resources categories, functional profile 

instances, global and elementary development process. 

 SPEM Base 2.0 Plug-In Extension. Software and Systems Process Engineering Meta-

Model 2.0 (SPEM 2.0) provides to process engineers a conceptual framework for 

modelling method contents and processes. SPEM2. 0 is defined as a meta-model as 

well as a UML 2 Profile (concepts are defined as meta-model classes as well as UML 

stereotypes). SPEM 2.0 meta-model describes the structures and the structuring rules 

needed to express and maintain development method content and processes. In 

consonance with this development framework, the thesis proposes a SPEM 2.0 Base 

Plug-In extension and a development framework pattern to assist in the analysis of 

the projects. The SPEM 2.0 Base Plug-In extension defines elements that are 

fundamental to the definition and application of a development framework pattern.  

 Development Framework Pattern. Taking into account the extension of SPEM 2.0 

Base Plug-In, the conceptions in the development framework, and the context 

software development for PIS, it is suggested the use of a  SPEM-based PIS’s 

development framework pattern to assist in the task of defining or restructuring a 

SPEM-based software development approach. The thesis defines a development 

framework pattern that may be applied each of the projects to facilitate the analysis, 

and also to illustrate how projects could be improved in order to better cope with the 

development of PIS and adopting a model-based/driven approach.  

 Insight to PIS development using MDD approaches. Software & Systems Process 

Engineering Meta-Model Specification v2.0 (SPEM 2.0) allows to represent in a 

suitable form the structure and elements of projects, allowing to proceed with an 

analysis about their suitability for PIS and the model-based/driven characteristics. 

From the analysis of the projects, the thesis synthesizes a set of pertinent issues that 

hamper or difficult the proper suitability of the project to cope with pervasive systems 

(in particular issues related with heterogeneity), and to support model-based/driven 

approaches. It provides guidelines to the adoption of model-based/driven approaches 
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to pervasive information system development. It shows how the projects could 

improve to deal with PIS, using an MDD approach.  

During this thesis, some presentations and publications were made. The doctoral proposal 

was presented in the Symposium for PhD students in Software Engineering, SEDES’2004 (J. E. 

Fernandes, 2004), and the publications made were: 

 Paper with the title “Model-Driven Methodologies for Pervasive Information Systems 

Development (J. E. Fernandes, Machado, & Carvalho, 2004b) in MOMPES’04 

Conference. 

 Paper with the title “Model-Driven Software Development for Pervasive Information 

Systems Implementation”, in QUATIC 2007 Conference (J. E. Fernandes, Machado, & 

Carvalho, 2007). 

 Book chapter with the title “Model-Driven Development for Pervasive Information 

Systems”, in the book “Advances in Ubiquitous Computing: Future Paradigms and 

Directions”, from IGI Publishing (J. E. Fernandes, Machado, & Carvalho, 2008). 

Additionally, it is expected further publications from this dissertation related to the results 

and conclusion of the analysis of projects. 

7.4 Future Work 

Research of model-based/driven development (MDD) approaches for pervasive information 

systems (PIS) tries to raise and to bring light to several issues (such as essential 

considerations, techniques, frameworks, tools, etc.) pertaining to the strong adoption of 

models for these kinds of systems. 

In a vision of model-based/driven development for pervasive information systems, several 

issues can be further explored, namely:  

 Further formalization of the development framework and conceptions, providing 

suitable representation of resource categories, research of functional profiles, and 

functional profiles instantiation. 

 Further exploration of the development framework pattern. 

 Incorporation of the extending SPEM Base Plug-In concepts into the SPEM 

metamodel. 

 Formalization of the model-based/driven visibility of processes and further 

exploration of the quality of modelling  semantic continuity provided in the chain, or 
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parts of it. This effort can look for common semantic gaps found on common 

processes. It can also establish possible model transformation activities/techniques 

that can be used to make this semantic continuity to look like a smooth walk rather 

than a hard jump, or even an impossible crossing.  
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