

Universidade do Minho

Escola de Engenharia

José Eduardo Moreira Fernandes

About Model-Based Approaches in

Pervasive Information Systems

Development

Tese de Doutoramento

Grau de Doutor em Tecnologias e Sistemas de

Informação

Área de Conhecimento em Engenharia da Programação

e dos Sistemas Informáticos

Trabalho efectuado sob a orientação de

Professor Doutor Ricardo J. Machado

Professor Doutor João Álvaro Carvalho

Outubro de 2010

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS

PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO

INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, 29/ 10 / 2010

Assinatura: __

iii

Agradecimentos

Aos meus pais António e Emília. Não há palavras ou imagens que cheguem para expressar o

quanto deles recebi nem para lhes expressar o meu reconhecimento, a minha gratidão e o meu

carinho. Ao meu irmão Sérgio e à minha querida Alice pelo suporte, atenção e solidariedade

neste meu esforço.

Aos meus orientadores Prof. Doutor João Álvaro Carvalho e Prof. Doutor Ricardo Machado por

todo o apoio e amizade. Um agradecimento especial para o Prof. Doutor Ricardo Machado, um

amigo que, com o seu esforço, a sua paciência e a sua disponibilidade, me deu o incentivo, a

orientação, o ânimo e o exemplo.

À Escola Superior de Tecnologia e de Gestão de Bragança e ao Instituto Politécnico de

Bragança pela oportunidade concedida para a realização deste doutoramento.

A todos estes e a todos aqueles que, de forma muito especial, participaram neste percurso da

minha vida contribuindo para que este trabalho chegasse a bom termo, um sincero abraço, e um

muito obrigado.

Apoio Financeiro

Este trabalho foi desenvolvido com o apoio do programa PRODEP, e do Instituto Politécnico de

Bragança, através da sua Escola Superior de Tecnologia e de Gestão.

UNIÃO EUROPEIA

Fundo Social Europeu

v

Abstract

Ubiquitous computing is a research field of computing technology with a growing number

of researchers and represents a new direction on the thinking about the integration and

use of computers in people’s lives. It aims to achieve a new computing paradigm, one in

which there is a high degree of pervasiveness and widespread availability of computers or

other IT devices, usually with communication capabilities, in the physical environment.

Model-Driven Development (MDD) constitutes an approach to software design and

development that strongly focuses and relies on models, through which we build

software-platform independent models. Several contributions of MDD are: gains of

productivity; concepts closer to domain and reduction of semantic gap; automation and

less sensitivity to technological changes; and capture of expert knowledge and reuse.

This thesis aims to contribute for the appropriate use of model-based/driven

development approaches in software development for pervasive information systems

(PIS). This work considers a case study research strategy. It uses two projects developed

in the field of ubiquitous and mobile computing that directed their software development

to a model-based/driven approach.

This thesis describes and analyses the projects. Each one of the project is formalized in a

SPEM 2.0 model that presents the main elements of the project. This SPEM model allows

perceiving the structure and elements of the project, along with some issues and facts of

the project. This thesis conceives a development framework that introduces several

useful conceptions. Among these conceptions are the dimensions of development,

functional profiles, resources categories, functional profile instances, global and

elementary development process. In consonance with this development framework, the

thesis proposes a SPEM 2.0 Base Plug-In extension and a development framework pattern

to assist in the analysis of the projects. The SPEM 2.0 Base Plug-In extension defines

elements that are fundamental to the definition and application of the development

framework pattern. The development framework pattern is applied to each of the

projects to facilitate the analysis. From the analysis of the projects, the thesis synthesizes

a set of guidelines and insight related to the adoption of model-based/driven approaches

to pervasive information system development.

Keywords: Pervasive Information Systems, PIS, Model-Driven Development, MDD, SPEM,
Development Framework Pattern, Case Studies.

vii

Resumo

A computação ubíqua é um campo de investigação de tecnologia de computação com um

número crescente de investigadores e representa uma nova direcção no pensamento

sobre a integração e o uso de computadores na vida das pessoas. O objectivo é alcançar

um novo paradigma de computação em que há um alto grau de abrangência e ampla

disponibilidade de computadores ou outros dispositivos de tecnologias de informação,

geralmente com recursos de comunicação, no ambiente físico.

Model-Driven Development (MDD), constitui uma abordagem de desenho e

desenvolvimento de software que se baseia em modelos, através da qual construímos

modelos de plataforma de software independentes. Várias contribuições de MDD são:

ganhos de produtividade; conceitos mais próximos ao domínio e à redução do salto

semântico; automação e menor sensibilidade às mudanças tecnológicas; captura de

conhecimento especializado e reutilização.

Esta tese visa contribuir para a adequada utilização de abordagens de desenvolvimento

baseadas/conduzidas por modelos no desenvolvimento de software para sistemas de

informação “pervasive” (PIS). Esta tese apresenta uma estratégia de investigação de

estudo de caso. Usa, como estudos de caso, dois projectos desenvolvidos no campo da

computação ubíqua e móvel, e os quais dirigiram o seu desenvolvimento de software

para uma abordagem baseada/conduzida por modelos.

Esta tese descreve e analisa os projectos; cada um dos projectos é formalizado num

modelo SPEM 2.0 que apresenta os elementos principais do projecto. Este modelo SPEM

permite perceber a estrutura e os elementos do projecto, juntamente com alguns

problemas e factos do projecto. Esta tese concebe uma estrutura de desenvolvimento

que apresenta várias concepções úteis. Entre essas concepções estão as dimensões de

desenvolvimento, os perfis funcionais, as categorias de recursos, instâncias de perfil

funcional, os processos de desenvolvimento global e elementar. Em consonância com

esta estrutura de desenvolvimento, a tese propõe uma extensão ao SPEM 2.0 Base Plug-

In e um padrão de desenvolvimento para auxiliarem a análise dos projectos. A extensão

ao SPEM 2.0 Base Plug-In define elementos que são fundamentais para a definição e

aplicação do padrão de estrutura de desenvolvimento. O padrão de estrutura de

desenvolvimento é aplicado a cada um dos projectos para facilitar a sua análise. A partir

da análise dos projectos, a tese sintetiza um conjunto de directrizes e de ilações

relacionadas com a adopção de abordagens MDD para o desenvolvimento de PIS.

Palavras-chave: Pervasive Information Systems, PIS, Model-Driven Development, MDD,
SPEM, Development Framework Pattern, Case Studies.

ix

Table of Contents

Chapter 1 .. 1

1 Introduction .. 3

1.1 Pervasive Systems ... 3

1.2 Methodological Challenges ... 9

1.3 Goals and Research Strategy .. 10

1.4 Contributions .. 14

1.5 Structure of this Document... 14

Chapter 2 .. 17

2 Pervasive Computing ... 19

2.1 Introduction .. 19

2.2 A New Computing Paradigm ... 21

2.3 Business Opportunities and Social Concerns .. 27

2.4 Pervasive Information Systems ... 38

2.5 Conclusion ... 42

Chapter 3 .. 45

3 Model-Driven Development .. 47

3.1 Introduction .. 47

3.2 Models in Software Development .. 48

3.3 Model-Driven Architecture ... 55

3.4 Research Efforts .. 64

3.5 Conclusion ... 68

Chapter 4 .. 69

4 Presentation of the Projects.. 71

4.1 Introduction .. 71

4.2 Presentation of the uPAIN Project .. 73

4.2.1 The Pervasive Perspective ... 74

4.2.2 The Modelling Perspective .. 75

4.3 Presentation of the USE-ME.GOV Project ... 81

4.3.1 The Pervasive Perspective ... 84

4.3.2 The Modelling Perspective .. 84

4.4 Common Facts, Issues and Challenges .. 95

4.5 Conclusion ... 97

Chapter 5 .. 99

5 Approach to PIS Development .. 101

5.1 Introduction .. 101

5.2 Development Dimensions and Framework ... 104

5.2.1 Resources Dimension .. 104

5.2.2 Functional Dimension.. 105

5.2.3 Abstraction Dimension .. 108

5.2.4 Development Framework ... 110

5.3 Extension to SPEM 2.0 Base Plugin Profile .. 114

5.4 Approach to Software Development of PIS .. 117

5.5 Conclusion ... 128

x

Chapter 6 .. 131

6 Analysis of the Projects ... 133

6.1 Introduction .. 133

6.2 Analysis of uPAIN Project .. 134

6.2.1 Pictorial Description of Major Activities and Deliverables .. 135

6.2.2 SPEM 2.0-Based Description of Activities and Artefacts ... 136

6.2.3 Development Framework Pattern .. 141

6.3 Analysis of USE-ME.GOV Project ... 144

6.3.1 Pictorial Description of Major Activities and Deliverables .. 144

6.3.2 SPEM 2.0-Based Description of Activities and Artefacts ... 146

6.3.3 Development Framework Pattern .. 154

6.4 Lessons Learned .. 160

6.5 Conclusion ... 164

Chapter 7 .. 165

7 Conclusion ... 167

7.1 Focus of the Work ... 167

7.2 Synthesis of Research Efforts .. 169

7.3 Synthesis of Scientific Results ... 170

7.4 Future Work .. 172

References ... 175

xi

Acronyms

FP Functional Profile

DS Development Structure

MDA Model-Driven Architecture

MDD Model-Driven Development

MOF Meta-Object Facility

OMG Object Management Group

PDA Personal Digital Assistant

PIM Platform-Independent Models

PIS Pervasive Information Systems

PSM Platform-Specific models

SDLC System Development Life Cycle

SPEM Software & Systems Process Engineering Meta-Model Specification

UML Unified Modelling Language

uPAIN Ubiquitous Solutions for Pain Monitoring and Control in Post-Surgery Patients

USE-ME.GOV USability-drivEn open platform for MobilE GOVernment

XMI XML Metadata Interchange

xiii

Table of Figures

Figure 1.1 - The Apple iPAD(Apple, 2010) . .. 8
Figure 1.2 - The Samsung Galaxy Tab(Samsung, 2010) . .. 8
Figure 1.3 - The general methodology of design science research ((Vaishnavi & Jr., 2008)). 13
Figure 2.1 – Research agenda for pervasive computing (adapted from (Satyanarayanan, 2001)). 20
Figure 2.2 - Traditional, Mobile, Pervasive and Ubiquitous Computing (extracted from (Lyytinen &

Yoo, 2002)). .. 25
Figure 2.3- The VeriChip (extracted from (Verichip, 2006a)). .. 34
Figure 3.1- Raising the level of abstraction (extracted from (Miller, et al., 2004a)) 49
Figure 3.2 - The modelling spectrum (adapted from (Brown, 2004)). .. 50
Figure 3.3 - The system development cycle process (adapted from [Alhir, 2003]) 57
Figure 3.4 - Foundational Concepts on the MDA (adapted from [Alhir, 2003]). 58
Figure 3.5 - MDA core concepts. .. 58
Figure 3.6 - How MDA is to be used. .. 60
Figure 3.7 - Model type mappings. .. 61
Figure 3.8 - Model instance mappings. .. 62
Figure 3.9 - Templates in model type mappings. ... 63
Figure 3.10 - Templates with an associated set of marks. ... 63
Figure 3.11 - Model transformation. ... 64
Figure 3.12 - Direct transformation to code. ... 65
Figure 4.1 - General architecture for the uPAIN system. ... 74
Figure 4.2 - Level 0 Use Case diagram for uPAIN (from (uPAIN, 2005a)). .. 75
Figure 4.3 - Use case refined diagram for the “Administer Drug” use case (from (uPAIN, 2005a)). 76
Figure 4.4 - UML stereotyped sequence diagram for a uPAIN use case macro-scenario (from(uPAIN,

2005a)) ... 76
Figure 4.5 - Interactive animation prototype for uPAIN system (from (Machado, et al., 2007) 77
Figure 4.6 - CPN responsible for the prototype animation of a use case (from (Machado, et al., 2007)).

 ... 78
Figure 4.7 - Transformation of messages (uPAIN, 2005b). ... 79
Figure 4.8 - Transformation of an alternative block (uPAIN, 2005b)). ... 79
Figure 4.9 - 4SRS Technique (adapted from (J. Fernandes & Machado, 2001)) 80
Figure 4.10 - uPAIN logical architecture. ... 81
Figure 4.11 - Situation before USE-ME.GOV (USE-ME.GOV, 2003b). .. 82
Figure 4.12- Situation after USE-ME.GOV(USE-ME.GOV, 2003b). ... 82
Figure 4.13 - USE-ME.GOV System General Architecture (from (USE-ME.GOV, 2006)) 83
Figure 4.14 - User mobile access through cellular networks (adapted from (USE-ME.GOV, 2004b)) 84
Figure 4.15 - Use cases for service Report of Complaints ((USE-ME.GOV, 2004d)) 86
Figure 4.16 - Activity diagram for service (Report of Complaints ((USE-ME.GOV, 2004d)). 86
Figure 4.17 - Level zero use case diagram by criteria of main functionalities. .. 88
Figure 4.18 - Level zero use case diagram by criteria of application domain. ... 88
Figure 4.19- Level one use case diagram of "send alert" use case. ... 88
Figure 4.20 - USE-ME.Gov raw diagram (part of). .. 89
Figure 4.21 - Sequence diagram for citizen making a Complaint in the “Citizen Complaint Service”

(USE-ME.GOV, 2004k). ... 89
Figure 4.22 - Part of the “Report of Complaints Service” requirements (USE-ME.GOV, 2004e). 90
Figure 4.23 - High-level USE-ME.GOV diagram(USE-ME.GOV, 2004b) .. 90
Figure 4.24 - Sequence diagram "Make complaint” (USE-ME.GOV, 2004b). ... 91
Figure 4.25 - User Management use cases. ... 92
Figure 4.26 - Subscription states. ... 92

xiv

Figure 4.27 - Authenticate User activities diagram. .. 92
Figure 4.28 – Use case model for Service Provision. ... 93
Figure 4.29 - Use case model for Service Authentication. ... 93
Figure 4.30 - Use case model for Service Authorization. ... 93
Figure 4.31 - High-level Service diagram (USE-ME.GOV, 2004g). .. 93
Figure 4.32 - Service Architecture diagram (USE-ME.GOV, 2004g). .. 93
Figure 4.33 - Platfom interfaces to implement (USE-ME.GOV, 2004g). .. 93
Figure 4.34 - Main menu user interface (USE-ME.GOV, 2004g). ... 93
Figure 4.35 - Data model diagram (USE-ME.GOV, 2004g). .. 93
Figure 4.36 - USE-ME.GOV System General Architecture. ... 94
Figure 4.37 - Service Repository General Architecture.. 94
Figure 4.38 - Core Platform Layers View. .. 94
Figure 4.39 - Class diagram for HTTP Server Adapter(Layer 1) ... 95
Figure 4.40 - Sequence diagram for doGet request of HTTPServerInterface. ... 95
Figure 5.1 – Resources dimension. .. 104
Figure 5.2 - Functional dimension. .. 105
Figure 5.3 – Framing of Resources and Functional dimensions. ... 106
Figure 5.4 –Example of functional profiles Instances for resource categories. 107
Figure 5.5 - Development structures for functional profile instances. .. 108
Figure 5.6 - Structure of PIMs and PSMs inherent to the previous resources’s classification. 109
Figure 5.7 - Illustration of the abstraction process. ... 110
Figure 5.8 - Direct code generation. .. 110
Figure 5.9 – Example of a horizontal model mapping. .. 111
Figure 5.10 - Dimensions on the development approach. .. 111
Figure 5.11 - Macro Process Milestones, Phases, and Iterations (from (Booch, et al., 2007)). 111
Figure 5.12 - The Micro Process within the Macro Process (from (Booch, et al., 2007)). 112
Figure 5.13 - Development framework for PIS. ... 113
Figure 5.14 – Inclusion of new Activity Kinds. ... 116
Figure 5.15 - Inclusion of new Artefacts Kinds. ... 116
Figure 5.16 - Crossing conceptions. ... 119
Figure 5.17 - Framing structure for a project. ... 120
Figure 5.18 - Rearrangement of a project’s SPEM model. ... 120
Figure 5.19 - Synthesis of extending SPEM stereotypes. ... 120
Figure 5.20 - PIS development framework pattern. .. 123
Figure 5.21 - Pattern realization SPEM 2.0 model. .. 125
Figure 5.22 - Nesting of framing structures for huge projects. ... 126
Figure 5.23 - 4SRS model transformation technique under a SPEM 2.0 perspective. 127
Figure 6.1 - Phases of uPAIN project. .. 134
Figure 6.2 - Major results in Project Management, Exploration and Evaluation of the Application, and

Medical Research phases of the uPAIN project. .. 135
Figure 6.3 - Major results in Requirements Analysis and Elicitation phase of the uPAIN project. 135
Figure 6.4 - Major results in Research and Technological Development phase of the uPAIN project. . 136
Figure 6.5 - uPAIN development process under a SPEM 2.0 perspective. .. 137
Figure 6.6 - SPEM 2.0 diagram of the phase “Requirements Analysis and Elicitation" of uPAIN project.

 ... 138
Figure 6.7 - SPEM 2.0 diagram of the phase “Research and Technological Development" of uPAIN

project (part 1of 2). ... 139
Figure 6.8 - SPEM 2.0 diagram of the phase “Research and Technological Development" of uPAIN

project (part 2of 2). ... 140
Figure 6.9 - SPEM 2.0 diagram of the phases “Project Management”, “Exploitation and Application

Evaluation”, and “Medical Research” of uPAIN project. ... 140
Figure 6.10 - Framing structure for uPAIN project. ... 141
Figure 6.11 – uPAIN’s restructured SPEM diagram (major structuring elements). 142
Figure 6.12 - uPAIN’s restructured SPEM diagram (transformations and elementary process activities).

 ... 143

xv

Figure 6.13 - USE-ME.GOV major development efforts. .. 144
Figure 6.14 - Deliverables in Implementation and Integration, in Validation, and in Recommendations.

 ... 144
Figure 6.15 - Deliverables for Service Scenario Definitions and Evaluation. ... 145
Figure 6.16- Deliverables in Requirements Analysis. ... 145
Figure 6.17 – Deliverables in Preliminary Design and Mock-up. ... 145
Figure 6.18 - Deliverables in Detailed Design and Specification. ... 146
Figure 6.19 - Deliverables in Implementation and Integration. ... 146
Figure 6.20- USE-ME.GOV development process under a SPEM 2.0 perspective. 147
Figure 6.21 - SPEM 2.0 perspective over Service Scenario Definitions and Evaluation in USE-ME.GOV.

 ... 148
Figure 6.22 - SPEM 2.0 perspective over Requirements Analysis in USE-ME.GOV. 149
Figure 6.23 - SPEM 2.0 perspective over Preliminary Design and Mock-Up in USE-ME.GOV. 150
Figure 6.24 - SPEM 2.0 perspective over Detailed Design and Specification in USE-ME.GOV. 151
Figure 6.25 - SPEM 2.0 perspective over Implementation and Integration in USE-ME.GOV. 152
Figure 6.26 - SPEM 2.0 perspective over Validation in USE-ME.GOV. ... 153
Figure 6.27 - SPEM 2.0 perspective over Project Planning, Recommendations, and Dissemination in

USE-ME.GOV. ... 153
Figure 6.28 - Framing structure at system level for USE-ME.GOV project. ... 155
Figure 6.29 - Functional profile instance for Platform subsystem. .. 155
Figure 6.30 - Framing structure for Pilot Services subsystem of USE-ME.GOV. 156
Figure 6.31 - USE-ME.GOV’s restructured SPEM diagram (major structuring elements at system level).

 ... 157
Figure 6.32 - USE-ME.GOV restructured SPEM diagram (major structuring elements at Platform

subsystem level)... 158
Figure 6.33 - USE-ME.GOV’s restructured SPEM diagram (major structuring elements at Pilot Services

subsystem level)... 159
Figure 6.34 – Models, model mappings/transformations, and code generation in the development of

the uPAIN system. .. 162

xvii

List of Tables

Table 2.1 - Appropriate usage of terms pervasive and ubiquitous. ... 27
Table 5.1 - Tasks for pattern realization. ... 124
Table 5.2 - Main concepts of the proposed approach to the development PIS. 129

Chapter 1

Introduction

Chapter Contents

1 Introduction ... 3

1.1 Pervasive Systems ... 3

1.2 Methodological Challenges ... 9

1.3 Goals and Research Strategy ... 10

1.4 Contributions .. 14

1.5 Structure of this Document ... 14

2

3

1

Introduction

This chapter starts by introducing the research areas subjacent to this thesis, namely

ubiquitous computing and model-driven development. The chapter goes on by

presenting the methodological research followed. It concludes with the main

contributions achieved.

1.1 Pervasive Systems

Since the introduction of the transistor in 1947 by John Bardeen, Walter Brattain, and William

Shockley at Bell Labs (Bell Labs), the integrated circuit in 1958 by Jack Kilby at Texas

Instruments (Texas Instruments), and the Intel first microprocessor in

1971 (the 4004 microprocessor (Intel)), technological developments in miniaturization,

integration and capabilities’ enhancement of electronic components have been noticed by its

outstanding achievements.

From the mainframe era (characterized by rare, enormous, and expensive machines that

were difficult to access, usually only possessed only by large institutions and shared by many

people), succeeded the era of the widely available personal computer (one computer for one

person). Simultaneously, the emergence of the Internet, interconnecting all of those

machines and enabling for worldwide share of information and computational capabilities,

new services and business models, and easier and improved people interaction, further

enhanced the value and social acceptance of computing.

1 Introduction

4

These technological developments, along with its social acceptance and business recognition

of its value, have been major facilitators for adoption of means for structured and automated

acquisition, storage, and processing of information along with improved ways for easier and

faster access to that information. In context of competition, the recognition of information

as a fundamental resource to individuals and organizations, and of the usefulness of the

abilities information technology (IT) devices, stimulated the search for enhancement and

innovation of existing services and for envisioning new ones. Such quest has led to not only

widespread adoption and sophistication of information systems that are nowadays seen as

vital to the existence of modern services and business models, but also to further research

for technology improvements and innovations.

New technologies and techniques, along with further miniaturization and reduction of costs,

fostered the dissemination of computing. Notable advances were achieved in portability and

the embedding of computers, in sensors/actuators, storage capacity, wireless

communications technology and in novel modalities of human-computer interaction. As

consequence, today we can find computing and communications technology in places,

objects, animals or even people. This allows for new possibilities of interaction between

people and their physical environment, or among people themselves. The once troublesome

and frequently unpleasant one-to-many computer-human relationship evolved through a

one-to-one relationship of personal computing, to today’s many-to-one relationship that is

more convenient and seamlessly integrated in our way of life (Weiser & Brown, 1997).

Ubiquitous computing

Ubiquitous computing1 is a research field of computing technology with a growing number of

researchers and represents a new direction on the thinking about the integration and use of

computers in people’s lives. It aims to achieve a new computing paradigm, one in which there

is a high degree of pervasiveness and widespread availability of computers or other IT

devices, usually with communication capabilities, in the physical environment. As such,

besides our traditional and current computers, computing devices are embedded in physical

places and objects (static or mobile), being these (usually wirelessly) interconnected.

Ubiquitous computing research was introduced in the 90s by Mark Weiser, a primordial

reference in the ubiquitous computing field. In 1991, Weiser published his widely recognized

and referenced seminal work on ubiquitous computing, “The Computer for the 21st Century”

(Weiser, 1991), in which he shared his vision of a new way of thinking about computers.

1 in today terminology, the term “pervasive” is also used, sometimes interchangeably, with the same meaning of “ubiquitous”.

1.1 Pervasive systems

5

Weiser envisioned a future computing on which computers were embedded in everyday

objects and places, enhancing its purpose and thus allowing for an enrichment of the physical

world with the advantages of processing power, storage, and communications of computers.

Ubiquitous computing doesn’t simply restrict to the widespread pervasiveness of computers;

it proposes a new computing paradigm of which philosophy values the nuances of the real

world, and embodies the assumption that computers, should fade into the physical

environment in a “virtual or effective” invisible way to people (Weiser, 1993a). While

computationally enriching the environment, computers shall offer a permanent and non-

intrusive computing that seamlessly support and help people to focus fully on completion of

the tasks needed to the prosecution of their desired goals.

This computational augmentation of objects and places, and the subsequent enriched

interaction with people, follows the principle of an “invisible computing” that “engenders

calmness”: (i) “invisible”, in the sense that computers, as part of a context of use, become

integrated and faded with our environment; (ii) “computing that engenders calmness”, in the

sense that computers and computing don’t need our permanent active attention for

continuous operation and readiness to easy information access (they lie in the “periphery”

(Weiser & Brown, 1997), easily moving to the centre of our attention only when needed). In

this way, it would become possible to allow people to use them without focusing for such

use, and so, to focus beyond them on new goals.

Giving the “literacy technology” (the ability to capture a symbolic representation of spoken

language) as an example of a ubiquitous technology, Weiser also stated that invisibleness of

computers is “…a fundamental consequence not of technology, but of human psychology. Whenever people learn

something sufficiently well, they cease to be aware of it” (Weiser, 1991). Computers, as a tool, should not

need conscious interaction to it as such; instead, they should be as unobtrusive as possible,

permanently allowing and assisting people on their tasks. Weiser exemplified: eyeglasses

don’t need permanent active attention to use them; we look at what is in front of us, and not

at the eyeglasses (Weiser, 1994).

This notion of ubiquitous computing was also described as “perhaps (…) opposed” (Weiser, 1991)

to the notion of virtual reality; the latter, attempting to make a world inside a computer,

focuses on simulating a world, and the former, focuses on the invisible enhancing of the

physical world that already exists. Ubiquitous computing also embodies a philosophy

opposed to the current approach to computing that places the computer as the fundamental

element to the human attention.

1 Introduction

6

Weiser also stated that “The real power of the concept comes not from any of these devices; it emerges from the

interaction of all them” (Weiser, 1991). In fact, the individual device does not allow by itself to

obtain the maximum exploration of its capabilities or even to allow for ubiquitous computing.

Only in interaction with other devices, ubiquitous computing can be sustained and full

exploration of device’s capabilities can be achieved, allowing for availability of the

information collected and processed.

Weiser established (Weiser, 1991) the major parts of technology needed for realizing for

ubiquitous computing (“cheap, low-power computers that include equally convenient displays”, “networks that ties

all of them together” and “software systems implementing ubiquitous applications.”). He identified (Weiser,

1991; Weiser, 1993b) technological development needs and first issues of importance to be

attended (such as location2, scale3 and privacy) and provided a description of how devices

could be used to work, in the context of ubiquitous computing, to improve peoples’ work and

life. Considering the campus environment a “particularly good place for ubiquitous computing” (Weiser,

1998), Weiser exemplified applications of ubiquitous computing on campus and reinforced

the key concept of engendering calmness. In (Russell & Weiser, 1998), it can be found several

challenges to the design of ubiquitous systems, concerning the infrastructure, user interface

and user experiences.

At Xerox PARC (PARC, 2004), in 1988, it was created the Ubiquitous Computing research

program that, including several fields of computer science, had at its core the ubiquitous

computing basic key ideas. The program was inspired by this new paradigm (considered

different from the then current predominant “one person – one computer”) that assumed an

emphasis not in the particular characteristics of computers (such as memory and processor

speed), but in the use of computer technology in support of daily activity and its appropriate

integration in the physical environment. It was first envisioned as a “radical answer to what was

wrong with the personal computer: too demanding of attention; too isolating from other people and activities; and too

dominating as it colonized our desktops and our lives” (Weiser, Gold, & Brown, 1999).

The research program members at Xerox PARC, as Roy Want (Want et al., 1995), prototyped

several systems and demonstrated, with the technology then available, their utility in this

philosophy of ubiquitous computing (Want, 2000). Among these systems (Weiser, et al.,

1999) were the LiveBoard (Elrod et al., 1992) (an electronic whiteboard), the ParcPad (a

book-sized small computer), and the ParcTab (Want, et al., 1995) (a palm-sized small

computer).

2 Ubiquitous computers must know its location.
3 Ubiquitous computers with different sizes.

1.1 Pervasive systems

7

These research and development efforts in ubiquitous computing resulted in a new field of

computer science: “In the end, the ubi-comp created a new field of computer science, one that speculated on a physical

world richly and invisibly interwoven with sensors, actuators, displays, and computational elements, embedded seamlessly in

the everyday objects of our lives and connected through continuous network” (Weiser, et al., 1999). Nowadays

new researchers, spread by several related disciplines and research centres, take the lead on

evolving the work done and try to make ubiquitous computing a reality. The challenge of

ubiquitous computing is shifting from demonstrating the basic key ideas to “integrating it into the

existing computing infrastructure and build widely innovative mass-scale applications” (Lyytinen & Yoo, 2002).

Besides his seminal paper, Weiser published several papers (e.g., (Weiser, 1993a) (Weiser,

1994) (Weiser, 1998)) standing for his convictions. Weiser died in April 1999, but his vision

and work remain, being increasingly focus of attention and value.

The following years brought attention to his vision and recognition of his work (Want, 2000).

Since then, research activity in ubiquitous computing has been continuously growing and the

continuous technology developments helped to turn out this vision a reality. Processing

power and storage capabilities of portable devices, embedded computers and other IT kind

devices, and ubiquitous communications allowing for pervasive connectivity are among the

most central ubiquitous computing enabler’s developments. In the early of the 1990s there

were no standards for wireless networks, PCs were typically equipped with 50 MHz

processors and 30 Mb disks; there were no Personal Digital Assistants (PDAs), being

electronic organizers shipped with 128k of memory (Want, Pering, Borriello, & Farkas, 2002).

Many of the crucial elements of ubiquitous computing that were a mirage and constituted a

difficult obstacle to the evolution of ubiquitous computing environments, exist in the market

today as common products, such as handheld computers and wireless LANs and other

devices to sense and control appliances, allowing us to better realize Weiser’s vision

(Satyanarayanan, 2001). The developments occurred in the last decade and the body of

knowledge obtained with research on distributed computing and mobile computing, brings

us, today, the possibility to turn out ubiquitous computing a reality.

The world is acquiring computational and communication capabilities; it is ever more ruled

with digital information and processes. It produces more and faster information about

everything and everyone. The future points to a world full of embedded or mobile computing

devices with an emerging robotics industry which is “developing in much the same way that the computer

business did 30 years ago” (Gates, 2007). This reality and inherent potential has been subject of

study and research under the ubiquitous computing field (the term “pervasive computing” is

commonly also used with the same meaning).

1 Introduction

8

The innovative technological devices that emerge and its widespread availability called for

organizations’ attention for its potential on collecting, processing, and disseminating

information. Organizations see this as an opportunity to improve their business’s processes

and therefore to better compete and respond to market pressures and challenges.

As examples of technological advances and of today’s technology, are the devices called

TABs, like the Apple’s iPAD (Figure 1.1) and the Samsung Galaxy Tab (Figure 1.2), featuring

characteristics such as 1Ghz Processor, Multi-touch display, A-GPS, camera, microphone, 7-9

hours of battery, cellular 3G and Wi-Fi connection, digital compass, accelerometer and

ambient light sensor, etc.

Figure 1.1 - The Apple iPAD(Apple, 2010) .

Figure 1.2 - The Samsung Galaxy Tab(Samsung, 2010) .

Pervasive systems and technologies have been increasingly employed in either business

domains, trying to improve the way business is done or even to enable new and innovative

ways of carrying business. In more personal or social domains, they are used to improve the

people’s life quality. Several aspects have been focused, such as social concerns (Stone, 2003)

and the economic implications of its deployment (Langheinrich, Coroama, Bohn, & Rohs,

2002). The advent of pervasive computing systems enabled information technology to gain a

further relevance in its role in human social lives (Dryer, Eisbach, & Ark, 1999), narrowing the

relationship between humans and technology and fostering focus on human to human

communication. Assuming the spontaneous use of networking technologies for cooperation

and access to information and Internet-based services, the potential for applications using

smart objects is vast, being the limits “less of a technological nature than economic or even legal” (Mattern,

2001). Museums (Fleck et al., 2002b), agriculture (Burrell, Brooke, & Beckwith, 2004),

restaurants (Stanford, 2003a), and health care (Varshney, 2003) are examples of domains

that have been addressed by applications based on this kind of information technology.

Along the years, organizational, technological, and social evolutions brought a shift from a

usually monolithic organization’s information systems, with well-defined and limited source

1.1 Pervasive systems

9

inputs, into complex, distributed, and technologically heterogeneous information systems. As

consequence, an increasing demand occurs for software development in order to realize

intended applications for these pervasive information systems, taking advantage of those

technologies.

1.2 Methodological Challenges

Focus on models in the development of software systems is not a recent issue. In the history

of software development, emphasis on models has begun some years ago, particularly when

software systems became so complex and big to deal. They were difficult to build and

frequently many projects were unsuccessful. In consequence, structured approaches

(function-oriented methods, object-oriented methods) to software development appeared to

facilitate the production of high-quality and cost-effective systems, such as, for example, the

Yourdon System Method (Yourdon, 1983) that, beyond establishing well-defined steps and

activities of the development process, focused on models to help to abstract, analyse and

design software systems.

Interest and focus on models arise again today with a further emphasis due to recent

developments that resulted on the establishment of important widely known and accepted

standards. Particularly, among these, are those originated from the Object Management

Group (OMG) (such as the Unified Modelling Language (UML), which unifies modelling

languages, and the published OMG´s initiative Model-Driven Architecture (MDA), which

stands for new guidelines to the architecture and development of software systems). These

standards (and as well as others) represent, through common agreement and acceptance,

what the best the community has reached in terms of practices, and set up the basis for

further innovations or developments. These standards also enable reuse of knowledge and

artefacts, tools specialization and interoperation, providing thus a “significant impetus for further

progress” (Selic, 2003b). Another key enabler of the movement on focusing in models in

software development is the availability of more powerful Computer-Aided Software

Engineering (CASE) tools supporting the development and management of models and the

generation of code.

For some, model-driven development (MDD) is considered “the first true generational shift in

programming technology since the introduction of compilers” (Selic, 2003b), and it can profoundly change

the way applications are developed (Atkinson & Kuhne, 2003). Automating many of the

complex and routine programming tasks, MDD allows developers to be able to focus on the

1 Introduction

10

functionality that the system needs to deliver and on its general architecture, instead of

worrying about every technical details inherent to the use of a programming language

(Atkinson & Kuhne, 2003).

Developing software solutions is not easy. Brown (Brown, 2004) considers that the following

difficulties arise in the development of software solutions: (i) understand highly complex

business domains and management of the huge development effort; (ii) time-to-market

pressures; (iii) complexity of target software platforms, involving not only new hot

technologies, as also a diverse and complex assortment of legacy technology infrastructure,

frequently kept with poor documentation.

The effective development of today’s application requires that there must be a continuous

effort on the research of better approaches, languages, techniques and tools for the software

development that enables one to face the continuous increasing of complexity of the

development of software solutions. Today, when building large software systems, the main

challenge for software developers is to “handle complexity and to adapt quickly to changes” (Schmoelzer

et al., 2004). Model-driven approaches can be a response to this challenge, as they have the

objective to “increase productivity and reduce time-to-market”, which is attained by a using development

concepts closer to the problem domain than “those offered by programming languages” (Sendall &

Kozaczynski, 2003).

The adoption of a MDD approach to software development for PIS has to consider what MDD

has to offer and which characteristics of pervasive information systems become relevant to

software development. By this way, it will be possible to provide higher effectiveness on

development and evolution of PIS. When intending to develop software for PIS, relevant

characteristics of those are the elevated number of devices that can be involved, the pace of

technological innovations, the heterogeneity of the devices, and potential complexity of

interactions that may exist.

In this document, unless otherwise noticed, the term “model-based/driven” is sometimes

interchangeably used with the term “model-driven development (MDD)” (spite of strictly

having slight but semantic differences).

1.3 Goals and Research Strategy

This thesis aims to contribute for the appropriate use of model-based/driven development

approaches to software development for pervasive information systems (PIS).

1.3 Goals and Research Strategy

11

The goals of this thesis are:

 To represent, in a suitable form, the structure and the elements of a project in order

to proceed with an analysis about their suitability for PIS and their model-

based/driven characteristics.

 To identify issues in a project that hamper or difficult the suitability of the adopted

approach to cope with pervasive systems (in particular issues related with

heterogeneity), and to support model-based/driven perspectives.

 To develop a framework, a strategy, or orientations to facilitate the analysis of

existing projects.

This work considers a case study research strategy. It analyses two projects, both different in

scope and dimension. This strategy treats each of the projects as a separate study, which

facilitates the analysis and “(…) the findings likely to be more robust than having only a single case” (Yin,

2003).

The projects allow showing that the structure and the quality of project elements need

particular attention on their definition in order achieve a proper suitability of the project to

deal with system pervasiveness and to accommodate model-driven/based approaches.

According to Yin (Yin, 2003), five components of a research are important: (i) the research

questions; (ii) the study propositions; (iii) the unit of analysis; (iv) the logic linking the data to

the propositions; (iv) the criteria for interpreting the findings. Next paragraphs instantiate

these components for this study.

Research questions

The research questions are of major importance, as stated by Yin “Defining the research questions is

probably the most important step to be taken in a research study,(…)”(Yin, 2003). The analysis of the projects

aims to provide understanding on answers to the following research questions:

 How did a particular project deal with pervasive system’s characteristics?

 How did a particular project structure the development process in order to become

suitable for the adoption of a model-based/driven development approach?

 How could a particular project improve its development process in order to better

cope with pervasive information systems issues and to easier accommodate a model-

based/driven approach?

1 Introduction

12

Proposition

Regarding this component Yin states “(…) each proposition directs attention to something that should be

examined within the scope of study” (Yin, 2003).

As proposition, it is considered that structure and element definitions of the project are of

crucial importance to the capability of the project to deal with pervasiveness of systems.

Among these elements, modelling artefacts and model transformations have a special

interest as they have major influence on the suitability of accommodation of model-

based/driven approaches. Revealing the structure, the modelling artefacts, model

transformations, allow analysing the pervasiveness capability and the model-based/driven

capability.

Unit of analysis

This component is related as “the fundamental problem of defining what the "case" is (…)” (Yin, 2003). The

project is the main unit of analysis.

Linking data to propositions and criteria for interpreting results

Regarding these last two components, linking the data to propositions and the criteria for

interpreting the findings, Yin further states “The fourth and fifth components have been the least well

developed in case studies” (Yin, 2003).

As Yin stated “Analysing case study evidence is especially difficult because the strategies and techniques have not been

well defined. (…) The analysis of case study evidence is one of the least developed and most difficult aspects of doing case

studies ”(Yin, 2003). As general strategy, it was followed the theoretical propositions of the case

study. More specifically, as this study consists of two projects, a cross-case synthesis is

performed to achieve consolidated findings.

Additionally, to assist the linking of the information gathered from the projects to the

theoretical proposition (related to the importance of the structure and elements of the

development process), SPEM 2.0 specification is used, a development framework is

conceived, the SPEM 2.0 Base Plug-In is extended, and a corresponding pattern is designed

and applied. These particular conceptions and structures (may be seen as design, which may

be uncommon in common case studies) can be nearly framed in the context of the Design

Science Research approach (Vaishnavi & Jr., 2008) and its general methodology (Figure 1.3).

In this context, these conceptions and structures may be seen as a contribution in what

1.3 Goals and Research Strategy

13

respects to assisting the analysis of projects whose purpose is to develop PIS using a MDD

approach.

The interpretation of the study’s findings is mainly based on criteria of the suitability level to

support pervasiveness of systems and model-based/driven format.

Figure 1.3 - The general methodology of design science research ((Vaishnavi & Jr., 2008)).

This thesis uses two projects developed in the field of ubiquitous and mobile computing that

directed their software development to a model-based/driven approach. The first project is

the uPAIN project (Ubiquitous Solutions for Pain Monitoring and Control in Post-Surgery

Patients) (uPAIN). The second project is the USE-ME.GOV (USability-drivEn open platform for

MobilE GOVernment) (USE-ME.GOV, 2003a). These projects, UPAIN and USE-ME.GOV were

selected for this work as they were based on corresponding scientific and subject areas, and

were developed in cooperation with Department of Information Systems at Universidade do

Minho at which this PhD is held.

1 Introduction

14

1.4 Contributions

This thesis contributes with structuring elements and inherent conceptions that allow for

better development of pervasive information systems, enhancing the flexibility to

accommodate heterogeneity of devices, technological innovations, and changes on

functionality requirements. The following paragraphs present the main contributions.

Development Framework. This framework introduces and describes the concepts sustained

on a few perspectives of relevance to the development, called dimensions of development.

Besides the dimensions of development, there are the functional profiles, resources

categories, functional profile instances, global and elementary development process.

SPEM Base 2.0 Plug-In Extension. In consonance with this development framework, the

thesis proposes a SPEM 2.0 Base Plug-In extension to assist in the analysis of the projects. The

SPEM 2.0 Base Plug-In extension defines elements that are fundamental to the definition and

application of a development framework pattern.

Development Framework Pattern. The thesis defines a development framework pattern that

may be applied each of the projects to facilitate the analysis, and also to illustrate how

projects could be improved in order to better cope with the development of PIS and adopting

a model-based/driven approach.

Insight to PIS development using MDD approaches. From the analysis of the projects, the

thesis synthesizes a set of pertinent issues and guidelines related to the adoption of model-

based/driven approaches to pervasive information system development. It shows how the

projects could improve to deal with PIS, using an MDD approach.

1.5 Structure of this Document

This document is structured in seven chapters. Generically, all chapters are preceded by a

chapter cover that exposes a table of contents aiming to facilitate immediate perception and

access of the main headlines of the chapter. Following that chapter cover, a brief summary of

the chapter is presented, aiming to briefly synthesize the main chapter content. The several

sections of the chapter come after the summary, starting with a section of introduction and

ending with a section of conclusion; between those, come the sections pertinent to that

chapter thematic.

1.5 Structure of this Document

15

The seven chapters of this document and their main content are:

Chapter 1: Introduction. This chapter introduces the areas of research, the goals and

research strategy, contribution, and document structure. The areas of research are the

pervasive/ubiquitous computing and model-driven development.

Chapter 2: Pervasive Computing. This chapter introduces the origins, characteristics,

research, business opportunities, and social concerns of pervasive/ubiquitous computing, and

ends presenting the concept of pervasive information systems (PIS).

Chapter 3: Model-Driven Development. This chapter presents Model-Driven Development

(MDD), an approach to software design and development that strongly focuses and relies on

models. Interest and focus on models arise again today with a further emphasis due to

developments that resulted on the establishment of important, widely known, and accepted

standards. This chapter also presents the Model Driven Initiative (MDA) from Object

Management Group (OMG), which fostered the research and establishment of software

development practices based on models. It concludes with considerations about research

efforts needed for effective model-driven development practice.

Chapter 4: Presentation of the Projects. This chapter presents the two projects that this

thesis uses to help to identify issues pertaining to software development for pervasive

information systems. The projects, their common characteristics, issues, and challenges

pertaining to software development of PIS are presented.

Chapter 5: Approach to PIS Development. This chapter presents conceptual structures to

assist the analysis of existing development projects or to the elaboration of new ones. It

presents the Development Framework, the SPEM 2.0 Base Plug-In extension, Framing

Structure, and the Development Framework Pattern.

Chapter 6: Analysis of the Projects. This chapter revisits the projects in order to proceed to

analyse the projects resorting to SPEM 2.0 and to the conceptions and structures, presented

in chapter 5.

Chapter 7: Conclusion. This chapter presents the conclusions about the work performed. It

presents guidelines for future work and research in order to expand and solidify knowledge

about model driven development for pervasive information systems.

Chapter 2

Pervasive Computing

Chapter Contents

2 Pervasive Computing ... 19

2.1 Introduction .. 19

2.2 A New Computing Paradigm ... 21

2.3 Business Opportunities and Social Concerns .. 27

2.4 Pervasive Information Systems ... 38

2.5 Conclusion ... 42

18

19

2

Pervasive Computing

This chapter introduces pervasive/ubiquitous computing, a new paradigm for

computing, presents its main characteristics and discusses some terminology. This

new computing paradigm, while bringing some novel applications and business

opportunities, also introduces some social concerns related to security and privacy.

Also included in this chapter is the notion of Pervasive Information System (PIS). PIS

results from the widespread adoption of new pervasive computing technologies into

systems. Such leads to the need of pervasive information systems to cope with

permanent technological evolutions and innovations and changes of requirements,

which have strong impact on software development demands.

2.1 Introduction

Considered a major evolutionary step in computing (Saha & Mukherjee, 2003;

Satyanarayanan, 2001) since introduction the of the Personal Computer, ubiquitous

computing is closely related to (and is an evolution step of) distributed computing and

mobile computing fields that already identified and studied several technical issues related

with pervasive computing (Satyanarayanan, 2001).

Ubiquitous computing is not the same as mobile computing. Satyanarayanan

(Satyanarayanan, 2001), illustrating the taxonomy of computer systems research problems in

pervasive computing, identifies several research issues that make distinction of pervasive

computing field from that of mobile computing. Pervasive computing includes research issues

as effective use of smart spaces (spaces enriched with embedded computing), invisibility (the

2 Pervasive Computing

20

removal of computing technology from user’s consciousness), localized scalability (the

reducing of interactions from distant entities), and masking uneven conditioning (the smart

environments will be significantly different from each other, but operation must be

continuously provided).

Satyanarayanan (Satyanarayanan, 2001) characterizes pervasive (ubiquitous) computing as

an evolutionary step following two earlier steps of distributed computing and mobile

computing. He stated the research agenda (see Figure 2.1) as involving not only issues related

with environments saturated with computing and communication capabilities and its

“gracefully” interaction with users, but also related with support for mobility of users.

Figure 2.1 – Research agenda for pervasive computing (adapted from (Satyanarayanan, 2001)).

Ubiquitous computing embodies a philosophy different of that inherent to the personal

computers of the 70s. In essence, it aims for computing technology to be not the focus of

attention of the user activity. It even does not require the need of carrying around any

personal computer or PDA to access information; in this world, fully of connected devices,

information will be available and accessible everywhere (Weiser, 1993a). The data, once

entered in a computing system, will be readily available whenever and wherever needed (Ark

& Selker, 1999), being accessible in an intuitive way through the use of devices eventually

different from that one through which the data was entered.

Decreasing emphasis of focus on the personal computer has already occurred with the

emergence of the World Wide Web. For many users the computer is just a machine that

provides a portal to the digital world where they have presence through their homepage,

their email, or chat. In this way, computers are ‘disappearing’ and the focus goes beyond

them (Davies & Gellersen, 2002). Ubiquitous computing brings then “the end of dominance of the

traditional computing” (Ark & Selker, 1999), being computing embedded in more things than just

our personal computer.

2.2 A New Computing Paradigm

21

2.2 A New Computing Paradigm

As Davies and Gellersen (Davies & Gellersen, 2002) noticed, since the initial work of Mark

Weiser, there have been significant developments that improve our ability to deploy

pervasive computing systems. Developments have been technological (improvements in

processing power, storage, communications, miniaturization and portability, or in other IT

technologies such as Global Positioning System (GPS), smart cards, or radio frequency

identification tags). Developments have also been social (there is an increasing acceptance of

introduction of IT technological systems to improve the quality of business process or

people’s security or life).

Beyond the traditional media, the Web has emerged as a new fundamental and valuable

global information system, being widely adopted not only by organizations but also by the

individual. Today, the web is easily accessible in all developed countries, in schools, private

and public organizations, at home, and inside or outside buildings. Also notable has been the

widespread adoption of cellular phones that, along with increasing computing resources,

have acquired improved communication capabilities and new multimedia features. They

allowed a new and quick way to contact and interchange information with people, to access

to the World Wide Web everywhere, and to interconnect computing devices all around the

world (even in the most inhospitable places).

The advent of accessible commercial wireless networks and communications systems further

contributed to dissemination of computing. The embedding of computing devices in objects

or places for monitoring or control, enabled us to envision a “real” physical world enhanced

with information and computing capabilities. These capabilities can be used to facilitate and

pleasure human life in its diverse facets (as the personal or social) or to improve business or

other organizational process. Want, Pering, Borriello and Farkas (Want, et al., 2002) consider

that the “four most notable improvements in hardware technology” during the last decade that directly

affected ubiquitous computing are: wireless networking, processing capability, storage

capability, and high quality displays.

These factors, among others, contributed for a culture characterized not only by having an

easy access to information, but also by demanding for information availability and

consequently; consequently there is an implicit acceptance of surrounding and permanent

computing or other IT devices. Nowadays, there is an increasing feeling that information is

2 Pervasive Computing

22

omnipresent (we just need an IT device to access it) and that computing devices or

applications are naturally part of our daily lives.

Spite all the technological and social developments occurred in last decade, it is argued

(Banavar et al., 2000; Davies & Gellersen, 2002; Saha & Mukherjee, 2003) that many aspects

of Weiser’s vision of ubiquitous computing have not been yet achieved; it has been “more art

than science” (Banavar, et al., 2000). There are some critics about the fact that the devices,

computers, and the environment are seen in a traditional way: the mobile computing devices

are used as “mini-desktops”, and the applications are simply programs (written for those

devices) for which exists a virtual environment provided to perform tasks. Spite of the

existence of critical elements for ubiquitous computing, it is also claimed that, to realize this

vision, it is needed a “seamless integration of component technologies into a system” (Satyanarayanan,

2001).

Pervasive computing has been interpreted, on its maturity evolution, from several different

perspectives that led to different meanings and objectives to different people. In order to

clarify what pervasive computing is about, Banavar (Banavar, et al., 2000) considered that

pervasive computing respects to three things: (i) the way people view and use mobile

computing devices to perform tasks; (ii) the way applications are created and deployed in

support of those tasks; (iii) how the environment is enhanced by the emergence and ubiquity

of new information and functionality. In order to achieve the true benefit and science

perspective of pervasive computing, Banavar states that devices, applications, and

environment need a different thinking. First, a device is “a portal into an application data/space and not a

repository of custom software managed by the user”. Second, an application is “a means by which a user performs a

task, not a piece of software that is written to exploit device’s capabilities”. Third, the computing environment is

“the user’s information enhanced physical surroundings, not a virtual space that exists to store and run software”.

Thinking about ubiquitous computing in this way bears more in mind with Weiser’s vision and

helps to provide a base for reasoning about ubiquitous computing systems, their

characteristics, and to establish research challenges.

Characteristics of ubiquitous computing

Considering the vision about ubiquitous computing, there are key characteristics of

ubiquitous computing systems that differentiate these from traditional computing systems.

Among these are: decentralization (autonomous small devices, taking over specific tasks and

functionality, cooperate and establish a “dynamic network of relationships”), diversification (there is a

move from universal computers to diversified devices for specific purposes), connectivity

2.2 A New Computing Paradigm

23

(different type of devices connect among themselves to exchange data and applications) and

simplicity (pervasive devices, being specialized tools, should be easy and intuitive to use −

“complex technology is hidden behind a friendly user-interface”) (Hansmann, Merck, Nicklous, & Stober,

2003).

In ubiquitous computing, the environment take a relevant place in computing: in “contrast with

most traditional computing, in which the environment is mostly irrelevant, the environment plays a fundamental role for

ubiquitous computing; the environment has influence on the ‘semantics’ of computing” (Ciarletta & Dima, 2000).

There is the need of perceptual information about the environment (Saha & Mukherjee,

2003), location of people and devices. Such information enables for an enhanced interaction

with the users, allowing applications to adapt themselves to their environment, and

constitutes an enabler element for the so-called invisible computing. Several characteristics

about the environment are:

(1) Enhanced physical world. “The nature of the ubiquitous computing implies a physical world enhanced with

mobile or embedded computing devices or other IT kind.” Places and things are enhanced with sensing,

processing, and communication elements (Kindberg & Fox, 2002). “The embedded aspects of pervasive

computing suggest that sensors and actuators will play a significant role in many pervasive applications.” (Ciarletta &

Dima, 2000)

(2) Heterogeneity of devices, systems, and environments. In a ubiquitous computing world,

diversity is a permanent characteristic of the elements that compose ubiquitous computing

systems. There are diverse kinds of systems, computing devices, and other technological

artefacts, varying at a great extend in processing and interaction capabilities. Resulting

essentially from factors as organizational or social needs and limitations, there will be, for a

long period of time, significant variations on the penetration of pervasive computing

technology, resulting in differences on the smartness capabilities of environments

(Satyanarayanan, 2001).

(3) Mobility of users. The mobility of users implies that the surroundings of the users are

always changing with the movement from a ubiquitous environment to another.

Ubiquitous computing is about not only the enhancement of physical world with embedded

computing devices, sensors, actuators, and other elements to provide communications

among these. It also concerns the way computing is disposed in order to interact with users

in support of their activities and goals. As stated by Weiser, “Ubiquitous computing takes place primarily

in the background. (…) the ubiquitous computing leaves you feeling as though you did by yourself” (Weiser, 1993a);

ubiquitous computing is gracefully and seamlessly integrated, allowing for people to not

2 Pervasive Computing

24

(actively) realize that it is there. In this invisible computing, it can be found that: (i) ubiquitous

computing applications “will cohabit with the user’s physical environments, providing unobtrusive support to user’s

tasks, enabling them to focus on their work and to be not obliged to actively initiate active interaction with computers”

(Banavar & Bernstein, 2002); (ii) there will be spontaneous interoperation of software

components in changing environments (Kindberg & Fox, 2002) (the environment contains

infrastructure components and spontaneous components based on the devices that arrive

and leave routinely); (iii) ubiquitous applications are omnipresent either by making

technological devices move with the user or by having applications moving between devices

tracking the user (Banavar & Bernstein, 2002). Thus, ubiquitous computing applications must

be able to adapt to the dynamism of environments, device heterogeneity, resource

constraints, and user’s intent.

Pervasive vs. ubiquitous computing

On its seminal article (Weiser, 1991), Weiser employed the term “ubiquitous” (which refers

to the characteristic of existing or being everywhere at the same time, or being constantly

encountered (Merriam-Webster)) to characterize the writing (an widespread information

technology that can be found everywhere and which presence, not requiring active attention,

conveys information conveyed ready for use). Giving as contrast the presence and need for

attention of the Personal Computer, Weiser envisioned a new way of computers integrate

with people lives: a way in which computers, populating and taking into account the human

environment vanish seamlessly into the background, becoming invisible to people.

On several articles (Weiser, 1993a, 1993b), Weiser reinforced the widespread use of

computing devices and its “invisibility”, allowing for a computing environment where each

person is continuously interacting with hundreds of interconnect computers. Weiser, clearly

stating that computers in the workplace can be as ubiquitous as printed matter, establishes

the goal of ubiquitous computing: “Ubiquitous computing has its goal the non-intrusive availability throughout

the physical environment, virtually, if not effectively, invisible to the user” (Weiser, 1993a). Invisibility is

constantly stressed out (Want, 2000; Weiser, 1994; Weiser, et al., 1999) in this new way of

thinking about computing, which allows for and enhance people to focus on their real tasks

and objectives.

In the same line of thought regarding to writing and electricity (also considered by Weiser as

a technology that with time also became ubiquitous (Weiser & Brown, 1997)), ubiquitous

computing was coined to mean the widespread of computing in the world (in every places

and objects) aiming to support human activities. It exists in the “periphery” (Weiser & Brown,

2.2 A New Computing Paradigm

25

1997) of attention of the user and is ready for use as needed. From this, two key ideas

emerge about the definition of ubiquitous computing: the first, encompassing a world

(things, places, and people) enhanced with networked computing technology, and the

second, establishing the invisibility of computing to people as a principle. Nevertheless, it is

common to find identical and indifferent use of terms ubiquitous and pervasive.

As stated by Satyanarayanan (Satyanarayanan, 2001), “ubiquitous computing” is also called

”pervasive computing”, and it can be found in the literature the synonymous and

interchangeable use of these terms (Ark & Selker, 1999) (the term pervasive refers to the

characteristic of becoming diffused throughout every part of (Merriam-Webster)).

There are people that distinguish the use of those terms. Lyytinen and Yoo (Lyytinen & Yoo,

2002) explicitly distinguishes ubiquitous computing, pervasive computing and mobile

computing, considering that the movement to ubiquitous computing integrate the advances

from both mobile and pervasive computing (see Figure 2.2).

Level of Embeddedness

Low High

High

Low

Level of Mobility

Pervasive

Computing

Traditional

Business

computing

Ubiquitous

Computing

Mobile

Computing

Figure 2.2 - Traditional, Mobile, Pervasive and Ubiquitous Computing (extracted from (Lyytinen & Yoo, 2002)).

Considering that, in the literature, the terms mobile and pervasive are often used

interchangeably, they consider mobile computing as being about the capability of physically

move computing services with us. These computing devices do not seamlessly take into

account information about context where the computing takes place. Pervasive computing is

considered about the capability of the computing device to obtain information of the

environment, and reciprocally, the environment to be intelligent enough to be capable of

detecting computing devices entering in it. Ubiquitous computing is stated as integrating

mobility with pervasive computing. As such, ubiquitous computing means: “any computing device,

2 Pervasive Computing

26

while moving with us, can build incrementally dynamic models of its various environments and configure its services

accordingly” (Lyytinen & Yoo, 2002).

Ciarletta and Dima (Ciarletta & Dima, 2000), consider that pervasive computing (resulting

from the convergence of personal computing, embedded systems, and computing

networking) distinguishes itself from computing in general by its emphasis on ubiquity,

interconnection and dynamism. They state that, striving to be low-cost, embedded,

distributed and non-intrusive, “Pervasive computing aspires to be ubiquitous ;(…)”.

Gupta, Wang-Chien Purakayastha, and Srimani (Gupta, Wang-Chien, Purakayastha, & Srimani,

2001) stated that “The word pervasive means having power to spread throughout“. They consider that

pervasive computing, encompass technologies such as mobile and wearable computing, and

is “an environment where people interact with various companion, embedded, or invisible computers(…) this environment is

populated with networked devices aware of their surroundings and able to provide or use services from peers”.

Friedemann Mattern (Mattern, 2001) notices that Weiser saw the term “ubiquitous

computing” in a “more academic and idealistic sense as an unobtrusive, human-centric technology vision“.

Nevertheless, industry has coined the term “pervasive computing” with a slightly different

slant: “Even though its vision is still to integrate information processing almost invisibly into everyday objects, its primary

goal is to use such objects in the near future in the fields of electronic commerce and Web-based business processes”.

Taking into account the aforementioned uses and meanings of the terms “ubiquitous” and

“pervasive”, it becomes clear that is convenient some reflection and clarification about these

terms. With the above considerations in mind, a search on a dictionary (Merriam-Webster)

reveals that the term “ubiquitous” refers to the characteristic of existing or being everywhere

at the same time, of being constantly encountered, while the term “pervasive” refers to the

characteristic of becoming diffused throughout every part of. Therefore, it can be said that

pervasive doesn’t mean to be at several places at the same time and that doesn’t bring the

idea of invisibility, while ubiquitous does implies so through its constant presence (and as

such, being constantly encountered, fading into the background; and that’s the way Weiser

defined it). Pervasive seems to have a stronger connotation with a physical, localized

perspective, where computing technology penetrates things. Ubiquitous is more general,

referring to a computing technology that is found seamlessly everywhere. Something may be

pervasive but not necessarily ubiquitous.

By its definition, the term ubiquitous seems more adequate than pervasive to express Weiser

vision of computing, and Lyytinen and Yoo (Lyytinen & Yoo, 2002) provide a good contribute

to express clearly the distinctions between the two terms. As Ciarletta and Dima (Ciarletta &

2.2 A New Computing Paradigm

27

Dima, 2000) stated, pervasive computing tries and tends to be ubiquitous: always present

everywhere, in the background, integrated seamlessly in an unobtrusive way.

We can talk about embedded, mobile, pervasive, and ubiquitous computing. Through

embedment and mobility, we reach pervasive, and through pervasive we achieve ubiquitous.

Computers and IT devices alike, by themselves, are not ubiquitous; but they collectively

provide support for pervasive systems and ubiquitous computing. Pervasiveness relates with

the degree of penetration and dissemination of computing in our physical environment.

Ubiquitous computing comes indeed as an emergent property of several interconnected

computing (or other IT like) devices (embedded or mobile) pervasively integrated that are

orchestrated in order to provide, in an invisible fashion, an unobtrusive and helpful assistance

to users activities, and thus, enabling ubiquitous computing.

Embedded and mobile devices allow us to compose pervasive systems, which conveniently

orchestrated, can provide users with ubiquitous services/applications. By its strict meaning,

“pervasive computing” does not necessarily imply the defining characteristics of Mark

Weiser’s ubiquitous computing, such as the invisibility and engendering of calmness to the

user. Ubiquitous computing encompasses, from an application perspective, a stronger focus

on the way of interaction, on permanent availability, and on functionality provided by

computing to the user. Table 2.1 reflects the appropriate usage of the terms regarding to

pervasiveness and ubiquity.

Terms Pervasive Ubiquitous Terms Pervasive Ubiquitous

Technology Yes No Applications Yes Yes

Devices Yes No Services Yes Yes

Systems Yes Avoid Computing Yes Yes

Table 2.1 - Appropriate usage of terms pervasive and ubiquitous.

2.3 Business Opportunities and Social Concerns

In order to explore and realize the necessary technology and the envisioned pervasive

systems and technologies, industry and academy took several research initiatives.

2 Pervasive Computing

28

In the development of pervasive technologies and systems, several aspects have been

focused, such as social concerns (Stone, 2003) and the economic and political implications of

its deployment (Langheinrich, et al., 2002). There has been a permanent research and

innovation of pervasive systems in: (i) business domains, which try to improve businesses or

even to enable new and innovative ways of carrying businesses; (ii) in personal or social

domains, which try to improve the people’s life quality. The benefits and applications of

pervasive computing are far from having reached an end. Other business domains, such as

insurance companies or government agencies, can also take benefits of pervasive computing.

What was initially confined in developing technology to make pervasive computing out of a

vision (Lyytinen & Yoo, 2002), surpassed the initial restricted frontiers to reach the

development of applications for organizational domains, enabling for enhancements of

current business processes or even to assist the development of new business models

(Langheinrich, et al., 2002).

Business Concerns

From a business perspective, ubiquitous computing brings the opportunity to introduce

changes in the way business and consumers interact with each other (Fano & Gershman,

2002). It allows for an improvement on mutual intercommunications, richer and innovative

interactions, and closer relationships. People become able to interact with services not only

through telephone or PC but also through products. Fano and Geshman (Fano & Gershman,

2002), through the “Online Medicine Cabinet” (Accenture, 2004d) and the “Mobile Valet”

(Accenture, 2004e) prototypes4, exemplify how ubiquitous computing could transform

customer relationships and services, emphasizing the characteristics of awareness,

accessibility, and responsiveness on relationships, location and service scope, and duration

and frequency of a customer interaction.

Emerging technologies associated with ubiquitous computing enables new kinds of services.

Gershman (Gershman, 2002) states that these new kinds of services will lead to a new era of

ubiquitous commerce. These services will result from three primary capabilities of ubiquitous

computing devices: (i) as service channels, “to provide a service channel for remote service providers (…)”; (ii)

as sensors “to inform these services of local context of the user (…)”; (iii) and as effectors “to enable these

services to affect things in the user environment (…)”.

4 Those, as stated by Fano and Gershman, are prototypes developed at Accenture Technology Labs.

2.3 Business Opportunities and Social Concerns

29

Strassner and Schoch (Strassner & Schoch, 2002) consider that three ubiquitous computing

technologies have a direct and strong impact on business processes: (i) automatic

identification; (ii) localization; (iii) and sensor technology.

Products uniquely identified by invisible tags allow people to carry devices that

instantaneously access additional information about the product, thus merging both physical

and virtual worlds. A personal mobile device with computing capabilities will be, in future, a

common clothing accessory like the wristwatches today and eventually, a usual interface to a

variety of smart objects.

As previously said, enhancement of objects with increasing sensing, computation, and

communication capabilities, allow for richer interactions with people, services, and other

objects. Capable of monitoring of their own critical parameters, products will be able to

communicate, with responsible entities, abnormal or relevant parameters values or events; if

possible, they will take corrective actions (Bohn, Coroamã, Langheinrich, Mattern, & Rohs,

2004) in order to re-establish normality. Smart products will be able to communicate with

their producers until they are sold, or eventually, during all their lifetime. Things that can do

shopping themselves (as photocopiers ordering for paper), furniture that can monitor its

usage (sofas that count the number of persons that sit on it), detailed history of products (as

used cars that can offer a detailed history, of its production, use and repair) are examples of

what is imagined as concrete applications of ubiquitous computing. As entities in the

economic processes improve their capabilities on monitoring, gathering, retrieving, and

processing information, it will ultimately become possible in real-time to witness and (in

some extent) to control the lifecycle of products (from their manufacturing to their complete

consumption) (Bohn, et al., 2004) .

Business benefits and ubiquitous computing technologies have a mutual influence in each

other: ubiquitous computing technologies are seen has offering support for potential

business benefits to organization efficiency, and those potential benefits constitute a driving

force and key factors to further research and deployment of ubiquitous computing

technologies (Bohn, et al., 2004); this leads to a permanent, vigorous, and rapid proliferation

of information technology.

Aware of those business benefits potentially offered by ubiquitous computing technologies,

the industry has set their attention on the deployment of those technologies in supporting

applications in diverse domains, pursuing imagined business benefits. Government agencies,

insurance companies, organizations of several domains have been developing projects aiming

to collect the potential gains of deployment of ubiquitous computing. Marketing, inventory

2 Pervasive Computing

30

management, pay-per-use are examples of intervention areas. Museums (Fleck et al., 2002a),

agriculture (Burrell, et al., 2004), restaurants (Stanford, 2003b), and health care (Varshney,

2003) are examples of business domains that have been addressed by applications based on

this kind of information technology. For example, in elder care (Stanford, 2002), systems have

been deployed to improve the quality and the efficiency of care delivery to the elderly. This

improvement came through the assistance to the staff in identifying people needing

immediate attention and in monitoring trends, which resulted in an enhanced service and an

enriched environment.

As example of research and deployment of ubiquitous computing systems at Accenture

Technology Labs (Accenture, 2004f), ubiquitous computing research initiatives resulted in

projects that exemplify new applications with ubiquitous computing technologies (some of

them envisioned to enhance business performance). Among such project examples are:

(1) Networked automation (Accenture, 2004c). Demonstrated how innovative technology can

enhance safety on a plant floor through automated machines that use technologies such as

sensors and radio frequency identification (RFID) tags, as well as ad hoc network

communication devices to provide information reporting capabilities, and to control objects.

(2) Freight tracking (Accenture, 2004a). Improves the efficiency of cargo management “(…) by

allowing rail companies, railroad yards and large suppliers with separate rail facilities to better control and monitor their

freight movements. The prototype makes train wagons "intelligent" and allows them to assume inventory management

responsibilities by reporting their exact location and sequence within a line of cars.”

(3)Virtual Home Improvement Services (Accenture, 2004g). Focus on assistance in situations

where expert helped is needed at point of need such as “machine repair, travel, cooking, shopping, fitness

training, gardening, first aid and personal security”, using web services.

(4) Manufacturing services (Accenture, 2004b). Manufacturing Services prototype show

“(…)how the combination of embedded computing, sensors, and short-range wireless technologies makes for an “aware”

environment. Such environments create intelligent pieces of equipment that are aware of their status and surroundings,

interact with technicians, revolutionize how services are performed and automate the regulatory (or even tax) compliance

process.”

(5) Physical media tracking (Accenture, 2004d). Help to reduce the potential for theft and

human error “(…) all while streamlining the entire inventory management process. (…) the prototype makes products

“intelligent” and allows them to assume inventory management responsibilities by continuously reporting their exact

locations, wherever they may be in the value chain.”

2.3 Business Opportunities and Social Concerns

31

(6) Real-world Showroom (Accenture, 2004e). Application prototype enabling people to find

information about products “(…) as they encounter them in their daily lives. If they wish, they can buy the item on

the spot. With Real-World Showroom, commerce and interaction can take place wherever and whenever people see and use

products, not in the store or on a website.”

(7) Mobile Valet (Accenture, 2004e). A palmtop computer demonstrates how to use mobile

devices as a service channel. It “capitalizes on the ubiquity of sensors, tags, speakers and video screens which we

encounter everywhere, making it possible to deliver a whole range of services—and in much greater detail and resolution

than just though a mobile phone! ”. “Demonstrates how innovative services may be delivered to help people do what they

are doing, wherever they happen to be.”

(8) Online Medicine Cabinet (Accenture, 2004d). Shows how technology helps in our

healthcare; “It combines sensors with the power of the Internet and embedded computers to create a "situated portal"—

a smart appliance that continuously monitors the needs of people and responds with appropriate, individualized services.”

A world fully interconnected with smart devices, tagging technologies, and aware personal

mobile computing devices, along with widespread networking communications

infrastructures, will lead to change of perception of our surroundings. Such change of

surroundings perception (with new or improved ways of interaction among people, business

or objects) will trigger social and economic changes, which will ultimately be of political

relevance (Mattern, 2001). As Fano and Gershman (Fano & Gershman, 2002) says, “ubiquitous

computing will change the way we live with technology”.

Social Concerns

Computing technology developments in last decade enabled information to migrate from

paper to digital format, enabling it to be easily stored, reproduced, and published.

Networking technologies developments allowed easier and faster communications and the

ability of to provide of new networked-based services.

Development in storage database technology unconstrained the amount of information that

could be stored. Searching technologies jointly with analysis tools, allowed for this

information be accurate and to be timely accessed and used.

Development on input modalities beyond the traditional mouse and keyboard, on digital

photography and video, and on sensing technologies, allowed for a broader forms and kinds

of information to be digitally gathered and managed. Internet technologies and applications,

such as the Web and electronic mail, offering a privileged means of efficient communication

2 Pervasive Computing

32

among people and organizations, fostered the acceptance and introduction of digital

information and processing on personal, social, and business life. Beyond laptops computers,

personal digital assistants (PDAs) and smart phones came to light to offer an always present

personal mobile computing, frequently with data wireless networking and voice

communication. Beyond general computing and communication, those devices allowed us to

deal with an increasingly number of available computing enhanced artefacts.

Technology assisted us in digitalizing not only all the information and the processes that deal

with that information, but also our presence and the presence of objects surrounding us.

Context-aware systems and monitoring systems also became common in order to provide for

easy systems interaction, improvement of efficiency or security. As Ark and Selker say (Ark &

Selker, 1999), “we should not have to carry around devices containing our information. Rather, devices will recognize

who we are and obtain information about us, through ‘remembrance agents’ or adaptive user models, Internet information

storage, or other means.”

Ubiquitous computing promises further technology penetration on human lives, through

computing and network augmentation of the environment, enabling the merging of the

physical and virtual worlds. Projects such as Cooltown (Barton & Kindberg, 2001; Debaty,

Goddi, & Vorbau, 2005; Kindberg et al., 2000) are examples of research on this worlds

merging. More and more the digital permeate the physical space in a seamless manner and

the computing expected to be everywhere (Ark & Selker, 1999). The advent of ubiquitous

computing systems enabled information technology to gain a further relevance in its role in

human social lives (Dryer, et al., 1999), narrowing the relationship between humans and

technology and fostering focus on human to human communication.

As the field of ubiquitous computing matures, key issues start shifting away from technical

issues to more business and social domains (Langheinrich, et al., 2002). If assisting human life

with computing capabilities seems commonly accepted as a good intention, the way to

realize such remains unclear and generally not well agreed or comprehended.

Computerizing our activities or personal information and, in particular, keeping digital track

of part of those, while seen by some justified as personal, business, social convenience or

necessity (e.g., for security), has also been seen by others as a potential risk for person

privacy (and eventually security). Ubiquitous computing with its pervasiveness and sensing

capabilities, along with its invisibleness, bring novel possibilities; for some people they are

motive of contentment and for others they are motive of increased concerns.

2.3 Business Opportunities and Social Concerns

33

Envisioning that this “embodied virtuality” would make “individuals more aware of other people on the

ends of their computer links” (Weiser, 1991), Weiser early noticed that ubiquitous computing have

impact on the relationships of people and technology (Weiser, et al., 1999).

Changing the focus of attention away from computers themselves to activities, ubiquitous

computing could enhance human relationships, work practices, and knowledge sharing.

Nonetheless, as he stated then, ubiquitous computing research also brought attention to

other issues, such as its capabilities of monitoring and control, and privacy: “If the computational

system is invisible as well as extensive, it becomes hard to know what is controlling what, what is connected to what, where

information is flowing, how it is being used, what is broken (vs what is working correctly, but not helpfully), and what are the

consequences of any given action (including simply walking into a room).” (Weiser, et al., 1999).

With its sensing capabilities, ubiquitous computing has impact on the social environments

where it is introduced (Banavar & Bernstein, 2002). Personal privacy will be affected since

broadly accessible, available, and effective small sensors and processors “allow for a much more

comprehensive automated surveillance of the environment, including what we do and say” (Mattern, 2001); and if

Internet is extended into everyday objects, this will result in “enormous challenges for privacy”

(Mattern, 2001).

Several positions of concern about ubiquitous computing have been related (Stone, 2003),

being privacy and liberty issues one of the most focused. Others concerns include worries

about building of an infrastructure that will enable for totalitarian control, and the

transformations that this technology can bring to human existence (such as things getting too

easier to be done, or the augmentation of human body capabilities (Stone, 2003) beyond

reasonable common sense). Given the biotechnology and nanotechnology developments,

almost anything can be expected.

Technology developments and its widespread adoption leads to fear that as more as life

becomes “technological”, it can also become less “human” (Dryer, et al., 1999). Brief

accounts of criticism to the ambition of the ubiquity of computing are given in (Bohn, et al.,

2004).

As an example of technology that raised concerns related to its adoption, is the VeriChip

(Stone, 2003). The VeriChip (VeriChip, 2006b) is a miniaturized Radio Frequency Identification

(RFID) device implanted under the skin of human body. “About the size of a grain of rice” (VeriChip,

2006b), it contains a individual unique verification number, which is transmitted by the chip

when a scanner energizes it. This unique identification number can be used to identify

uniquely an individual. Among the potential domains of application of this technology, is the

2 Pervasive Computing

34

security domain, such as access control to facilities and equipment, and transactions

requiring robust or immediate identification (VeriChip, 2006c).

Figure 2.3- The VeriChip (extracted from (Verichip, 2006a)).

Privacy has been, for decades, concern to people. The advent of modern photography, the

printing press, the automated data processing, credit cards, and the Internet have sparked

attention to privacy. Privacy concerns took different focuses accordingly to technological

developments, being recognized some forms of privacy: media privacy, territorial privacy,

communication privacy, bodily privacy and information privacy (mentions of these forms of

privacy − with exception to the media privacy − can also be found in (Beresford & Stajano,

2003)). This last form of privacy – information privacy – is the one that these days most

promote concerns (Langheinrich, 2001) (location privacy is considered a particular type of

information privacy, and is defined as “the ability to prevent other parties from learning one’s current or past

location” (Beresford & Stajano, 2003)).

Issues related with the adequate collection, use, and dissemination of information have been

for long time subject to considerations in human communication (Abowd & Mynatt, 2000),

resulting on several legislations and recommendations5, such as: (i) the United States (US)

Privacy Act of 1974, in which principles of fair information practices are established

(openness and transparency, individual participation, collection limitation, data quality, use

limitation, reasonable security and accountability); (ii) and the European Union (EU) Directive

95/46/EC of 1995, which beyond the limitation of data transfers to non-EU countries, add the

notion of explicit consent to the fair information practices, are two examples of privacy

legislation (Langheinrich, 2001). Organization for Economic Co-operation and Development

(OECD) Guidelines (OECD, 1980) and Safe Harbor framework (USDoC, 2000) – an U.S.

Department of Commerce in consultation with the European Commission effort – are other

initiatives on privacy legislation domain. The former, aimed to help harmonising national

privacy legislation and, at the same time, to prevent interruptions in international flows of

5 Other general previous legislation or recommendations on privacy in general, such as the England’s 1361 Justices of the Peace Act, The Fourth
Amendment to the US Constitution, the 1890 US Supreme Cout Justice Louis Brandeis and the 1948 Universal Declaration of Human Rights) can
also be found referenced in (Beresford & Stajano, 2003).

2.3 Business Opportunities and Social Concerns

35

data OECD Member countries. The latter, to bridge the different privacy approaches between

European Union and United States.

As reported by Langheinrich (Langheinrich, 2001), there is also criticism about the

enforcement of privacy. Focusing on issues of feasibility, convenience, communitarian, and

egalitarian, they argue that, often, life is better without privacy. Different motivations for

protection of privacy in laws and standards (Lessig, 1999) have been noticed6 (Bohn, et al.,

2004; Langheinrich, et al., 2002). These are: privacy as empowerment (“to give people the right to

control the publication and distribution of information about themselves”), as utility (“providing protection against

nuisances such as unsolicited phone calls or emails”), as dignity (entails “being free from unsubstantiated suspicion”

and “equilibrium of information available between to people”), and as constraint of power/regulating agent

(“a tool for keeping checks and balances on a ruling elite’s power”).

Besides the considerations reported by Weiser (Weiser, et al., 1999), the literature is fertile

on appreciations about information privacy related to ubiquitous computing (e.g., (Abowd &

Mynatt, 2000; Beckwith, 2003; Beresford & Stajano, 2003; Jiang & Landay, 2002;

Langheinrich, 2001; Mattern, 2001; Want, Hopper, Falcão, & Gibbons, 1992)).

Ubiquitous computing is generally considered has having impact on privacy, as it extends

monitoring capabilities in both spatial scope and temporal coverage (as since from the pre-

natal diagnoses, through birth and growth to the oldness of people) (Bohn, et al., 2004). It

may create new opportunities of outrage of privacy – or, as Gary Marx argued, the “border

crossings”. Gary Marx (Marx, 2001) in its work about public and private (and referenced in

(Bohn, et al., 2004; Jiang & Landay, 2002; Langheinrich, et al., 2002)), states that, with respect

to surveillance, “central to the acceptance or sense of outrage (…) are the implications for crossing personal borders”.

He argues that, when violation of personal borders occurs, it involves the breach of one or

more the borders. These borders are the natural border (what naturally achieve by our

senses), social border (expectations of confidentiality in certain social groups), spatial or

temporal border (expectation that part of lives can exist in isolation from others parts), and

border due to ephemeral and transitory effects (related to spontaneous utterance or action

expected to be rapidly forgot).

Among these borders, the one that might be easier to satisfy in the design of ubiquitous

computing systems is the natural border. The occurrence extent of border crossings will

depend on a large extent of the searching capabilities of the ubiquitous computing systems;

the monitoring and search capabilities of ubiquitous computing systems “will very likely provide

6 These motivations reported were distinguished by Lawrence Lessig, as noticed by Langheirich and by Bohn.

2 Pervasive Computing

36

their developers, owners, and regulators with a significant tool for driving the future development of privacy concepts within

society” (Bohn, et al., 2004)

Beckwith, to analyse risks on his work “Design for Ubiquity: the perception of privacy”

(Beckwith, 2003), considers three aspects of personal information (borrowed from a model

of Adams (Anne, 1999)) that determine people’s reasoning about privacy. These aspects are:

(i) information receiver (who will use it); (ii) information usage (how will it be used –data can

be collected from various sources (such as sensors) and combined to derive secondary data,

which may lead to problems as there may be various not imagined uses for data fused); (iii)

information sensitivity (how sensitive it is). The interplay of these aspects is considered as

determining how privacy and potential violations are perceived by people (Beckwith, 2003).

Some insight into and a basis for assessment of issues pertaining the judging of privacy and

the implication of pervasive technologies are exposed, through a proposed framework, by

Jacobs and Abowd (Jacobs & Abowd, 2003) in order to help ubiquitous computing systems

designers to better assess the implications of systems designs into privacy concerns.

Given the general concerns, it seems necessary some attention to the design of ubiquitous

computing systems. Some suggestions to the design of these systems are made. First, the

sparse use of sensing technologies and careful attention to border crossings (communication

concepts evaluated according to existent social borders; questioning of searching capabilities

that allows spatial and temporal border crossings; introduction of the concept of ephemeral,

transitory effects in the architecture, allowing for example that information slowly decays

over time) (Langheinrich, et al., 2002). Second, to restrict data usage and to keep the

potential consumers low (Beckwith, 2003). The deployment of ubiquitous computing systems

“will in many cases have implications beyond the technical obvious ones” and “designers can greatly benefit

from evaluating the effects of this deployment “using existing concepts in disciplines such as social,

economic, and legal sciences” (Langheinrich, et al., 2002).

At the present, computers are crucial to assistance of everyday life, providing support for

activities or systems related to critical systems and communications. Our dependence on

their correct and reliable functioning keeps growing as more and more these and other

information appliances digitalize our world. And as Bohn (Bohn, et al., 2004) states, if today,

in most cases, “we are still able to decide for ourselves whether we want to use devices equipped with modern computer

technology”, in the future, “it might not be possible to escape from this sort of technologically induced dependence”.

The proliferation of these technologies in our everyday life leads to the need of attention to

less technical and more social aspects of ubiquitous computing systems (Bohn, et al., 2004).

2.3 Business Opportunities and Social Concerns

37

In an environment full of thousands of smart devices dedicated to facilitate and to promote

our activities and well-being, our dependence on ubiquitous computing systems requires us

to demand from them, full reliability of the services offered and their correct behaviour

accordingly to our needs and circumstances. In this perspective, these systems must satisfy

aspects such as: (i) manageability (being able to be easily understood and controlled); (ii)

predictability (relatively easiness of use and expected behaviour − ubiquitous underlying

invisibility makes “fault detection and diagnosis fundamentally difficult”); (iii) dependability (ongoing

support of activities in even is partial failures of individual device or service interruptions −

this may be achieved through “alternative concepts and mechanisms (…) such as explicit diversification of

functions”) (Bohn, et al., 2004).

As expressed by Bohn (Bohn, et al., 2004), beyond privacy and the afore-mentioned

reliability, there are other issues that must be taken into account. Among these are: (i)

delegation of control - “in order to minimize the need for human intervention, new concepts for delegating control

are necessary”; (ii) content control - who guarantees the information provided by the smart

objects; (iii) system control - will the smart objects or systems always obey to their owner or

will they enforce guidelines of third parties, such as insurances, manufacturers or judicial

power (iv) accountability - with autonomous objects and systems, it is need to clarify who is

responsible for business transactions and for informing users about transactions; (v) social

compatibility - for human participation in highly dynamic systems, “their parameters have to be

adjusted accordingly”; (vi) transparency - in a pay-per-use model full of “short-term contracts and

micropayments”, its necessary to devise how we could acceptably keep track of those; (vii)

knowledge sustainability - in highly dynamic systems, our nowadays information inertia

(validity of information for an extend period of time) tends to diminish, being the

sustainability of knowledge risking to be lost (“an experience that was valid and useful one minute could

become obsolete and unusable the next”), which may in the long term “contribute to an increased uncertainty and

lack of direction for people in society”; (viii) fairness - marketing can provide for tailored offers

accomplishing to eliminate unwanted offers, but there is a need attention to situations on

which information is withheld from consumer because he is not worth for the offer (in

opposite to the offer not being worth to the consumer), which may lead to reinforced

injustices; (ix) acceptance - “beyond any perceived sinister motives (…), a widespread public acceptance of

ubiquitous computing also rests on issues of an almost philosophical nature (…)”; (x) feasibility and credibility - in

order to not reduce acceptability of ubiquitous computing technologies, ubiquitous

computing must effectively bring benefits to the stressed and hurry life of people and not

stay for improved efficiency of them; (xi) artefact autonomy − networked and interaction

dependent objects (integrated in an environment) may be seem as being less autonomous

2 Pervasive Computing

38

and inherently more error-prone; (xii) impact on health and on environment − a world fully of

countless computing devices or information appliances raises concerns about the

environment, which are related to “raw material consumption, energy consumption, and disposal” (the

electromagnetic radiation resulting from the widespread availability of wireless

communications also leads to worries about its possible and extend of negative effects on the

human body); (xiii) relationship between man and the world − from a philosophical point of

view, the augmentation of the environment can be seen as doing changes on it in a way that

it will let off being the “environment”, the “natural world”, but a mere artefact of our

extensions, losing fundamental properties.

Questions are opened and they evolve along with new possibilities of interactions, services,

and its integration as systems in our everyday lives. This results on the emergence of new or

further advanced ubiquitous computing technologies.

The concerns expressed and the expected vision’s benefits will remain as topics of debate

and analysis on the community. Notwithstanding, it is a certainty that ubiquitous

technologies will be increasingly integrated on everyday life and, simultaneously beyond of

research, focus of attention of business, social, political and legal domains.

2.4 Pervasive Information Systems

Business competition among organizations requires that an organization, in order to be

successful, opportunely meets market demand with the best suitable and competitive supply

at minimal cost. Among others requirements, adequateness of business processes and their

efficient implementation, constitute central issues to the organizations’ ability to be

competitive and successful. Information and knowledge are (beyond land and natural

resources, human labour, and financial capital) fundamental resources of an organization

(Sage & Rouse, 1999). Information can be used not only as a resource to the production of

goods or services, but also as an asset inherent to the organization structure, or even, as a

product to be commercialized (Gordon & Gordon, 2004a). In this context, information,

information technologies, information systems, and information management play a crucial

role.

Widespread availability of affordable and innovative information technologies promoted the

attention individuals and organizations to the efficiency and effectiveness of information

management regarding to the way they acquire, process, store, retrieve, communicate, use,

and share information (Gordon & Gordon, 2004a). In order to take full benefits of the

2.4 Pervasive Information Systems

39

opportunities offered by information technologies, these need to be “appropriately integrated

within organizational frameworks” (Sage & Rouse, 1999), and hence, they will not only provide a solid

basis to sustain the needed information and to achieve effectiveness at both individual and

organizational levels, but also to leverage the investment on these information technologies.

To deal with market pressures and competition, organizations must also to possess the

capability to establish rapidly new or to change existing business requirements or processes.

Such necessity, in conjunction with a reality of permanent technological innovations and

developments, requires that organization’s supporting information systems and inherent

subsystems be conceived to deal with change and evolution with minimal business

disturbance and reduced costs.

Information systems (IS), known as systems that “collect, process, store, analyse, and disseminate

information for a specific purpose” (Turban, McLean, & Wetherbe, 2001), are planned, designed and

deployed in an organization with the purpose to support its business operations, to assist its

management activities, or to produce business’s valuable information assets or products. It is

through the proper project and design of those information systems that it will be possible to

satisfy efficiently the organizational or personal information needs in the pursuit of defined

goals. Additionally, the correct definition and design of information systems are important to

everybody’s satisfaction regarding to information security and privacy, and other social

concerns, thus assuring a higher degree of reliance on the system deployed.

Within an organization, and mainly from a management perspective, information systems

were classified in several ways:

(1) Gordon et al. (Gordon & Gordon, 2004a, 2004b) classify information systems according to

two dimensions: their purpose and their scope. In the purpose dimension, several types of

information systems are the automation systems, transaction-processing systems,

management information systems (management reporting systems, decision-supporting

systems, groupware, executive information systems). In the scope dimension, it is

distinguished (Gordon & Gordon, 2004a) individual, departmental/functional, enterprise and

inter-organizational systems.

(2) Turban et al. (Turban, et al., 2001) classify information systems by organizational levels

(departmental IS, enterprise IS and inter-organizational IS), functional areas (accounting IS,

finance IS, manufacturing IS, marketing IS, human resources management IS), support

provided (transaction processing systems (TPS), Management IS (MIS), Knowledge

2 Pervasive Computing

40

management systems (KMS), Office automation systems (OAS), Enterprise IS (EIS), Group

support system (GSS) and Intelligent support systems), and information system architecture.

Along the years, organizational, technological, and social evolutions brought a shift from a

usually monolithic organization’s information systems with well-defined and limited source

inputs, into complex, distributed, and technologically heterogeneous information systems. A

digital world emerges with prevalence over the real world. Everything has or produces

information and increasingly acquires computational and communication capabilities. The

world is ever more ruled with digital information and processes. More and faster information

about everything and everyone become available; there is a permanent real-time information

collecting, processing, and availability.

Weiser’s statement “Applications are of course the whole point of ubiquitous computing” (Weiser, 1993b)

reinforces that, among all the innovative and outstanding ubiquitous technologies, the

applications get the final focus on this novel computing vision. It is through these applications

that the ultimate vision’s objective is achieved ─ the invisibility and engendering of calmness

of computing on the support and enhancement of everyday activity.

As expressed by Abowd (Abowd, Mynatt, & Rodden, 2002), it is not a single application or

service that will realize such objective; rather “(…)it is a combination of services, all of which available when

needed, and all of which work as desired without extraordinary human intervention”.

The use of spontaneous cooperating smart objects, with access to online/Internet databases

or services, offer a great potential to applications (Mattern, 2001); it is not the enabling

technology “(…) but the applications and the delivered services will have a strong visible influence on our high-tech

culture” (Hansmann, et al., 2003). Abowd (Abowd, et al., 2002) believe that, to realize Weiser’s

vision, beyond the understanding of “everyday practices of people” and the augmentation of the

world with heterogeneous interconnected devices, it is necessary to orchestrate these

devices in order to “provide for a holistic user experience”.

In 1997, Birnbaum (Birnbaum, 1997), relating the concept “pervasive technology” with the

notion of a technology “more noticeable for its absence than its presence”, relates pervasive computing

with information systems and entitle his article as “Pervasive Information Systems”. Noticing

the advance of information appliances, the emergence of a digital infrastructure fostered by

the Internet, and the increasing expectation on readily available information services (for

which quality of service is would be a “crucial competitive differentiator”), Birnbaum presented the

pervasiveness of computing and anticipated what he classified as a new paradigm shift, the

client-utility computing. In this client-utility computing, clients connect to the utilities and

2.4 Pervasive Information Systems

41

where computing usage could be paid (in consequence, a new service industry could

emerge). In this client-utility computing, the “standards-based open resources, located arbitrarily, are

combined as needed for a particular job” (Birnbaum, 1997). Through the statement, “I think it is only a

matter of time before client-utility becomes the prevalent style in information systems (…). The consequence of pervasive

information systems for business and society are enormous.” (Birnbaum, 1997), Birnbaum reveals the

association of the term “pervasive information systems” to the idea of widespread and

common use of services, which are at the core of this perspective of the term.7 Other

references to the relationship between the pervasive devices and information systems can

also be found in literature, such as “The Sensor-Net system using small wireless sensor nodes is a ubiquitous

information system for monitoring real-time real-world phenomena.(…) “(Suzuki, 2004) .

With all the interconnected computing and other information augmented objects, services

are supported and deployed to enable higher-level applications that come in assistance of the

user (either in a seamlessly or intensive interacting way). Additionally, “we become aware of the

presence flow and processing of information, not only by the individual computing devices, but also, and with a more deep

significance, by the overall system that emerges from the interactions of all the computing devices, linking them together in a

coherent fashion” (J. E. Fernandes, Machado, & Carvalho, 2004a).

We can then recognize the presence of some sort of information system, which in this

context of pervasive computing, we can denominate it as a pervasive information system

(PIS). Indeed, all these systems dealing with information constitute some form of information

system; they gather, collect, process, store and produce information aimed at contributing to

an organization or personal needs in order to achieve a set of well-established objectives.

These pervasive information systems, composed of heterogeneous, mobile, or physically

integrated (embedded) devices, capable of collecting, processing, and instantaneously

communicating and interacting among them or others systems, opens the possibility of

processing large quantity of information and realizing complex interactions or advanced

functionalities. These pervasive information systems must be, in its essence, well designed,

developed and deployed in order to, satisfying the requirements and exploring all the

potential offered by the pervasive computing, maximize the revenue of these kinds of

systems.

A world full of smart devices and the widespread adoption of pervasive technologies as basis

for new systems and applications, lead to the need of effectively design information systems

that properly fulfil the goals they were designed for. These pervasive information systems

7 In this context, and in face of no further reference to information systems, it could be argued that a more accurate terminology would be
“pervasive computing services”.

2 Pervasive Computing

42

and the applications that constitute them need to be able to accommodate the permanent

technological evolutions and innovations that the heterogeneous devices are subject of, and

the requirements changes that result from a faster and intense world of business

competition.

2.5 Conclusion

Ubiquitous computing brings a novel vision for computing, one where computing devices

(frequently with communication capabilities) are spread and available in the user’s

environment. This vision establishes a paradigm where computing devices and their

applications do not need active user’s attention for interaction with them. Whilst in the

“periphery” of users’ attention and in contrast to traditional personal computing, they

continuously assist and support users on their tasks, helping in getting that the focus of users

attention stay on their task and goals.

Pervasive and ubiquitous are terms used interchangeably when referring to ubiquitous

computing; nonetheless the latter term can be seen as carrying a notion of invisibility that

engenders calmness, which can be seen as a possible emergent property of pervasiveness.

Technology improvements and innovations (such as in miniaturization, processing, storage,

energy, communications, portability), widespread availability and use of benefits provided by

World Wide Web, cellular phones, and wireless networks, contributed to an acceptance of

computing as a common fact and a demandable property from the surrounding environment.

Several pervasive computing characteristics, issues and challenges have been identified

(Abowd & Mynatt, 2000; Lyytinen & Yoo, 2002; Saha & Mukherjee, 2003; Satyanarayanan,

2001). Physical integration and spontaneous interoperation (Kindberg & Fox, 2002), quantity

and heterogeneity of computing devices, services and applications that may be part at any

moment of the system (Grimm et al., 2001), and the need of continuously available services

(easily interrupted and resumed) (Abowd, et al., 2002) are several of those issues and

challenges. Environment is also relevant to ubiquitous computing: context-awareness of

applications and easy interoperability of devices and applications are identified as

requirements for system support of pervasive applications (Grimm, 2004). These are

important specially when aiming an easily reconfiguration of the application to cope with

presence or absence of computing devices (with distinct computing power or interface

2.5 Conclusion

43

capabilities, availability of services) and to respond rapidly to business changing needs. These

characteristics need attention when designing a pervasive information system.

From a business perspective, pervasive computing represents an opportunity to enhance

current business models and even to create novel business models. Several projects arise on

diverse domains, taking advantages pervasive computing. From social perspective, a world of

fully interconnect smart devices, able to monitor, register, and communicate all information

of their surroundings, can be preoccupying and thus, arise security and privacy concerns.

There is a fear that as the world become technological, it can also become less human.

Research efforts so far have been mostly oriented towards physical and virtual integration,

interaction models, deployment, communication technologies and connectivity, and software

architectures. It is important that new pervasive systems also become subject of study and

research from an information systems and software development perspective.

Chapter 3

Model-Driven Development

Chapter Contents

3 Model-Driven Development ... 47

3.1 Introduction .. 47

3.2 Models in Software Development .. 48

3.3 Model-Driven Architecture ... 55

3.4 Research Efforts .. 64

3.5 Conclusion ... 68

46

 47

3

Model-Driven Development

This chapter introduces the model-driven approach to software development (MDD)

and presents some issues regarding to the use and adoption of models on software

development, as well as the benefits that can be expected with MDD. It takes a look

into the OMG Model-Driven Architecture (MDA) initiative and exposes the

fundamental concepts regarding this approach, such as PIM, PSM and model

transformations. It ends exposing some research efforts to advance MDD.

3.1 Introduction

Since antiquity engineering disciplines have the activity of modelling as a fundamental

technique to cope with complexity (“The use of engineering models is almost as old as engineering itself.”

(Selic, 2003a)). Modelling provides a way to facilitate the understanding, reasoning,

construction, simulation, and communication about complex systems (usually composed by

smaller parts) (Thomas, 2004). Software engineering, in comparison with other forms of

engineering, is on a privileged position to attain benefits from modelling, as it is one whereby

an “abstract high-level model can be gradually evolved into the final product without requiring a change in skills, methods,

concepts, or tools” (Selic, 2003a).

Software engineering is a discipline whose objective is the “cost-effective development of software

systems” (OMG, 2003; Sommerville, 2001). Since the beginning of construction of software

systems there have been several research efforts in order to reach greater performance and

3 Model-Driven Development

48

convenience of development of these systems, as well as to achieve a better satisfaction on

accomplishment of its requirements and expectations. The approaches undertaken on these

research efforts brought improvements on programming and modelling languages, on

algorithms, on techniques and paradigms (such as functional decomposition and object-

orientation), on processes and tools, on patterns, and on the “level of reuse in system construction”

(Miller et al., 2004a) (sub-routines, objects, components and frameworks).

Raising the abstraction at which software developers mainly work is another area of

improvement. Several examples of such rising of abstraction are the movements from binary

languages to assembly languages and from assembly languages to higher-level languages. The

new abstractions, initially introduced as novel concepts, were later adopted and supported,

and tools were developed “to map from one layer to the next automatically” (Miller, et al., 2004a).

Nowadays, there is a promotion of another rising of abstraction at which development

occurs; this one is based on changing of the main development efforts from code and

programming to models and modelling.

3.2 Models in Software Development

Model-Driven Development (MDD) constitutes an approach to software design and

development that strongly focuses and relies on models, through which “we build software-

platform independent models” (Miller, et al., 2004a). This corresponds to a rising of abstraction from

higher-level programming languages to modelling languages.

Albeit some opinions consider that there is no “universally accepted definition of MDD is and what support

for it entails” (Atkinson & Kuhne, 2003), it can be said that MDD carries the notion that it can be

possible to build, with modelling languages, a model that entirely represents the intended

software system. This model can then be transformed, through well-defined transformation

rules, into the “real thing” (Mellor, Clark, & Futagami, 2003). Nonetheless, it’s noteworthy to

point out that, to achieve or undertake model-driven development, “not all models need to be

executable or even formal, but those that are can benefit from automation” (Mellor, et al., 2003) and models do

not need to be complete, as “it incompleteness or high degree of abstraction do not equate to imprecision”

(Mellor, et al., 2003)).

This raise of abstraction (see Figure 3.1) at which software is written (the shift of the level of

abstraction from code and programming languages, to models and model languages (Sendall

& Kozaczynski, 2003)) implies that a software system will be mainly and fully (as possible)

3.2 Models in Software Development

49

expressed by models. The models are the main artefacts of the development effort rather

than computer programs (Selic, 2003b).

Definitions of models are abundant on the literature; they can be found either on the

software engineering field or others distinct fields such as architecture, building construction

or other engineering fields.

Basically, a model, which can serve as a description or a specification, is a representation (set

of statements expressed in either textual or graphical form) of something under study

(usually a system). It focuses, with an intended degree of abstraction, on some particular

aspects (it can ignore some subject matters and details while emphasizing others) and is

intended to be used with a purpose (analysis, specification, communication, documentation,

etc.).

Assembly Code

Assembler

High Level Language

Source Code

Source Code

Compiler

Executable Models

Model Compiler

Machine Code

1960s

Assembly Code

1980s

Source Code

2000s

None Hardware Platform Software Platform

Figure 3.1- Raising the level of abstraction (extracted from (Miller, et al., 2004a))

Different models can be designed to represent different views of the system, and as such,

containing pertinent aspects relevant to a particular perspective considered at a given time

(Brown, 2004). Models provide abstractions of a system that allows to “reason about that system by

ignoring extraneous details while focusing on the relevant ones” (Brown, 2004), and subsequently, enable us

to understand and cope with complex systems.

The elaboration of engineering models allow, through abstraction and consistent and

coherent structuring, to better “understand both the problem and the effectiveness of potential solutions” and

to analyse/mitigate potential risks of failure before starting the construction (usually

expensive) of the final system (Selic, 2003a). Particularly, in the domain of software

engineering where the overwhelming complexity of software systems has been steadily

increasing, models can be even more advantageous. Software development primordially

3 Model-Driven Development

50

consists of the expression of ideas, which is limited more by imagination than by physical

laws or other physical restrictions that occur in other engineering fields.

The raise of abstraction subjacent to the use of models allows for productivity improvement:

“it’s cheaper to write one line of Java than write 10 lines of assembly language. Similarly, (…) it’s cheaper to build a graphical

model in UML, say, than to write in Java” (Mellor, et al., 2003) .

Models can be used either horizontally, to describe several facets of a system, or vertically,

for abstraction refinement of a system’s model from higher to lower levels (at which can be

found a representation of the technological implementation of concepts (Sendall &

Kozaczynski, 2003), or even further, the oneself system).

Synthetically, models, in a descriptive or a prescriptive form, can then be used to: (i)

understand or communicate a problem, a existing system, or a proposed solution; (ii) analyse,

or predict on changes, systems properties or risk failures; (iii) productivity improvement; (iv)

reduction of system’s development costs.

Brown (Brown, 2004), resorting to an illustration of the spectrum of today’s modelling

approaches, shows the different ways in which models are synchronized with code (see

Figure 3.2) and characterizes current practice stating that “Today, a majority of software developers still

take a code-only approach (…), and do not use separately defined models at all” (Brown, 2004).

Model Model Model Model

Code Code Code Code

Code only

Code

Visualization

Roudtrip

Engineering Model-centric Model only

“What’s a

model?”

“The code is

the model”

“Code and

model coexist”

“The model is

the code”

“Let’s do some

design”

Developers visualize

code through some

graphical notation that

aids understanding of

code structure and

behavior.

Code is visualized

through some graphical

notation that aids

understanding of code

structure and behavior.

Models are established

in sufficient detail that

the full implementation

can be generated from

the models.

Models are purely used as

“thought aids in

understanding the business

or solution domain, or for

analyzing the architecture

of a proposed solution”.

Models have no

relevant existence.

Figure 3.2 - The modelling spectrum (adapted from (Brown, 2004))8.

8 As stated on the containing document, this figure is “based on a diagram originally created by John Daniels”.

3.2 Models in Software Development

51

For a model to be useful and effective, Selic (Selic, 2003b) considers that it must possess five

key characteristics: (i) abstraction - being able to abstract detail irrelevant from a intended

viewpoint, a model allows to cope with complexity of structure or functionality of a system;

(ii) understandability - an intuitive model allows for a reduced intellectual effort on its

comprehension, being relevant to this effort, the expressiveness (“the capacity of convey a complex

idea with little direct information”) of the modelling form used; (iii) accuracy - a model must faithful

depict the true system, with no imprecision; (iv) prediction - the model must allow to foresee

the “non-obvious properties” of the system either through experimentation or other form of

analysis; (v) inexpensive - the model must be “significantly cheaper to construct” than the modelled

system.

These five characteristics can be augmented with other one particularly relevant to software

development: maintainability. During software development, no model will be kept if it can’t

be easily and advantageously maintainable.

Model’s representation (a diagram, a structured text, or other form of manifestation) is

expressed recurring to some sort of modelling language, either formal or informal. One of the

most desired forms for model’s representation is achieved through the use of graphical

modelling languages. These are composed by a coherent set of model elements ruled by well-

defined syntax and with precise, consistent, and complete semantics that allows for an ease

construction of intuitive, expressive, and precise models (as needed).

As models are the primary artefact in model-driven development approach, it is necessary

that “a clear, common understanding of the semantics of our modelling languages is at least as important as a clear,

common understanding of the semantics of our programming languages.” (Seidewitz, 2003). The Unified

Modelling Language (UML) specifies the primary notation used in the current practice of

modelling. UML allows for the creation of models that capture different perspectives of the

system (being the transformations among these models “primarily manual”) (Brown, 2004).

Modelling languages used to express models “exists at some abstraction level” (Mellor, et al., 2003):

(i) models written in programming languages abstracts details such as CPU’s registers

handling issues; (ii) models expressed by the Unified Modelling Language (UML) abstracts

details issues related to the realization of relationships as associations. In both cases, those

issues are left to the traditional compiler in the former case, and with a model compiler or

human designer in the latter case (Mellor, et al., 2003).

3 Model-Driven Development

52

Models as sketches and non-maintainable knowledge

Disciplines as civil engineering or architecture make extensive use of models (it “is de rigour in

traditional engineering disciplines” (Selic, 2003b)) and no complex or noteworthy project is

undertaken without resorting to models. Notwithstanding, in software development, models

are barely or deficiently used, despite the fact that “software is used to construct some of the most complex

machines ever devised by man” (Selic, 2003b). Models play a secondary role and are no more than

simply drawing pictures “removed from real systems development and needlessly heavy on process” (Mellor, et

al., 2003). They are usually mostly used as “simple sketches of design ideas” (Seidewitz, 2003) and, in

traditional code-centric development models, they are discarded once the programming

phase of the development is on progress since the code is considered the fundamental

artefact: the one that actually “runs”.

Along with organization evolution, several models (about business processes and data,

organization structure, database schemas, etc.) built in the past are barely revisited or

evolved on further developments or integration efforts, being the knowledge carried on

those models lost, inapplicable, or redundantly remade. Also frequently, the knowledge

residing on the minds of the organization’s modellers, developers or other workers, is not

captured on models or other form of convenient documentation, and consequently, easily

forgotten, inaccessible, or lost as people go away from the organization (Denno, Steves,

Libes, & Barkmeyer, 2003).

The emphasis on models and the intensive adoption of those, as the primary artefact of

software development, is criticized by some people that argue that models bring more

hindrance than help. Mellor et al. (Mellor, et al., 2003) present some of the arguments used:

(i)“a model is often used to mean a blueprint that acts as an interface between developers”; (ii) “the analyst’s concerns

are not the programmers’ concerns — so much so that analysis blueprints are merely advisory, and likely bad advice at that”;

(iii) “the language in which modellers construct the blueprints is often ill-defined and difficult to translate reliably into

code”; (iv) “the blueprints are out-of-date before they’re even finished”; (v) “modellers often intend these blueprints to

predict the unpredictable — the creative act of inventing abstractions in code”. Mellor et al (Mellor, et al., 2003)

state “these arguments are valid to the extent that models are transformed by passing through the developer’s mind”

and that they will become less persuasive as models become “fully automated” or “successively

extended by adding content”.

Selic (Selic, 2003a) believes that one of the reasons for the unsuccess of models on software

development is that they often miss one or more key characteristics for models’ quality.

They are frequently difficult to understand and are inaccurate, thus losing its usefulness for

3.2 Models in Software Development

53

the “truly trustworthy predictions about the characteristics of the actual system” (Selic, 2003a), which leads to

scepticism of its value in the practice of software development.

Augmenting the difficulties of full adoption of models is the semantic gap that results from

the obscureness of how are the concepts used in models mapped into the underlying

technology (such as programming languages and operating system functions). This is

aggravated by the imprecision of modelling languages (Selic, 2003b).

A common problem usually found on software development is the fact that there is no way

to ensure that the software artefact is actually a faithful representation of design models.

During implementation, beyond semantic gaps, the design incompleteness and imprecision of

models allow for introduction of particular programming styles or implementation decision

changes by programmers, which without being reflected back into to the source models,

lead to outdated and unreliable models, and consequent rejection of those.

Moreover, through models, it isn’t possible to see immediate results of running systems;

code seduces by its easiness of writing and proximity to real running systems, whilst market-

pressures gives the need to quickly concretization of the systems.

Also contributing to the inertia of further advance on the state-of-the-art of software

development (from programming to modelling), is the scale of monetary and intellectual

investments done on actual systems, which leads to a conservative mind set. There are

millions of code lines written in traditional programming languages, which beyond needing to

be maintained and upgraded, lead to continuous demand of professionals skilled on those

programming technologies and whose competences are achieved through significant

investments on time and effort. As alternative to fundamental evolutions on programming

technology (which have been restricted to advances on the adoption of programming

paradigms), there have been efforts on process, tools, and languages improvements (Selic,

2003b).

Nonetheless, seen by another perspective, the previous argument, the amount of

investments and efforts involved also constitute a strong argument to advance this state-of-

the-art. A higher level of abstraction on programming technology and a profound adoption of

models, as the primary basis and focus of software development and maintenance, can

provide for higher levels of productivity and easiness of maintainability and further evolution.

3 Model-Driven Development

54

Benefits of model-driven approaches

Model-driven development (MDD) approaches promote the idea that through focus of

development on models one can obtain better software system development and evolutions.

For this, several contributions of MDD are:

(A) Gains of productivity. Atkinson et al. (Atkinson & Kuhne, 2003) state that the productivity

improvement from development efforts is the “underlying motivation for MDD”. They

consider that such productivity is attained along two dimensions that MDD must strategically

consider. First, the short-term productivity (obtained through how much functionality a

software artefact can deliver) in which the productivity increases as more executable

functionality can be accomplished from a software artefact. This form of productivity is the

most focused on current tool support, as "most tool vendors have focused their efforts on

automating code generation from visual models”. Second, the long-term productivity

(obtained by augmenting the longevity of the software artefact), in which achieving greater

artefact longevity allows for increased returns of investment efforts and therefore, “a second

and strategically more important aspect of MDD is reducing primary artefacts’ sensitivity to

change”.

(B) Concepts closer to domain and reduction of semantic gap. Selic (Selic, 2003b) observes

that software development, being made through models, uses concepts that are “much less

bound to the underlying implementation technology and are much closer to the problem

domain relative to most popular programming languages”, which eventually enables for non-

computing specialist to “produce systems”. MDD, through focus on models, allows for

reduction or elimination of errors and semantic gaps in the passage from an abstract model

at design into a final product for implementation, and an increased model accuracy since the

“model is the system” (Selic, 2003a); furthermore, “there are no conceptual discontinuities

that preclude backtracking” (Selic, 2003b).

(C) Automation and less sensitivity to technological changes. Mellor et al. (Mellor, et al.,

2003) point out as potential MDD’s benefits: (i) automatic transformation of high-level design

models into running systems, allows gains of productivity and inherent reduction of costs

(beyond reduction of errors and elimination of semantic gaps); (ii) the models, which are

easier and maintain, are also “less sensitive to the chosen computing technology and to evolutionary changes to

that technology”.

(D) Capture of expert knowledge and reuse. Beyond the benefits of using higher-level

concepts in a modelling language, MDD also enables the capture of expert knowledge

through mapping functions that conveys information to the transformation of one model into

another. This allows for its reuse when an application or its implementation changes and

3.2 Models in Software Development

55

enables an independent evolution of the models and leads to an extended longevity models

(Mellor, et al., 2003).

3.3 Model-Driven Architecture

Regarding to the development of software systems, the Object Management Group (OMG)9

(OMG, 2005a) introduced in 2001 the Model Driven Architecture (MDA) (OMG, 2003), an

open and vendor neutral architectural framework to the construction of software systems.

MDA constitutes a software development approach that, through the focus on models and

defined standards (such as Model Driven Architecture, Meta-Object Facility (MOF), Unified

Modelling Language (UML), XML Metadata Interchange (XMI)), separates the specification of

the functionality of a system from the specification of its implementation on target

technological platforms, providing a set of guidelines framing these specifications

(Appukuttan, Clark, Reddy, Tratt, & Venkatesh, 2003). It enables the detachment of business-

oriented decisions from technological issues of eventual specific platforms (such as CORBA,

J2EE, .NET) into which the system could be targeted, allowing for “a greater flexibility on the evolution

of the system” (Brown, 2004). Model-driven architecture is considered a “model-driven”

approach in the sense “code is (semi-) automatically generated from more abstract models, and which employs

standard specification languages for describing those models and the transformations between them.” (Brown, 2004).

In essence, MDA proposes for the system development life cycle (SDLC), the development of

a Platform Independent Model (PIM) of the system that, free from specific platform

technological issues, details the structure and behaviour of the system. Given a chosen

technological platform, this PIM can then be transformed into a Platform Specific Model

(PSM) that incorporates all the necessary technological details inherent to the chosen target

technological platform on which the system is to be implemented. From this PSM, system

code foundations can be automatically generated for the target technological platform. This

separation of concerns between PIM and PSM allows that, with no further modification to

the PIM itself, other technological platforms can be easily targeted since the PIM still

represents the desired system structure and functionality with no contamination with

technological details.

Models have a primary role on MDA as they gain emphasis over code. Code is intended to be

a generated product (mostly automatically) from models (“This does not mean that everything must be

9 OMG is a non-for-profit software consortium that produces efforts aiming on reducing the complexity, lower costs and to hasten the introduction
of new software applications. OMG produces specifications through an open and vendor neutral process which proposes and invites proposals and
feedbacks.

3 Model-Driven Development

56

specified fully or even semi-graphically – the definition of model allows one to drill down right to source code level.”

(Appukuttan, et al., 2003)). Models hold the art and creativity of systems designers and

architects.

Through the architectural separations of concerns involving the use of PIMs, model

transformations, PSMs, and automatically generated code, MDA aims to achieve for

portability, interoperability, and reusability.

From centring the development of models based on well-establish standards, it is expected to

achieve a greater long-term flexibility on (OMG, 2003): (i) implementation (“new implementation

infrastructure (…) can be integrated or target by exiting designs”); (ii) integration (“since not only the implementation

but the design exists at time of integration, we can automate the production of data integration bridges and the connection

to new integration infrastructures”); (iii) maintenance (“the availability of the design in a machine-readable form

gives developers direct access to the specification of the system, making maintenance much simpler”); (iv) testing and

simulations (“since the developed models can be used to generate code, they can equally be validated against

requirements, tested against various infrastructures and can used to directly simulate the behaviour of the system being

designed.”) of systems.

From an historical point of view of system software construction, MDA, through focus on

models, represents another evolutionary step on the software field, abstracting software

even further from underlying infrastructure. It follows other advances such as the

introduction of subroutine concept by David Wheeler, the FORTRAN high-level programming

language by John Backus, or even the data programming and execution models exposed by

SQL, C#, Java. MDA raises the level of abstraction, constituting the software automation from

models a key enabler of this raising, where the models are subject of compilation in order to

produce the running system (OMG, 2003).

Brown (Brown, 2004) considers four principles that “underlies the OMG’s view of MDA”. These are:

 (i) the use of models expressed in a well-defined notation to enhance the

understanding of systems and communication of complex ideas: “Models expressed in a

well-defined notation are a cornerstone to understanding systems for enterprise-scale solutions”;

(ii) the building of systems can be achieved through models and transformations

among models, organized into “an architectural framework of layers and transformations.”;

(iii) the use of metamodels to formally support models, which “facilitates meaningful

integration and transformation among models, and is the basis for automation through tools.”;

3.3 Model-Driven Architecture

57

(iv) industry standards are fundamental for “Acceptance and broad adoption of this model-based

approach…“.

In Sinan Si Alhir’s contribution (Alhir, 2003) to the understanding the MDA, it can be found a

framing of MDA in a common system development life cycle (SDLC) process. Considering the

SDLC process a “problem-solving” process10 that derives a solution form a assumed problem, the

perspectives (conceptualization, specification, and realization or implementation) assumed in

this process, the types of activities11 (requirements gathering, analysis, design, testing and

deployment), and the types of models produced (requirements model, analysis model, design

model and the proper implementation) are illustrated in Figure 3.3 .

Requirements

Gathering
Analysis Design Implementation

Problem

Domain

Solution

Environment

Requirements Model Analysis Model Design Model
Implementation

Model

Conceptualization Specification Realization

Problem solving

represents represents

Figure 3.3 - The system development cycle process (adapted from [Alhir, 2003])

The foundational concepts of MDA, namely the viewpoints (computational independent

viewpoint (CIV), platform independent viewpoint (PIV) and platform specific viewpoint (PSV))

and models (computational independent model (CIM), platform independent model (PIM)

and platform specific model (PSM)), can be accommodated on the considered SDLC process

and activities; this is illustrated in Figure 3.4 .

11 “There are many types of approaches or lifecycle models (iterative, waterfall, and so forth) for applying these activities (…)” (Alhir, 2003)

3 Model-Driven Development

58

MDA core concepts

The set of core concepts of model driven architecture must be understood in order to

comprehend the essentials of this architecture. The MDA Guide (OMG, 2003) presents some

basic concepts and terminology, which are depicted in Figure 3.5.

Figure 3.4 - Foundational Concepts on the MDA (adapted from [Alhir, 2003]).

MDA

Objectives

Core concepts

How to

defines

has

System

Model

Model-driven

Architecture

Viewpoint

View

Platform

Application

Platform Independence

MDA viewpoints

CIM

PIM

PSM

Platform Model

Model transformation

Pervasive Services

Implementation

prescribes

Figure 3.5 - MDA core concepts.

Requirements

Gathering
Analysis Design Implementation

Problem

Domain

System

(Apps.)

Platform

CIM PIM PSM Implementation

CIV PIV PSV

Model-Driven Approach

represents represents

3.3 Model-Driven Architecture

59

The MDA Guide (OMG, 2003) also describes how the model-driven architecture is to be used.

Figure 3.6 presents a synthesis of the steps described and some inherent related concepts.

Some of these basic concepts:

(1) Computational Independent Model (CIM). The model-driven approach establishes that

requirements for the system are modelled in a Computational Independent Model (CIM) ─

also referred as domain model or business model ─ that is independent of how the system is

to be implemented.

(2) Platform Independent Model (PIM). The PIM, based on the previously elaborated CIM,

describes the system; however, the PIM model does not reflect any decisions or details

concerning platform issues. Nevertheless, the PIM may be “suited for a particular architectural style, or

several” (OMG, 2003).

(3) Platform Model (PM). After the development of the PIM, a platform for its

implementation is chosen. The chosen platform has an inherent model, the “platform model”

(“often, at present, this model is in the form of software and hardware manuals or is even in the architect’s head” (OMG,

2003)), which the architect will use to the specify the mappings from the PIM to the target

platform model, resulting in the PSM of the system.

(4) Platform Specific Model (PSM). The platform specific model reflects the platform

independent model of the system, enriched with the concepts, services and details of the

chosen target deployment platform that the system will make use of. A PSM may provide

more or less detail, may be an implementation, or act as a PIM: “A PSM may provide more or less

detail, depending on its purpose. A PSM will be an implementation, if it provides all the information needed to construct a

system and to put it into operation, or it may act as a PIM that is used for further refinement to a PSM that can be directly

implemented.” (OMG, 2003).

(5) Mappings. The transformation from a PIM to a PSM model is done through a specification

provided by a mapping. This specification is composed by rules and/or algorithms that

determine how the transformation is to be prosecuted in order to obtain model elements of

the PSM.

3 Model-Driven Development

60

Mappings

Mappings can fundamentally be categorized on two types: model type mappings and model

instance mappings.

then perform

MDA

Objectives Core concepts How to

defines has prescribes

Build a CIM

start by

Build a PIM

Build a PSM

followed by

Direct transformation

into code

Platform model

Mappings

Model type

mappings

Metamodel

mappings

Other type

mappings

Model instance

mappings
Combined model type

and instance mappings
Mapping language Templates

Marks

Mark

model

involves to choose a

then define

can be

can be

will define

can also be specified by a

is specified using a
can also include

Transformation

has as results

PSM
Record of

transformation

followed by

or

Figure 3.6 - How MDA is to be used.

Model type mappings

Model type mappings specify mappings based on model types of the PIM and PSM languages.

Being based on types, this kind of mappings consequently specifies transformations that

apply to all respective instances. Metamodels mappings − in which “the types of model elements in

the PIM and the PSM are both specified as MOF metamodels” (OMG, 2003) −, are examples of model type

mappings.

3.3 Model-Driven Architecture

61

Besides metamodel mappings, other model type mappings may exist, as there may be the

case where the types available on the PIM or PSM may be not expressed as MOF

metamodels, but in other languages, eventually in natural language. Still in this case, the

mapping can also be realized between those instances types.

Mappings rules may also be expressed according to instance values or patterns of type usage

found in the PIM model. Figure 3.7 illustrates model type mappings.

meta-metamodel

metamodel

model

data

PIM PSM

model type

mappings

The metamodel may be:

 - a MOF compliant metamodel,

- or composed by types expressed in other languagesm
a

p
p

in
g

 ru
le

s

- transform directly, or

- transform according to instance values, or

 -transform according to pattern of type usage

Figure 3.7 - Model type mappings.

Model instance mappings

Model instance mappings are defined with the purpose to define particular transformations

to apply to some of the model elements of the PIM. In these kind of mappings, marks - “which

represent concepts in the PSM” (OMG, 2003) - are applied12 to model elements of the PIM with the

primarily purpose to indicate how those model elements of the PIM should be transformed

(see Figure 3.8) or, eventually, to specify quality of service requirements on the

implementation (instead of specifying the target of transformation, leaving it to the

transformation itself, which based on the requirement specified chooses the appropriate

target).

A set of marks may be provided by a mark model which, being independent of any particular

mapping, can be used in different mappings; if necessary, marks may have parameters.

12 A mark is platform specific and is not part of the PIM (marks can be though as being applied to a “transparent layer” placed over the model.)

3 Model-Driven Development

62

As a result of the process of marking PIM elements to be subject of particular

transformations, a PIM element can be marked once or eventually, marked several times,

which in this case, will have several marks associated to it. In the latter case, it means that

the element participates in several mappings and it shall be subject of each of the

transformations associated with the mappings.

A mapping may involve several marked PIM elements; in this case each mark indicates the

role that the PIM element is to accomplish on the mapping.

meta-metamodel

metamodel

model

data

PIM PSM

model instance

mappings

m
a

p
p

in
g

 ru
le

s

Marked PIM

Platform model

Figure 3.8 - Model instance mappings.

Languages and templates

Transformations described in mappings13 are expressed in some language. This description

may be “in natural language, an algorithm in an action language, or in a model mapping language.” (OMG, 2003).

A mapping may include templates, which are “which are parameterized models that specify particular kinds

of transformations” (OMG, 2003). In model type mappings, they can be used in rules to drive the

transformation of a pattern of model elements into another pattern of models elements

(Figure 3.9).

13 Mappings may also consist of the combination of the approaches described − instance and type mappings.

3.3 Model-Driven Architecture

63

In model instance mappings, a template may have associated a set of marks in order to either

specify instances that shall be transformed according to the template, or to provide values to

parameters of the template (Figure 3.10) (OMG, 2003).

m
a

p
p

in
g

 ru
le

s

metamodel

model

PIM PSM

Templates in

model type

mappings

mapping including template

Figure 3.9 - Templates in model type mappings.

Model transformation

Model transformation generally refers to the process of converting a PIM, or a marked PIM,

into a PSM. This process can be done manually, with or without computer’s tools support, or

automatically.

m
a

p
p

in
g

 ru
le

s

metamodel

model

PIM PSM

mapping including template

Templates

with an

associated

set of marks

Figure 3.10 - Templates with an associated set of marks.

3 Model-Driven Development

64

Typically, the model transformation process has as inputs the PIM/marked PIM and the

mappings to be followed, and produces as output the PSM and a record of the

transformation (showing the PIM elements and the associated resulting PSM elements

produced in the transformation). This process is illustrated in Figure 3.11.

Figure 3.11 - Model transformation.

In model type transformations, which are based on type information, a target model is

automatically generated; nevertheless, “the transformation tool asks a user for mapping decisions in the course

of transformation where a rule specifies that information not available in the source model is required, and records those

decisions as marking of the PIM.” (OMG, 2003).

The approaches used to the transformation of models can broadly be synthesized in: (i)

transformations based on a marked PIM (with or without combination with model type

mappings) and its marks of instance mappings; (ii) transformation based on PIM and its types

mappings, which rely on metamodels or types (not defined by an explicit metamodels).

An alternative approach to model transformation is the direct transformation into code,

which does not produce the PSM. Instead, it transforms the PIM directly into code on the

chosen platform, as illustrated by Figure 3.12.

3.4 Research Efforts

Automation, which includes complete code generation and execution of models, is a key

premise behind MDD (Selic, 2003b). Tools must support the automation involved (in

particular any model transformations) in order to make model-driven development a reality

PIM

or

Mappings

PSM

Record of the

Transformation

Marked PIM

Model Transformation

3.4 Research Efforts

65

(Sendall & Kozaczynski, 2003) and thus allowing for the collection of the full benefits of this

approach to software development.

Beyond automation, other issues are considered pertinent to the success of MDD. The

following paragraphs expand, besides automation, these issues.

Figure 3.12 - Direct transformation to code.

 (1) Automation. Automation represents “the most effective technological means for boosting productivity and

reliability” (Selic, 2003b) and contributes to the enrichment of models’ role on software

development, taking those from a role of merely documentation support (and usually on

divergence from reality). It “formalizes solutions and raises the level at which we can apply creativity” (Mellor,

et al., 2003), and contributes, beyond the support to vertical and horizontal model

synchronization, to “significantly reduce the burden of other activities, such as reverse engineering, view generation,

application of patterns, or refactoring” (Sendall & Kozaczynski, 2003). Software modelling and

automatic code generation had few success in the past, being these limited to diagramming

support and skeletal code generation, which were not enough to provide a relevant

productivity return (Selic, 2003b). However, technology and knowledge have evolved, and

today, beyond a better understanding of modelling, automation technologies have matured

PIM

or

Mappings

PSM

Record of the

Transformation

Marked PIM

Model Transformation

Code Generation

Code

Direct

Transformation

to Code

Models

Code

Approach of direct

transformation into code
Approach of model transformation

3 Model-Driven Development

66

and world-wide accepted standards have emerged, such as those provided by the Object

Management Group − such as the Unified Modelling Language (UML) or the Meta-Object

Facility (MOF) (or de facto standards, such as Extensible Markup Language (XML) and Simple

Object Access Protocol (SOAP)), contributing for a better MDD positioning to be succeed in

the software development (Selic, 2003b). Selic (Selic, 2003a) understand that the most

benefits of model-driven development are reached when MDD methods offer the capabilities

of: (i) automatic code generation of the implementation from the corresponding higher-level

model, meaning that “the model and implementation are one”; (ii) execution of models, which allows

for the experimentation with models to acquire knowledge, in a quickly and inexpensive way,

of a system’s properties. Atkinson and Kunhne (Atkinson & Kuhne, 2003) also refer an goal of

MDD the automation of “many complex (but routine) programming tasks –…– which have to be done manually

today”. For these capabilities, the modelling languages used “must have the same semantic precision as

programming languages” (Selic, 2003a) (which doesn’t necessarily mean having the same detail).

(2) Tools. To MDD’ success, Selic (Selic, 2003b) calls attention to the importance of getting

attention to issues, other than ”defining suitable modelling languages and automatic code generation”,

namely, the need of tools that come in pragmatic support of model-driven development.

Several tools are needed to support usefully support MDD, such as: (i) model-level reporting

tools, to assist on the reporting and the debugging of errors at model-level, in analogy to

what happens with traditional programming language compilers and debuggers; (ii) model-

merging tools to enable the possibility to merge two or more models; (iii) model difference

tools to help to identify differences between two models; (iv) the possibility of execution of

models (eventually incomplete), in a simulation environment or in the target platform, allows

for early experimentation of the system under development, to analyse high-risks aspects or

alternative candidate solutions.

(3) Code generation. Efficiency of code generation from models does not represent a primary

concern, since current technologies can generate code with “both performance and memory efficiency

factors are, on average, within 5 to 15 percent (better or worse) of equivalent manually crafted systems” (Selic, 2003b).

Generating complete code from models isn’t technically easy, but the same happened with

code compilers when they initially introduced in the past. Nowadays, efficiency of generated

code is typically not questioned; the same is to be expected one day of code generated from

models (Selic, 2003b). Whilst there may be eventual situations where hand-crafted code may

be needed, it is expected that for next years this efficiency improves as technology gets

evolved.

3.4 Research Efforts

67

(4) Produtivity. In order to increase productivity, Atkinson and Kuhne (Atkinson & Kuhne,

2003) understand that model-driven development approaches must take into account

changes that affect longevity of software artefacts. These changes are considered in “four main

fundamental forms”: (1) in personnel - developers have important development knowledge, and

if not prevented, personnel fluctuations may lead to the loss of some of this knowledge; (2) in

requirements - there is an ever-increasing rate of new features requirements demanded for

the system, with the restriction of minimal system interruption or change impact; (3) in

development platforms - it is convenient that attention be provided so that the software

artefacts don’t become exclusively tied to a proprietary development tool, platform or

environment; (4) in deployment platforms - new technological platforms are always emerging

which may imply changes to software artefacts, and so, the development of those must take

this in consideration in order to increase their longevity. These kinds of changes, which can

occur concurrently, lead to several needs that must be addressed by MDD infrastructures in

order to decrease the sensitiveness to change of software artefacts. These needs include: (i)

software artefacts described with clear and concise concepts, and with an understandable

notation accessible to a wide range of people; (ii) high interoperability of tools and artefact

storage on well-established non-proprietary formats; (iii) user-defined mappings to shield

models from specifics of technological platforms. To attend these needs, it becomes

convenient to MDD supporting infrastructure techniques as visual modelling (as a way of

effectively using human visual perception), object-orientation (support for dynamic user

extensions to model concepts) and metalevel description techniques (allows to fully

customize models to specific domains) (Atkinson & Kuhne, 2003).

(5) Scability. MDD can be applied to large-scale applications (“the largest systems developed to date

using full MDD techniques have involve hundreds of developers working on models that translate into several millions of lines

of standard programming language” (Selic, 2003b)), so it is necessary to take some attention to

scalability issues in compilation time. Turnaround time, due to frequency of small changes,

gets an important focus over the full-system generation time, requiring that “code generators have

a sophisticated change impact analysis capabilities in order to minimize the amount of code regeneration”. The

compilation phase − compiling program code using standard programming language

compilers − is “significantly longer” than the code generation phase − translating models into code

in some programming language (Selic, 2003b).

3 Model-Driven Development

68

3.5 Conclusion

To deal with the increasing complexity and demands of software systems (“The developed

economies rely at a large extent on software…” (Miller et al., 2004b)), software engineers have resorted

to models to increase the level of abstraction, and, in an elaborated and meaningful way, to

abstract the details of the system through focusing on the select parts of the system under

analysis or design. With models, software engineers, as engineers in other disciplines, expect

to be driven to an easier way to conceive, develop, maintain, or integrate a system.

Additionally, and in opposite to other disciplines, it is possible to automate some construction

of the foundations of the applications.

An appropriate approach to software development and correct use of modelling techniques,

jointly with effective tool support, consistent and comprehensive systems models can be

conceived, will ultimately allow for the possibility to deploy the same system to another

target technological infrastructure with no modifications on the original model of the system.

Nevertheless, as stated on the vision of Object Management Group (OMG)14 (OMG, 2005a)

regarding to the development of software systems, the manifold modelling languages and its

notations, along with imprecise and insufficient concepts and semantics, as well as a difficulty

on keeping up to date the developed system’s models, drove to an unbelief on the real

benefits of broad adoption of models in software development. As modelling languages have

coalesced and converged to a unified notation (as the Unified Modelling Language (UML)

(OMG, 2005b)), the focus of efforts turned into the evolution of one language and to creation

of tools to its support on the development of software systems. Models become again focus

of attention with the hope that, along with other meanwhile emerged standards, it can be

now possible to accomplish the expected benefits of using models.

14 OMG is a non-for-profit software consortium that produces efforts aiming on reducing the complexity, lower costs and to hasten the
introduction of new software applications. OMG produces specifications through an open and vendor neutral process which proposes and invites
proposals and feedbacks.

Chapter 4

Presentation of the Projects

Chapter Contents

4 Presentation of the Projects .. 71

4.1 Introduction .. 71

4.2 Presentation of the uPAIN Project .. 73

4.3 Presentation of the USE-ME.GOV Project ... 81

4.4 Common Facts, Issues and Challenges .. 95

4.5 Conclusion ... 97

70

4

Presentation of the Projects

This chapter presents the two projects used in this thesis. The first project presented

is the uPAIN project (Ubiquitous Solutions for Pain Monitoring and Control in Post-

Surgery Patients) and the second project is the USE-ME.GOV (USability-drivEn open

platform for MobilE GOVernment) project. For each project, it is presented a brief

introduction to the project and a description under pervasive and modelling

perspectives.

4.1 Introduction

This chapter starts by presenting two projects developed in the field of ubiquitous and mobile

computing that directed their software development to a model-based/driven approach.

The first project presented is the uPAIN project (Ubiquitous Solutions for Pain Monitoring and

Control in Post-Surgery Patients). It was conceived with the purpose to create a networked

informational computing system that, making using of current wireless and mobile

communication technologies, allowed to enhance hospital’s anaesthesiology services on the

control and monitor at pain level on post-surgery (uPAIN). It aims to enable for better

assessment and treatment of the pain phenomena by the hospital staff. It was submitted

(and accepted) as proposal (uPAIN) to the Agency of Innovation (Adi) (Adi) in scope of the

Program IDEA. The IDEA program aimed to stimulate the cooperation between enterprises

and the Scientific and Technological National System (SCTN)’s entities in order to enhance

results and technological transfers from STCN entities to productive sector. The uPAIN project

Presentation of the Projects

72

was framed on the area of Information and Technology Systems and developed by its

consortium’s partners for a three years term (initially project to the time interval ranging

from 1st October 2003 to end in September 2005). The scientific research and technological

development entities forming the consortium responsible for the project prosecution were:

University of Minho, through its Information System’s Department (UMinho-DSI); MobiComp

(MobiComp), a Portuguese mobile computing and wirelesses solution’s provider; and the

Hospital “Senhora da Oliveira”, localized on the city of Guimarães, Portugal (HSOG).

The second project is the USE-ME.GOV (USability-drivEn open platform for MobilE

GOVernment) project that aimed to create an open platform for mobile government services

(USE-ME.GOV, 2003a). It was submitted as a proposal on the Sixth Framework Programme of

the European Union, under the Action Line “IST-2002-2.3.1.9 Networked business and

governments” (CORDIS), and was developed by its consortium’s partners for a two years term

(from 1st January 2004 until 28th February 2006).

 The entities that formed the partnership of this project were, as research partners: EDISOFT
15(EDISOFT), a Portuguese company specialized on critical real-time command, control,

communications, computer and intelligence (C4I) systems; Retevísion Móvil, commonly

known as AMENA16 and at the time, the 3rd mobile operator in Spain; University of Minho (in

Portugal), through its research group GET (Telecomputing Engineering Group) (GET); Indra

Systems (Indra), a leading Spanish company in Information Technologies and Defence

Systems; Poznan University of Economics (in Poland), through its Department of Information

Systems17 (PoznanUE); Fraunhofer Institute for Applied Information Technology (FIT) (FIT) (in

Germany); Arakne (Arakne) an Italian software company focused on pervasive computing and

offering solutions in the healthcare, pharmaceutical, public administration, and bank fields;

and IntuiLab (IntuiLab), a French company specialized in human-computer interaction, and in

multimodality and mobility technologies. As end-user partners of USE-ME.GOV project were:

Vila Nova de Cerveira (VNC-ANMP; VNC-CM; VNC-RTAM), a small town (about 9000

inhabitants) in north of Portugal and at the border to Galiza (Spain); Formatex (Formatex), a

regional organization from the Spanish region of Extremadura, promoting interdisciplinary

scientific, technical and industrial research, and working on several fields related to

knowledge-based society; Gdynia (Gdynia), a city of Poland with about 255 000 inhabitants);

and Bologna (Bologna), the seventh largest city in Italy (with about 400,000 inhabitants).

15 As stated in the USE-ME.GOV project home page (USE-ME.GOV), EDISOFT acquired the Geograf, S.A. (which is mentioned in (USE-ME.GOV,
2003a) as a project participant and as belonging to the group PortugalSpace; PortugalSpace is by its turn referred as project participant on the
project fact sheet (CORDIS)).
16 AMENA was acquired by France Telecom in 2005 (JornaldeNegócios, 2005), and is nowadays (ElMundo) called Orange (Orange).
17 At USE-ME.GOV project home page (USE-ME.GOV), this department is referred as “Department of Management Information Systems”.

4.2 Presentation of the uPAIN Project

4.2 Presentation of the uPAIN Project

The uPAIN project was developed for the anaesthesiology services of hospitals. It consisted of

an information system conceived to assist in monitoring and controlling pain of patients that

stay in a relatively long period of recovery after being submitted to a surgery. During this

period, analgesics are administered to them in order to minimize the pain that increases as

the effects of the anaesthesia gradually disappear. This administration of analgesics is

controlled by means of specialized devices called PCAs (patient controlled analgesia) based in

the personal characteristics of the patient and the kind of surgery to which the patient has

been submitted. The PCA can be described as “a medication- dispensing unit equipped with a pump attached

to an intravenous line, which is inserted into a blood vessel in the patient’s hand or arm. By means of a simple push-button

mechanism, the patient is allowed to self-administer doses of pain relieving medication (narcotic) on an ‘as need’ basis”

(Machado, Lassen, Oliveira, Couto, & Pinto, 2007).

The motivation of uPAIN project arises from the fact that different people feel and react

differently to pain, and there is a considerable variability of narcotic doses efficiency from

patient to patient. This makes anaesthesiologists interested in monitoring several variables in

a continuous manner during patients’ recovery, as it allows them to increase their knowledge

on what other factors, besides those already known, are relevant to pain control and in what

measure they influence the whole process.

The main idea behind the uPAIN system is to replace the PCA push-button by an interface on

a PDA (personal digital assistant) that, while still allowing the patient to request doses from

the PCA, create records in a database of all those requests along with other data considered

relevant by the medical doctors. uPAIN system was thus intended to provide a platform that

enabled for improvement of pain treatment services by allowing: (i) to establish automatic

regular assessment and registering of pain level, and to provide for an enhanced and faster

individual therapeutic prescription to pain symptoms; (ii) to provide support for written

therapeutic protocols and storage of the therapeutics treatment given to patients; (iii) to

facilitate to the Director of the Anaesthesiology Services: (a) the adjustment of the

monitoring and controlling equipment to the particular capabilities of each different person

composing his staff; (b) the supervision of all staff activities for nocturne or weekend periods.

Presentation of the Projects

74

4.2.1 The Pervasive Perspective

Figure 4.1 illustrates the architectural solution for uPAIN project. It reflects the devices and

communications technology needed to provide support for the information system that

accomplishes the functionality expected from the uPAIN system.

The uPAIN project connects, in a computer network system, the monitoring equipment and

the PCA (patient controlled analgesia), and support communication among staff and patients.

This enables, from the staff point of view, the ubiquity of the system’s functionality. A central

server (pSC) receives information sent by the patient PDA (pPDA). This server is responsible

for the management of all services provided by UPAIN. It provides support for data

acquisition from all medical equipment (like patient monitors and PCAs), for accessing

databases, and for managing requests from all the pPDAs (patient PDAs) and sPDAs (staff

PDAs).

The uPAIN system was conceived to allow for the hospital staff, through wireless networks,

to remotely control and monitor the pain even outside the hospital network (through mobile

phone networks).

Figure 4.1 - General architecture for the uPAIN system.

4.2 Presentation of the uPAIN Project

75

4.2.2 The Modelling Perspective

The uPAIN project emerged as an initiative in ubiquity arena, following as principles the

requirements management based on effective necessity and the derivation system’s

executable artefacts from transformation of system’s models. As such, an presentation of the

project development under a perspective of modelling development is henceforward done.

Considering that clients and developers have different points of view towards requirements,

two different categories for requirements were considered:

(1) User Requirements. User requirements result from an elicitation task focused in the

problem domain (aiming to acquire and understand the needs of users and project

sponsors with the ultimate purpose being the communication of these needs to the

system developers); they are typically described in natural language and informal

diagrams.

(2) System Requirements. System requirements result from developer’s effort to

organize user requirements at the solution domain. High-level abstract models of

system are used to establish and structure these requirements, and represent a first

system representation for use on design phase.

To describe the uPAIN user requirements, developers constructed several use case diagrams.

Figure 4.2 illustrates the contextual use case diagram that depicts the general functionalities.

Figure 4.2 - Level 0 Use Case diagram for uPAIN (from (uPAIN, 2005a)).

Presentation of the Projects

76

The use cases defined in this diagram were refined with additional use case diagrams. Figure

4.3 illustrates one of these use case diagrams.

{U0.1.1} Inject

Drug

{U0.1} Administer Drug

Patient

{U0.1.5} Configure

Drug Parameters

Medical Staff {U0.1.4} Validate

User

{U0.1.3} Manage

Drug Administration

«uses»

«uses»

{U0.1.2} Request

Bolus
«uses»

PCA

«uses»

Figure 4.3 - Use case refined diagram for the “Administer Drug” use case (from (uPAIN, 2005a)).

The desired dynamic behaviour of the system regarding its functional interaction is further

illustrated, at the analysis phase, by several stereotyped versions of sequence diagrams built

by the developers. Figure 4.4 shows an example of a stereotyped sequence diagram.

sendRequest()

ProcessRequest()

Patient

{U0.1.2} Request

Bolus

{U0.1.3} Manage

Drug Administration

PCA Medical Staff

{U0.1.1} Inject

Drug

{U0.1.4} Validate

User

sendOrder()

requestMedicalDecision()

sendID(id)

sendOrder()

reconfigureDrugParams(id,params)

sendID(id)

{U0.1.5} Configure

Drug Parameters

sendConfiguration(params)

authorizeDrugAdministration(id)

[guard]

alt

[guard]

alt

{SD0.1} Bolus Request

inject()

inject()

setConfiguration(params)

Figure 4.4 - UML stereotyped sequence diagram for a uPAIN use case macro-scenario (from(uPAIN, 2005a))

4.2 Presentation of the uPAIN Project

77

These stereotyped versions only involve actors and use cases in the interactions. They allow

expressing “a pure functional representation of behavioural interaction with the environment and are particularly

appropriate to illustrate workflow user requirements”(uPAIN, 2005a) and facilitate the validation of user

requirements as they are easier understandable by the users. They differ from the traditional

sequence diagrams as these last ones already incorporate system objects, which imply

already modelled structural elements of the system.

Additionally to the specification of user requirements through use case diagrams, it was

considered relevant to give particular attention the validation of user requirements models.

uPAIN development approach considered that static requirements models, expressed

through use case models and stereotyped sequence, were not enough for having trustable

and clear requirements. This happens due the possibility of these diagrams not being fully

understandable by non-computer science educated stakeholders. These stakeholders may

have difficulties in finding and coping with the all inter dependencies between the

requirements that were elicited. Therefore, the approach, beyond using of static models to

express user requirements, developed animation prototypes to validate, through a dynamic

perspective, the user requirements.

 Figure 4.5 shows an image of the animation prototype used for the uPAIN system user

requirements validation.

Figure 4.5 - Interactive animation prototype for uPAIN system (from (Machado, et al., 2007)

Presentation of the Projects

78

These animation prototypes present user-friendly visualizations of system behaviour. This

approach to validation was “experimented with and proved to be very effective” (Machado, et al., 2007),

promoting a deeper stakeholder’s involvement in the analysis phase and a better clarification

and elicitation of workflow requirements.

The static user requirements models (use case and stereotyped sequence diagrams) were

used to derivate, through intermediating Coloured Petri-Nets (CPNs), the animation

prototypes. Figure 4.6 presents a CPN responsible for the animation prototype interaction

related to a use case of the uPAIN project.

Figure 4.6 - CPN responsible for the prototype animation of a use case (from (Machado, et al., 2007)).

4.2 Presentation of the uPAIN Project

79

The behaviour for the animation prototypes used in this project resulted from a “rigorous

translations of the sequence diagrams into Coloured Petri Nets (CPNs)” (Machado, et al., 2007).

The link between UML diagrams and CPNs are not obtained directly, but in two steps: the

first is supported by the fact that the “sequence diagrams are directly derived from the use cases”; the

second is ensured by a “direct transformation of sequence diagrams into CPNs” (Machado, et al., 2007).

Two simple rules were used for that translation: one for transformation of successive

messages; other for the translation of alternative block of interaction messages. Figure 4.7

the translation of successive messages.

Message1

Message2

PreCond1

PreCond2

UseCase1

Message2

UseCase2 UseCase3

Message1

a) b)

 Figure 4.7 - Transformation of messages (uPAIN, 2005b).

The translation of an alternative block of messages is illustrated in Figure 4.8. The translations

reveal a horizontal mapping between the UML sequence model and the CPN model.

alt

Message1

UseCase1

Message2

UseCase2 UseCase3

Message3

a) b)

Message1

Message2

PreCond1

PreCond2

Message3

PreCond3

[true] [false]

Figure 4.8 - Transformation of an alternative block (uPAIN, 2005b)).

From validated user requirements, the design phase defined the models that comprise the

structure and behaviour of the intended system, starting by the logical architecture of the

system and followed by other models.

Presentation of the Projects

80

The uPAIN project looked for the incorporation of principles of validation of requirements

and the derivation of system’s executable artefacts from transformation of system’s models.

To obtain the logical architecture from the validated user requirements, it was used the 4SRS

technique.

The 4SRS (4 Step Rule-Set) technique allows the transformation of user requirements into the

logical system-level architecture (here represented by an object diagram) representing

system requirements. Figure 4.9 presents the schematics of this technique; further

information on the 4SRS technique can be found on (J. Fernandes & Machado, 2001).

Figure 4.9 - 4SRS Technique (adapted from (J. Fernandes & Machado, 2001))

4.2 Presentation of the uPAIN Project

81

The 4SRS represents a vertical mapping based on a set of rules for transformation of a user

requirements models into the logical structure model.

Figure 4.10 shows the logical architecture of the system. The logical architecture defines the

high-level objects/components of the system, their responsibilities, and the relationships

among them. This logical architecture is independent of implementation constraints.

Several other artefacts (such as database models, sPDA and pPDAs models, pSC models, and

other models of the uPAIN system) were developed along the development of the uPAIN

project.

Figure 4.10 - uPAIN logical architecture.

4.3 Presentation of the USE-ME.GOV Project

The USE-ME.GOV (USability-drivEn open platform for MobilE GOVernment) project was

motivated by an understanding that the current availability of mobile communications and

Internet technologies were not enough to promote and explore the potential of mobile

access to appropriate e-government services. It was understood that public mobile services

Presentation of the Projects

82

should: (i) consider the specific needs and capabilities of different users; (ii) offer a high level

of usability and friendliness, taking into account context of users; (iii) be easy to configure

and to deploy, and to be not dependent on expensive hardware, software, or demanding

specialized skills by sharing the use of technical resources and skills; (iv) ease the promotion

of services of local companies and public initiatives (USE-ME.GOV, 2003b).

The USE-ME.GOV project focused on the development of a ”new open platform for mobile government

services, supporting usability, openness, interoperability, scalability, thus facilitating service deployment and access, as well

as attractive business models satisfying service providers, public authority and citizens”(USE-ME.GOV, 2003b). This

platform was intended to facilitate the access of authorities to the mobile market by allowing

them to share common modules (‘platform sharing’) and to deal with multiple mobiles

operators independently of each one’s interface.

Figure 4.11 and Figure 4.12 illustrate the concept of ‘platform sharing’ brought by the USE-

ME.GOV project.

Besides these main outcomes, the USE-ME.GOV project contemplated scientific and

innovation objectives: (i) to contribute to new generation of open service platforms for mobile

users; (ii) and to improve usability on mobile interfaces.

Figure 4.11 - Situation before USE-ME.GOV (USE-ME.GOV,

2003b).

Figure 4.12- Situation after USE-ME.GOV(USE-ME.GOV,

2003b).

4.3 Presentation of the USE-ME.GOV Project

83

The USE-ME.GOV system general architecture is illustrated by Figure 4.13. The design of the

USE-ME.GOV system was conceived to allow “the delivery of content and e-services to users who use variety

of mobile devices with different capabilities and connecting by various communication channels” (USE-ME.GOV,

2006). These services were designated as Added-Value Services (AVS) as they bring

additional value to the platform and are not an integral part of the platform; they are

delivered by third parties, and may be created “using virtually any technology and deployed on any machine

as long as its functionality is accessible via designed interface” (USE-ME.GOV, 2006).

The user connection to the platform is made through an access point that allows for

communication using a defined communication channel. The USE-ME.GOV Platform basically

consists of two separate application system: (i) Core Platform, which is responsible for user’s

platform access, user and terminal management; (ii) Service Repository, which is a central

registry of services.

Figure 4.13 - USE-ME.GOV System General Architecture (from (USE-ME.GOV, 2006))

The USE-ME.GOV system also contains what is designated by “platform services”: “services

provided either by the platform operator or third parties, which extend the functionality of the USE-ME.GOV platform (…)”

(USE-ME.GOV, 2006). Platform services included in the USE-ME.GOV system were: (i) Context

Provision and Aggregation Services; (ii) Localization Service; (iii) Content Provision and

Aggregation Service. These services enable the use of user’s context, user’s localization, and

access and aggregation of data form external sources.

Regarding the connectivity with external operators, it was developed interfaces for

connecting the USE-ME.GOV platform to the national mobile operators (for those operators

that do not have a ParlayX platform, specific connectors needed to be developed).

Presentation of the Projects

84

4.3.1 The Pervasive Perspective

The USE-ME.GOV system is a system that has to deal with potential heterogeneous cellular

devices of the users, which in time, is replaced by other more technologically evolved with

new capabilities or improved resources that enable them to be able to fulfil new

functionalities. USE-ME.GOV aims providing services availability everywhere in a particular

regions, taking into account the users’ context, and thus, simplifying users access. It can be

said that this availability is in the way towards service ubiquity.

The users, accompanying by its mobile terminals (Figure 4.14), move through diverse

locations and are exposed to different surroundings; consequently, users need information

and services related to their environment. Useful services take into account their contexts,

and facilitate the finding and provision of information and services. This represents an

opportunity to enhance the involvement and interaction of user with real environment: “A

compelling example is spontaneous community participation (Report complaint service), where the use of advanced mobile

technologies is much more than just an additional channel and aims to raise new applications areas. (…)” (USE-

ME.GOV, 2005)”

Figure 4.14 - User mobile access through cellular networks (adapted from (USE-ME.GOV, 2004b))

USE-ME.GOV provides for user context and localization information, and based in this

information, it turns out possible to find the most appropriate services for a user, and

proactively provide for relevant information to the user. Taking into account the

requirements of openness, usability, and interoperability, issues of relevance come about the

representation of heterogeneous mobile capabilities and user profiles, as well as context

information representation and services description and discovery.

4.3.2 The Modelling Perspective

The USE-ME.GOV project structured its development work in the following main tasks: (i)

scenario definition and evaluation task; (ii) a series of development and (integrated) research

tasks, typically disposed as “(…) traditional flow of activities for system development, known as waterfall model:

(…)” (USE-ME.GOV, 2003b). These development tasks encompassed activities for

4.3 Presentation of the USE-ME.GOV Project

85

requirements and analysis, preliminary design and Mock-up (where research activities took

place), detailed design and specification, implementation and integration and validation

tasks.

Scenario definition and evaluation task

Preceding the definition of the various scenarios of the added-value services, it was

performed an initial general requirement analysis for a first description of services and

general requirements that USE-ME.GOV system should conform to. This analysis

encompassed: (i) user requirements analysis; (ii) technical implementation requirements: (iii)

review of available business models; (iv) reviews of state-of-art on intuitive mobile interface

design and state-of-art on platform architecture and general design.

User requirements analysis aimed to describe the general service requirements and

constraints on the platform from the authority perspective (not the usability requirements

for the mobile user). It assembled “examples of potentially beneficial mobile services described by the end-user

partners”(USE-ME.GOV, 2004d). Technical implementations requirements took into account

the needs of the users of the services (public administration service providers, third party

providers, operators and citizens). It described the technical requirements for USE-ME.GOV,

such as the use of standards and proven technologies (J2EE, SML, etc.) and proposed an

architecture for USE-ME Platform and for AVS. Review of available business models aimed to

give “an overview of available business models in targeted markets such as public administration and mobile service

provision” (USE-ME.GOV, 2004c). Reviews of state-of-art on intuitive mobile interface design

and state-of-art on platform architecture and general design intended to bring a better

understanding of the corresponding current state and research activities. The former focused

on interaction styles, the latter focused on current trends in IT domains that can be of

interest to the definition of an open platform hosting mobile services (USE-ME.GOV 2004e;

USE-ME.GOV 2004h).

The consortium of USE-ME.GOV understood that the initial number of services with potential

interest to end-partners was too high for the scope and availability of resources of the

consortium project. Therefore, based on previous synthesis of service features from user

requirements analysis (USE-ME.GOV, 2004a), it was selected a restricted number of services

to be prosecuted in the project. These services were termed as “Pilot services”. The USE-

ME.GOV project provided several pilot services: (a) Healthcare service; (b) Mobile Student

service; (c) Report of Complaint service; (d) City Information service.

Presentation of the Projects

86

Based on a user perspective, the service and use scenario definition task produced a detailed

description of use scenarios for a set of targeted pilot services. The scenario definition and

use evaluation task focused on describing “the most fundamental actions between the mobile user and the

service in order to obtain the information provided by the service” (USE-ME.GOV, 2004d) and leaved out

issues related to interface design and technical implementations. This description, which “can

be interpreted as first step into the design process, summarizing the underlying functional concepts and characteristics for

each service” (USE-ME.GOV, 2004d), aimed to allow the driving of: (i) the platform requirements

analysis; (ii) the usability requirements analysis; (iii) pilot service specifications. For the

scenarios description, it was followed a structure consisting in two parts: (i) a narrative

description of the scenario; (ii) use cases analysis. The narrative description of the scenario

was structured in three sections: (i) Use Scenario (which main elements are: situational

context; motivation for service use; fundamental tasks; expected outcome; context-

awareness); (ii) Service provision (which describes the motivation for the service from the

perspective of the public entity); (iii) Service objectives and benefits (to the user and to the

service provider).

The use case analysis followed a “structured approach defined in terms of a template” (USE-ME.GOV,

2004d), and aimed to describe the service behaviour from the user perspective, “capturing all

visible events and interactions between the mobile user and the service that lead from the initial service request to the final

achievement of the user goal” (USE-ME.GOV, 2004d). Figure 4.15 and Figure 4.16 are examples of

models elaborated for the service “Report of Complaints”, one of the pilot services targeted

for implementation.

Citizen Local Authority

Request service access

Make a complaint

Request complaint status

Deliver complaint

resolution notification

Acknowledge and deliver

access code

Acquire user context

Deliver complaint status«uses»

«
u

s
e

s
»

«uses»

«use
s»

«uses»

Figure 4.15 - Use cases for service Report of Complaints ((USE-

ME.GOV, 2004d))

Start

Request

access
Deliver

interface
(list of options)

End

Citizen Local

Authority

Receive

complaint

request

Store

complaint

(service code)

Select location

Check status

of complaint

Make a

complaint

Request

notification

(service code, user id)

Acquire user

context

(location

information)

(location)

(complaint confirmation, access code)

Check Status

Deliver status

information

(service code, access code)

(complaint status)

Select a service

Figure 4.16 - Activity diagram for service (Report of

Complaints ((USE-ME.GOV, 2004d)).

4.3 Presentation of the USE-ME.GOV Project

87

Usability is defined based on ISO 9241-11 as: “the extent to which a product can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use” (USE-ME.GOV,

2004e). It is noted that for mobile contexts, the usability analysis and design need to take into

account “mutable situations and goals, multitasking activities, simultaneous interaction with different devices and

mutable physical and social environments” (USE-ME.GOV, 2004e) and that these changes can occur

much more rapidly and frequently than in controlled and static environment. It is stated that

three dimensions of mobility affect the mobile experience as a whole: (i) device mobility,

regarding the continuous access to services while moving the device; (ii) user mobility,

referring to location and device independence service access; (iii) service mobility, regarding

to the capability to provide a service irrespective of user and device.

The main goal of the task of platform requirements analysis was “to define a logic architecture for the

system that could capture all its functional requirements and its non-functional intentionalities” (USE-ME.GOV,

2004g). Taking into account the work performed on the Service and Use Scenario Definition,

it aimed to “highlight the system requirements that can affect the appropriate decomposition of the system” (USE-

ME.GOV, 2004g). An object model and an informal description of the objects expressed these

system requirements.

The approach taken for the specification of the system requirements was based on the

methodology “4 Step Rule-Set (4SRS)” that guides the transformation of use cases into

objects. The main result of the application of this methodology was an object model at

system level. This approach requires that before applying the methodology, the functional

model (use case model) that reflects the system’s services must be defined.

User goals and corresponding scenarios definitions were translated into a set of use cases

describing the set of functional requirements applied to USE-ME.GOV. It was identified a “set

of functional requirements applied to a set of different application domains” (USE-ME.GOV, 2004g).

Two orthogonal criteria were defined to breakdown platform functionalities: (i) one

describing the main functionalities of the system (Figure 4.17 is an example of this criteria

application); (ii) the other one defining the different application domains (Figure 4.18

illustrates an example of this criteria application).

Presentation of the Projects

88

The instantiation of functionalities into the specific application domains was obtained

considering the combination of each pair (functionality, domain). The use cases identified in

the level zero diagram were refined, as exemplified by Figure 4.19.

Figure 4.17 - Level zero use case diagram by criteria of main

functionalities.

Figure 4.18 - Level zero use case diagram by criteria of

application domain.

Figure 4.19- Level one use case diagram of "send alert" use case.

The non-functional requirements “captured through the analysis of the USE-ME.GOV system use cases and

derived from the general objectives drawn in the project proposal” (USE-ME.GOV, 2004g) were documented

along several topics: (i) Interoperability, flexibility (extensibility) and openness; (ii)

Heterogeneity (device and networks heterogeneity); (iii) Scalability; (iv) Fault-tolerance; (v)

Security. The cross-cutting concerns were also documented by topics: (i) System

management; (ii) Service deployment and configuration; (iii) Multilingual support.

 Figure 4.20 shows part of the object diagram for USE-ME.GOV. It identifies the high-level

objects/components of the system. This object diagram “represents an ideal architecture for the system,

because its construction is supposedly independent of any implementation constraint” (USE-ME.GOV, 2004g).

4.3 Presentation of the USE-ME.GOV Project

89

Pilot Services Requirements Specifications were developed after the user requirements

analysis and service scenario description.

Figure 4.20 - USE-ME.Gov raw diagram (part of).

For each service, it was reviewed the service scenario and described interactions between

(Figure 4.21 exemplifies an interaction) the user and the service. Based on that description, a

list (in a tabular form) of functional requirements for each service was defined.

Citizen Service

Access service()

Make complaint()

List of options() Recognise user()

Traffic lights malfunction()

Complaint confirmation()

Location()

More precise location within previous one()

Receive complaint()

These two could
be replaced by aquire

user location

Figure 4.21 - Sequence diagram for citizen making a Complaint in the “Citizen Complaint Service” (USE-ME.GOV, 2004k).

Preliminary Design and Mock-up

Activities of preliminary design aimed to anticipated design decisions and pathways

concerning to usability of interfaces for the selected scenarios and to platform design.

Presentation of the Projects

90

The activities in preliminary design and mock-up were: (i) Platform Architecture Design Mock-

Up; (ii) Usability-Driven and Mock-Up Evaluation; (iii) Prototype Implementation and

Validation.

Figure 4.22 - Part of the “Report of Complaints Service” requirements (USE-ME.GOV, 2004e).

Regarding to user interface design, the approach was a usability-driven design and mock-up

for the user interfaces of the pilot service previously identified. These mock-ups were aimed

to allow the identification of critical design characteristics and the provision to project

partners with “preliminary design for the kind of service applications considered by USE-ME.GOV”(USE-ME.GOV,

2004f). The work in this task followed a design-evaluation-redesign cycle.

Platform Preliminary Design and Mock-up Evaluation had the objective of providing “a general

analysis of preliminary design of the Use-Me.Gov system together with the evaluation of mock-ups of the system (...) “

(USE-ME.GOV, 2004h). This preliminary design derived into an analysis model which was

intended to evolve later into a design model.

Figure 4.23 - High-level USE-ME.GOV diagram(USE-ME.GOV, 2004b)

Number Description

SR4-01 This service is available for all users in the platform. There is no need of registering this particular

service.

SR4-02 The service has the following options available:

 - Make a complaint or suggestion

 - Request voice call from PA to specify details of the complaint

 - Request list of complaints. Within this one:

 - Request for complaint status

 - Request for complaint follow-up reports

 - Cancel a complaint

SR4-03 When the PA receives a complaint it may call the user (voice call) in order to obtain more detailed

information even if the user didn’t requested it.

SR4-04 When making a complaint the user selects the kind:

 - Holes on the street

 - Holes on the side walk

 - Electricity and illumination poles

 - Garbage collectors damaged or full

 - Traffic Lights malfunction

4.3 Presentation of the USE-ME.GOV Project

91

In a posterior document called “Platform Architecture Design” (USE-ME.GOV, 2004g), the

overview of the architecture of the USE-ME.GOV provided in this document was expanded

and deeper described/explained.

Figure 4.24 - Sequence diagram "Make complaint” (USE-ME.GOV, 2004b).

The Platform Architecture Design presented the fundamentals of the architectural design

established for the USE-ME.GOV system. It presented the reference architecture,

architectural factors and decisions that might have influence on the system architecture, the

functional perspective of the main components sub-systems, and the structure of systems

components (which were further detailed is a posterior task of detail design). The

architectural model of USE-ME.GOV has its foundations on the Web Services Architecture

(WSA) and in particular on Service Oriented Model. The USE-ME.GOV consists of the

following components (USE-ME.GOV, 2004i): (i) Core platform; (ii) Platform Services; (iii)

AVServices; (iv) Service Repository. Core Platform is the user entry point in the system. It

communicates with the user via mobile operator network and Internet; it dispatches to the

AVServices the incoming user requests. Platform Services are services registered within

Service Repository; they extend the standard set of platform functionality: “Platform Services

expose their functionality to other platform services as well as AVServices via common interfaces registered in the Service

Repository. (…) USE-ME.GOV is to provide minimal set of platform services (user localization, contextualization, content

provision, and content aggregation)” (USE-ME.GOV, 2004d). AVServices are services directly

accessible by end-users and that services their requests. Service Repository provides a

directory of services and allows for discovery and lookup of services.

Presentation of the Projects

92

Regarding system clients, the USE-ME.GOV platform aimed to work with heterogeneous

devices “regardless the different terminal capabilities arising from used: OS and software version, physical limitations

(like screen or keyboard size), and diversity of available bearers or communication channels.” (USE-ME.GOV, 2004d).

As such, it was chosen a thin client model as basis for the client application: “Platform Entry

Screens, Platform Administrative Screens (accessible by the user) and most of AVServices are designed to conform to micro-

browser specifications (…) ” (USE-ME.GOV, 2004d). Nonetheless, the platform was conceived to

support AV Services based on a thick-client model: “(….) AVService exposes interfaces which allow for

application download. In such a case [, the] platform role in the communication constraints to user authentication (granting

ticket). The client communicates directly with the AVService” (USE-ME.GOV, 2004d).

Figure 4.25 - User Management use

cases.

Figure 4.26 - Subscription states.

Figure 4.27 - Authenticate User activities

diagram.

The factors that might had influence on the architecture of the system were also presented in

a tabular describing the factor, its impact, and its solution. The functional perspective of the

USE-ME.GOV system regarding the Core platform and Service Repository was presented

through use cases models (use case diagrams, state chart diagrams, and activities diagrams

were used). Some examples of the diagrams elaborated are presented below. For Core

Platform the following diagrams are illustrated: use case diagrams (Figure 4.25), state chart

diagrams (Figure 4.26) activity diagrams (Figure 4.27).

For Service repository, Figure 4.28, Figure 4.29, Figure 4.30 illustrate use case diagrams for

service provision, service authentication and service authorization.

Detailed Design and Specification

The activities in Detailed Design and Specification were for: (i) Pilot Services Detailed Services

Specification; (ii) Detailed Components Interface and Application Specification; (iii) Meta

Protocol of Services Design; (iv) Platform Functional Design (an implicit research task).

4.3 Presentation of the USE-ME.GOV Project

93

The previous work on Pilot Services Requirements were, in a first phase, further described by

a Pilot Services Detailed Specification task (USE-ME.GOV, 2004l) and in a second phase,

detailed by a task of Platform and Application Detailed Design. The pilot services were, in

general, described and detailed with information/diagrams about a general description,

service architecture, data model, scenarios (expressed with sequence diagrams), and classes.

Figure 4.31, Figure 4.32, Figure 4.33, Figure 4.34, Figure 4.35 illustrate some of these

artefacts for the Complaint Service.

Figure 4.28 – Use case model for Service

Provision.

Figure 4.29 - Use case model for Service

Authentication.

Figure 4.30 - Use case model for

Service Authorization.

Figure 4.31 - High-level Service diagram (USE-

ME.GOV, 2004g).

+sendMessage(in platformMessage)

+processInteractiveRequest(in platformRequest, in userName, in terminalID, in terminalModel)

-getComplaintOptions()

-selectComplaintOption(in complaintOption)

-setVoiceRequest(in terminalID, in timeInterval)

-setDescription(in description)

-cancelComplaint(in complaintID)

-getComplaintUserList(in terminalID)

-selectComplaint(in complaintID)

-setComplaintNotification(in complaintID)

-getComplaintStatus(in complaintID)

-getLocationOptions(in userContext)

-selectLocation(in location)

complainInterface

-getComplaintChanges()

-receiveComplaintChanges()

notificationProcessor

+processContext()

-storeContext()

userContextInterpreter+PAsetComplaintOptions()

+PAupdateComplaintTI(in complaintID, in complaintStatus)

+PAgetComplaintList()

+PAselectComplaint(in complaintID)

localAuthorityInterface

-triggerComplaintChanges()

+store(in object)

+retrieve() : object

dbAccess

PA Complaint Application

AVService

Figure 4.32 - Service Architecture diagram (USE-ME.GOV, 2004g).

Figure 4.33 - Platfom interfaces to implement

(USE-ME.GOV, 2004g).

Figure 4.34 - Main menu user

interface (USE-ME.GOV, 2004g).

{01.2.3d} ComplaintDescription

PK ComplaintID

TerminalID

ComplaintDate

LastStatus

FK1 OptionID

PlatformRequest

ComplaintTypeID

FK1 ComplaintType

{01.2.1.d} ComplaintOptions

FK1 OptionID

ComplaintTypeID

Description

FK1 ComplaintType

{01.7.5.d}CancelComplaintData

PK CancelID

ComplaintID

CancelDate

Description

{01.4.d}TechnicaComplaintInformation

PK ComplaintID

StateChangeData

State

Expedition

Description

PAEmployee

{01.4.2d}VoiceCallRequest

PK VoiceReqID

FK1 ComplaintID

TerminalID

TimeInterval

TimeStap

PhoneNumber

{01.2.5.d}UserInformationData

PK TerminalID

TerminalModel

UserID

UserName

CreationDate

{01.1.d}ComplaintOptionInformation

PK OptionID

PK ComplaintType

ComplaintParameter

ParameterValue

Description

{01.3.1.d}UserContextData

ContextData

ComplaintID

FK1 TerminalID

{01.7.3.d}ComplaintStatusInformation

PK StatusRequestID

TerminalID

ComplaintID

RequestDate

Figure 4.35 - Data model diagram (USE-

ME.GOV, 2004g).

The Platform and Application Detailed Design detailed and complemented previous work

regarding USE-ME.GOV architecture and was intended to serve as basis for construction

phase of the project.

Useme

Plattform

AVService

PA

Complaint

Application

PA

Complaint

Report

Service

Interface Description/Implementation

public PlatformResponse

processIntaractiveRequest(PlatformRequest req, UserName

userName, TerminalID terminalID, TerminalModel

terminalModel) throws UserNotAuthenticatedException

Receive first contact from the platform to

the AVService.

This should be implemented in the

AVService component.

Additional description in [6].

public processMessage(PlatformMessage msg) This should be implemented in the

AVService component.

Additional description in [6].

public String getDescription() This should be implemented in the

AVService component.

Additional description in [6].

public XACML getAccessPolicySet() This should be implemented in the

AVService component.

Additional description in [6].

Presentation of the Projects

94

The USE-ME.GOV platform consists of two separate application systems, Core Platform and

Service Repository(USE-ME.GOV, 2005).

Figure 4.36 - USE-ME.GOV System General Architecture.

Figure 4.37 - Service Repository General Architecture.

The Core platform and Service Repository were organized through general subsystems/layers

diagrams and detailed through class and sequence diagrams (Figure 4.38, Figure 4.39 and

Figure 4.40 illustrates some of the diagrams elaborated for the Core platform).

Meta-Protocol of Service Types have had the purpose to define a framework for “meaningful

communication among platform components and dynamic services execution of services’ operations” (USE-ME.GOV,

2004j). Platform Functional Design concerns research activities and describes research

findings and decisions.

Figure 4.38 - Core Platform Layers View.

4.3 Presentation of the USE-ME.GOV Project

95

Implementation and integration and validation

Implementation and integration had the purpose to define the development environment,

the process for integration, the test plan, and perform the integration. Validation aimed to

specify how to validate the USE-ME.GOV system against the objectives.

Figure 4.39 - Class diagram for HTTP Server Adapter(Layer 1)

Figure 4.40 - Sequence diagram for doGet request of

HTTPServerInterface.

4.4 Common Facts, Issues and Challenges

This section aims to express particularities that are common to the projects and to anticipate

challenges that these kinds of projects seem to face, in order to better cope with the

consistent use of models and the specific characteristic of pervasive information systems,

such as resources heterogeneity and volatility of functionalities.

Despite of the significant difference of their size, it is possible to notice common facts about

the projects. Among these are the following:

 They defined the overall process elements that sustain the software development

project.

 They aimed to make use models along the project. The modelling language

generally adopted was UML (Unified Modelling Language), and they resort to use

case models for synthesizing functional requirements.

 :

HTTPServerInterface

 :

HTTPRequestProcessor

 :

HTTPAccessPoint

 : Connection :

ServiceRepositoryService

ServiceA :

AVService

doGet(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)

getConnection(javax.servlet.http.HttpServletRequest)

processHTTPRequest(javax.servlet.http.HttpServletRequest)

convertToPlatformRequest(javax.servlet.http.HttpServletRequest)

getServiceByRequestUri(String)

processInteractiveRequest(PlatformRequest, String, String, String)

AVService

PlatformResponse

convertToHttpResponse(eu.usemegov.coreplatform.common.PlatformResponse)

HttpResponse
HttpResponse

Presentation of the Projects

96

 They aimed to achieve ubiquity of the services. Services were conceived to be

accessible through common computer networks or cellular networks, allowing for

its users to access anywhere to the service.

 They dealt with potentially heterogeneous devices susceptible to be replaced or

evolved. The cellular phones or PDAs are by its nature heterogeneous and

susceptible of frequent evolution.

 They defined the main phases/activities of the process need to be executed in the

development process.

 They use the 4SRS technique to achieve the transformation of requirements into a

first object model of the logical architecture of the system.

The observation of the projects revealed some come issues that may be pertinent to the

effectiveness of the fully adoption of strong model-based approach and to the suitability to

deal with some of the characteristic or pervasive information systems. Among these issues,

mainly due to an absence of detailing and formalization, are the following:

 Some tasks are not explicitly defined in the project definition. They can be later

found in the development description or by the work products that come into

existence.

 Some isolate but inappropriate use of process element terminology. It can be

found some misused of the conceptions process in the process definition.

 Some lack of clearly separation and clarification of distinct activities and results.

 Some lack of proper formalization in the project process of several work products.

 Some lack of proper formalization of work products inputs and outputs of

activities.

 It is not clear the interconnection of work products use in order to express model

navigation since the beginning to the end of the development.

 It is not clear that there is suitable approach that takes in account the evolution of

the pervasive system, characterized by frequent addition and/or changes in

resources abilities and demanded functionalities.

Taken into account the facts and issues aforementioned, some challenges can be anticipated

in order to identify how these kinds of projects could enhanced in order to sustain an better a

proper software development project for PIS. The challenges can be stated by the following

needs:

 The need to define the overall quality properties that a software development process

model-based/driven has to possess. Among these properties is the completeness of

4.4 Common Facts, Issues and Challenges

97

work and work products definition, the proper atomicity and level of activity

definition, the level of overall formalization of activities, the coherence, and

consistency of process elements’ use.

 The need to express or formalize activities.

 The need to be able to express and to measure the model-based/driven visibility.

 The need to establish orientations or procedures to deal with aforementioned

characteristics of pervasive systems.

4.5 Conclusion

This chapter presented the two projects that were subject of this work. Both of them

consisted in a project developed in the field of ubiquitous and mobile computing that

directed their software development to a model-based/driven approach.

The first project presented is the uPAIN project (Ubiquitous Solutions for Pain Monitoring and

Control in Post-Surgery Patients). It was conceived with the purpose to create a networked

informational computing system that, making using of current wireless and mobile

communication technologies, allowed to enhance hospital’s anaesthesiology services on the

control and monitor at pain level on post-surgery (uPAIN). The second project is the USE-

ME.GOV (USability-drivEn open platform for MobilE GOVernment) project that aimed to

create an open platform for mobile government services (USE-ME.GOV, 2003a).

For each of the projects, it was presented the pervasive and modelling perspectives, which

expressed respectively the pervasive characterization and the modelling activities and

artefacts produced.

After that presentation of the projects, and as result from its observation some common facts

and pertinent issues were expressed. A reflection over those facts and issues lead to the

statement of some challenges that could anticipated for these kinds of projects, aiming to be

developed with a strong model basis and suitable to robust pervasive information systems.

Chapter 5

Approach to PIS Development

Chapter Contents

5 Approach to PIS Development... 101

5.1 Introduction .. 101

5.2 Development Dimensions and Framework ... 104

5.3 Extension to SPEM 2.0 Base Plugin Profile .. 114

5.4 Approach to Software Development of PIS... 117

5.5 Conclusion ... 128

101

5

Approach to PIS Development

This chapter presents a conceptual development framework used to assist in the

analysis of the projects. The framework proposed, conceptions of functional profiles,

resources categories, and abstraction dimensions functional profiles instances, global

development process and elementary development process are introduced. Taking

into account the conceptions and structure, it is introduced a SEPM Base Plug-In

extension, a framing structure, and development framework pattern. These

conceptions and structures also constitute a basis for structuring a proper approach to

software development for PIS.

5.1 Introduction

Model-driven development (MDD) of software systems takes an approach to development

strongly based on models and transformations among models. Such approach: (i) allows

reduction of semantic gaps among the developed artefacts; (ii) enables higher independence

and resilience of domain models from particular characteristics and changes on system’s

technological platforms; (iii) promotes automation of the development tasks, enabling reuse

of knowledge relative to either best practice on software development or to the information

systems in the organization.

MDD topics of relevance are diverse and comprise different knowledge and techniques:

models, ontologies, modelling languages, domain-specific languages, development methods,

model transformations, architectures/frameworks, patterns, automatic code generation,

5 Approach to PIS Development

102

supporting tools, aspects, among others. It is expected that the application of MDD concepts

and techniques to software development for pervasive information systems (PIS), will

enhance the efficiency of the software development, the resilience, the robustness, and the

evolution of the system.

The approach to software development for PIS must take into account relevant

characteristics of PIS such as: (i) the elevated number of devices that can be involved; (ii) the

potential heterogeneity of the devices; (iii) the pace of requirements changes due

technological or business innovations; (iv) the potential complexity of interactions among

devices. Therefore, some issues that arise may influence the strategy taken on the approach

to MDD for PIS. The following paragraphs expose some of these issues.

In the same PIS, the devices can, simultaneously fulfil different functionality. Devices may

participate in several systems simultaneously, having identical functionality in some systems,

and different functionality in others. When activating a device on a PIS, the pervasive system,

attending to device’s characteristics and with a minimal configuration (on the system and/or

device), should be able to assign a suitable functionality (of interest to the system). The PIS

should then set up the needed reconfiguration/tune up of the system to allow integration of

the device in the normal operation of the pervasive system.

A device, along its life, can be enhanced with new capabilities, or be constrained on its

capabilities. As consequence, in order to reflect the change and accommodate the resulting

device capabilities, it is necessary to proceed with functionality reconfigurations.

Devices can be replaced for new devices. The replacement can be due to malfunction,

technologically outdate performance, energy consumption, capability, or change in business’s

processes, among others. Even when the devices are assigned to fulfil the same functionality

of the older devices, they may be based on different computational platform from the older

device. The functionality assigned to the old device must now be supported on a different

platform. The developed PIS must be able to accommodate easily platform changes on the

devices that integrate the system, and as such be able to deploy functionality on different

computing platforms.

Besides traditional coordination of system’s functionality and information’s flows,

independent and autonomous device-to-device interaction may be used to obtain additional

functionality to the system, allowing for, among others, enhanced system’s efficiency, and

robustness.

5.1 - Introduction

103

All these issues sustain the necessity of one being capable to conceive/change and deploy

software to devices in a way that allows easy accommodation of functional requirements

changes or technological platform changes. Supported by these issues, some questions

emerge regarding the construction of PIS, among which it can be found: (i) How to provide

for coherent and consistent construction, maintenance, and evolution pervasive information

systems that allows for proper accommodation of new or changed requirements,

functionalities, technology, or structure of devices composing the system? (ii) How to design

in order to simultaneously accommodate different functionalities on the same device? (iii)

How to design software for a PIS that, besides traditional coordination of system’s

functionality and information flows, allows specific device-to-device interaction to obtain

additional functionality? (iv) How high can be the abstraction level at which software

developers have to perform their main work? How should be an adequate approach suitable

to software development to PIS?

Pervasive information systems should be able to adapt to changes on the devices or on the

structure of devices that compose the system. The design of the PIS must encompass an

approach that recognizes those issues and that structures the needed concepts and adopts a

proper strategy that allow fast development/integration of new/changed functionalities.

These functionalities may correspond to new/changed system’s requirements, device’s

capabilities, or device’s computational platform technology.

MDD concepts and techniques centre development on models, thus raising the traditional

level of abstraction for system’s conception and design. They tend automate, as much as

possible, the transformation of models and the generation of the final code, and they provide

for a higher independence of the technological platform that support the realization of the

system. MDD seems to offer key pathways that enable software developers to cope with

complexity inherent do PIS. CASE tools, which are of primary importance to an effective MDD

development, have continuously evolved to support MDD concepts and techniques. It can be

expected from them an enhanced support to: creation, verification of PIMs and PSMs;

models’ transformations and code generations; changes’ management; and documentation

for all artefacts and to design decisions. However, spite of the fundamental effort of using

MDD concepts and techniques supported by suitable CASE tools, this is not sufficient. To a

proper construction of PIS, it is needed an approach that, while adopting modern and

appropriate MDD concepts, techniques, and tools, be capable of establishing a suitable

development’s strategy for the development of PIS, framed on appropriate structure and

procedures. The following sections expose the concepts, issues, and strategy that such

approach can assume.

5 Approach to PIS Development

104

5.2 Development Dimensions and Framework

Due to the complexity of pervasive information systems, software development for PIS can be

facilitated by an approach that properly focuses the system, and the system development,

with perspectives that help to abstract their relevant properties. The approach to PIS

development proposes a framework that encompasses concepts suitable for the model driven

development of pervasive information systems. This framework introduces and describes the

concepts sustained on a few perspectives of relevance to the development, called dimensions,

which are described in the sections that follow.

5.2.1 Resources Dimension

For a suitable organization and comprehension of the resources that PIS may comprise, it is

proposed that the resources to be used in the system (such as computational devices or other

entities able to perform activities), be grouped into resources categories. These resources

categories shall reflect common characteristics, properties, or capabilities of the resources,

which allow them to be generically able to take on identical/similar functional responsibilities.

Examples of groupings that form the categories, are the cellular phones, the smart phones, the

laptops, or others groupings. Figure 5.1 illustrates an example of categories and subcategories

of resources. Categories may be further classified through specialization relationships into

subcategories of resources.

Category A
(PDAs)

Category B
(smart and cellular phones)

Category C
(PCs)

Category D
(Server)

SubCategory B1
(smartphones)

SubCategory B2
(celular phones)

Category E
(Embedded devices)

a1
1

a2
2

3
a34
a4

b1

b2

b3

b4

5

6

7

8
a1

1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

Resources Dimension

Figure 5.1 – Resources dimension.

Resources belonging to a category (or subcategory) are expected to be able to support

common functionalities that may be assigned to that category. This perspective of looking for

and grouping resources constitutes the resources dimension.

5.2 Development Dimensions and Framework

105

5.2.2 Functional Dimension

The classification of resources into categories according to its properties or capabilities is just

one of the dimensions concerning to the global development of a pervasive information

system. The overall functionality PIS functionality can be seen as being achieved by the

collaboration of a set of functionalities projected in the PIS and that are assigned to its

resources; these thereby take on the responsibility to undertake those particular

functionalities. The resources have then a behaviour regulated by a set of functionalities

assigned to them as part of their responsibilities acquired from the PIS in which they

participate.

A set of functionalities, defined in the system for assignment to resources are herein termed of

“functional profile”. A functional profile is intended to be conceived and expressed, as far as

possible, in a resource independent form. Considering that a model is a (textual or graphical)

specification or representation, under some perspective, of a system, this resource

independent form can be seen as resource independent model. This perspective of defining

and viewing set of functionalities susceptible to be assigned to resources constitutes the

“functional dimension”. Figure 5.2 depicts this dimension.

Functional

profile 1

Functional

profile 2

Functional

profile ...

Functional

profile n

F
u
n
ct

io
n
a
l D

im
e
n
si

o
n

Figure 5.2 - Functional dimension.

This functional dimension brings the perspective of looking and seeing sets of functionalities

that can be allocated to resources for realization. Taking into account that resources are

grouped into categories, the assignment of a functional profile to a resource category has the

meaning that each resource in a certain category must be capable to realize the functional

profile assigned to the category.

Figure 5.3 illustrates the framing of the resources and functional dimensions. It shows the

functional profiles along the axis of the functional dimension, and the resources category along

the axis of the resources dimension.

5 Approach to PIS Development

106

Several functional profiles can be assigned to a category of resources, meaning that the

resources on the category must be capable, in principle, to somehow realize all those sets of

functionalities.
F

u
n
ct

io
n
a
l D

im
e
n
si

o
n

Resources Dimension

Functional

profile 1

Functional

profile 2

Functional

profile ...

Functional

profile n

Category A

(PDAs)

Category B

(smart and cellular phones)

Category C

(PCs)

Category D

(Server)

SubCat. B1

(smartphones)

SubCat. B2

(celular phones)

Category E

(Embedded devices)

a1
1

a2
2
3

a34
a4

b1
b2
b3
b4

5
6
7
8

a1
1

a2
2

3
a34
a4

b1

b2

b3

b4

5

6

7

8

Figure 5.3 – Framing of Resources and Functional dimensions.

Some of the functional profiles assigned to a category may be redundant, as some of the other

categories (which have been specified as primary performers) that are in charge of servicing

those functional profiles may already provide them. Such situation may happen as result of a

design decision in order to accomplish specific objectives. Among these are: (i) to ensure

enhanced fault tolerance of crucial functionality; (ii) to expand system flexibility on services

provision; (iii) to accommodate functionality assigned to categories of devices that are

deactivated and marked for either replacement by new devices or subject to a technological

update.

The assignment of a functional profile to a resource corresponds to an instantiation of the

functional profile, carrying the meaning of responsibility assignment to that resource. The

instantiation process based on the functional profile and the resource category general

characteristic, results in a tailored functional profile for that resource category.

Figure 5.4 illustrates an example of instances resulting from the assignment of functional

profiles to resource categories. It particularly illustrates that it is possible to occur situations

where: (i) there are several instances for the same functional profile, as depicted by instances

2B and 2C (these are both related to functional profile 2, and to categories B and C

5.2 Development Dimensions and Framework

107

respectively); (ii) there are instances of different functional profiles for the same resource

category, as illustrated by instances 1A and 3A (these are both related resource category A,

and respectively related to functional profiles 1 and 3).

Cat. A Cat. B Cat. C Cat. ... Cat. M

F
P

 1

F
P

 2

F
P

 3

F
P

..
.

1A

2C

F
P

 n

...

2B

3A

nM

i j Instance of functional profile i for resource category j

Figure 5.4 –Example of functional profiles Instances for resource categories.

The result of instantiation process can be considered, a kind of platform independent model

(PIM) (or depending of the perspective, it could be seen as a PSM), as it is expected to be later

subject of possible model transformations to platform specific models (PSM). Further

development takes place based on this model, giving origin to a specific development

structure related to the specific functional profile instance. This “development structure”

reflects a pathway of software development in order to realize a functional profile assigned to

a category of resources.

Figure 5.5 illustrates a schematic representation of these development structures spread by

space that emerge from the integration of the resources dimension with the functional

dimension (in the figure, the development structure is identified as “DS functProf_id

devCateg_id”, being and functProf_id identified by a number and devCateg_id identified by a

letter).

These delimited units of development structures allow for comfortable incorporation and

accommodation of changes or innovations. Consequently, it can be achieved an enhanced

resilience of the system, facilitated expansion of the system, and easier control of changes and

its impacts.

5 Approach to PIS Development

108

5.2.3 Abstraction Dimension

Taking into account that, for each development structure there is a subjacent top-bottom

abstraction course during its development, we can devise another dimension on software

development for PIS: the “abstraction dimension”. At the abstraction dimension, developers

use abstraction techniques to construct the systems. They have focus on PIM, PSM (and other

relative inner PIMs/PSMs), model transformations, code generation (see Figure 5.7), and

other techniques in order to come to a realization of a piece of software that meets the

functionality set by the corresponding functional profile of that development structure.

DS 1A

DS 2B

F
u
n
ct

io
n
a
l D

im
e
n
si

o
n

Resources Dimension

DS 2C

DS 3A

DS nM

Figure 5.5 - Development structures for functional profile instances.

For each of the development structures, development work is performed at a modelling level

of abstraction. Some modelling levels can be distinguished:

(1) Top modelling level. At this level, there is a PIM for each of category of resources. This PIM

results from instantiation of functional profiles models resulting from initial development of

the system as a whole (where all resources are integrated and orchestrated in order to provide

functionality to the system).

(2) Intermediate modelling levels. At these levels, there are PSM models that can be either

associated to subcategories of resources or to design decisions (reflecting particular choices

regarding to platforms, technologies or techniques) that may somehow introduce a certain

degree of platform/technological dependence.

Depending from the point of view, an intermediate model can be seen as a PIM or a PSM: a

model can be seen as a PSM when looking from a preceding higher abstraction model level,

and can be seen as a PIM when looking from next lower abstraction model level. For some

5.2 Development Dimensions and Framework

109

development structures these levels may eventually not exist, as it is possible to directly

generate the bottom-level PSM or even the code itself (in Figure 5.6, DS a, DS d, DS e do not

have intermediate model levels).

For illustration purposes, Figure 5.6 considers a simple case where a functional profile was

assigned to (and corresponding development structure created) each of the categories

represented. Nonetheless, a category may have several functional profiles, and consequently,

several development structures.

Category A PIM

(PDAs)

Category B PIM

(smart and cellular phones)

Category C PIM

(PCs)
Category D PIM

(Server)

SubCategory B1

(smartphones)

 PSM 1

SubCategory B2

(celular phones)

PSM 1

Category C

(design decision 1)

PSM1

Category C

(design decision 2)

PSM 2

Category E PIM

(Embedded devices)

a1
1

a2
2

3
a34
a4

b1

b2

b3

b4

5

6

7

8
a1

1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

CategoryA PSM 2

(PDAs platform 2)

Category E

(Embedded devices

platform 1)

PSM 1

Category A PSM 1

(PDAs of platform 1)

SubCategory B1

(smartphones)

 PSM 1.1

SubCategory B2

(celular phones)

PSM 1.1

Category C

 PSM 1.1

Category C2

PSM 2.1

Category E

(Embedded devices

platform 2)

 PSM 2

M
o
d
e
l
m

a
p
p
in

g

M
o
d
e
l m

a
p
p
in

g

Code Generation

M
od

el
 m

ap
pi

ng

M
o
d
e
l m

a
p
p
in

g

M
o

d
e

l
m

a
p

p
in

g

M
o
d
e
l
m

a
p
p
in

g

M
o

d
e

l
m

a
p

p
in

g

M
o
d
e
l
m

a
p
p
in

g

M
od

el
 m

ap
pi

ng

M
odel m

apping

M
o
d
e
l
m

a
p
p
in

g M
o
d
e
l m

a
p
p
in

g

a1
1

a2
2

3
a34
a4

b1

b2

b3

b4

5

6

7

8
a1

1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

Top Level

Intermediate

Levels

Bottom Level

DS a DS b DS c DS d DS e

SubCategory B2

(celular phones)

PSM 1.2

M
o
d
e
l m

a
p
p
in

g

Category C2

PSM 2.2

Figure 5.6 - Structure of PIMs and PSMs inherent to the previous resources’s classification.

(3) Bottom modelling level. At this level, there are the lowest-level PSMs from which the final

code will be produced (either automatically generated or handcrafted). From a PSM, it may be

possible to derive one or more different code artefacts due to platform differences where the

code will be deployed; such task is delegated on the proper compiler or code generator.

A PIM may be directly transformed into code (or even eventually directly executed; in such

case there is no code generation), and therefore, there is no need to exist a PSM before code

generation, as illustrated by Figure 5.8.

The transformations between models are realized through model mappings. Two kinds of

model mappings can be identified in the development structures, namely, the vertical and

horizontal model mappings:

(1) Vertical model mappings. Between modelling levels, there are vertical model mappings,

these are based on well-established transformations that allows the mapping of a model into

an equivalent model at a lower abstraction level. This is the mechanism that brings a more

abstract system’s model to a more concrete and refined system’s model; this lower level

5 Approach to PIS Development

110

abstraction model may incorporate technological aspects and is nearer to final realization

(Figure 5.7 illustrates these kinds of mappings).

Code Generation

Category B PIM

(smart and cellular phones)

SubCategory B1

(smartphones)

 PSM 1

SubCategory B2

(celular phones)

PSM 1

SubCategory B1

(smartphones)

 PSM 1.1

SubCategory B2

(celular phones)

PSM 1.1

M
od

el
 m

ap
pi

ng

M
o
d
e
l m

a
p
p
in

g

M
o

d
e

l
m

a
p

p
in

g

M
o
d
e
l
m

a
p
p
in

g

DS b

SubCategory B2

(celular phones)

PSM 1.2

M
o
d
e
l m

a
p
p
in

g

A
b

s
tr

a
c
ti
o

n
 D

im
e

n
s
io

n

Category D PIM

(Server)

DS d

Code Generation

Figure 5.7 - Illustration of the abstraction process. Figure 5.8 - Direct code generation.

(2) Horizontal model mappings. Horizontal model mappings are those mappings that, keeping

the models at the same modelling level of abstraction, have the purpose to achieve, through

specific transformations, other goals than the one of decreasing the abstraction level. For

example, these horizontal model mappings may be used to facilitate validation activities.

Figure 5.9 illustrates an example of horizontal mapping.

In synthesis, the tree dimensions pertaining to PIS software development are resources

dimension, functional dimension, and abstraction dimension, as depicted by Figure 5.10.

5.2.4 Development Framework

The dimensions and their concepts need to be integrated in a development framework for PIS.

A suitable development framework should consider issues concerning the overall system

development as well as issues concerning the development structures.

In (Booch et al., 2007), the concepts of “macro process” and “micro process” are used in the

framework proposed for the software development process. They represent perspectives of

the overall software development cycle (the macro process) and of the analysis and design

process (the micro process).

5.2 Development Dimensions and Framework

111

Whilst the macro process aims to guide the overall development of the system and its scope is

“from the identification of an idea to the first version of the software system that implements that idea” (Booch, et al.,

2007), the micro process cover the analysis and design activities. Activities of analysis focus on

behaviour and not on form, and produce an initial solution from system requirements.

Category A PSM

Category A

PSM 1

M
o
d
e
l m

a
p
p
in

g

M
odel m

apping

Code Generation

DS a

Category A PSM

Animation prototypes

for validation purposes

Category A

PSM 2

Model mapping

(horizontal)

F
u
n
c
ti
o
n
a
l
d
im

e
n
s
io

n

A
b

s
tra

c
tio

n
 d

im
e

n
s

io
n

Devices dimension

Figure 5.9 – Example of a horizontal model mapping. Figure 5.10 - Dimensions on the development

approach.

Activities of design have the purpose to devise elements to provide behaviour and produces,

based in the results from analysis, a specification that can be implemented.

 The macro-process presented is based on the RUP lifecycle (see Figure 5.11).

Figure 5.11 - Macro Process Milestones, Phases, and Iterations (from (Booch, et al., 2007)).

5 Approach to PIS Development

112

The micro process is performed in the context of the macro-process: the macro process “drives

the scope of the micro process, provides inputs to the micro process, and consumes the outputs of the micro process”(Booch,

et al., 2007). Figure 5.12 illustrates the bond between these processes.

Two dimensions are used to describe the macro-process: (i) the content dimension respects to

what is done (it can be described with disciplines and related notions as roles, tasks and work

products); (ii) the time dimension respects to when it is done (it can be described by

milestones, phases and iterations). The micro process is also described in terms of two

dimensions: (i) the level of abstraction, at which analysis and design activities are performed;

(ii) the content dimension, which considers two key areas of concern, the architecture and the

individual components.

Figure 5.12 - The Micro Process within the Macro Process (from (Booch, et al., 2007)).

The consideration of different process perspectives for the description of software

development, spite of not being coincident, it is also in the basis of the proposed development

framework. The development framework proposed follows two main perspectives: one

concerning the overall development process, and a second concerning to individual

development process associated to each of the functional profile instance. Figure 5.13

illustrates a schema of such framework.

5.2 Development Dimensions and Framework

113

Global development

process

F
u
n
c
ti
o
n
a
l
d
im

e
n
s
io

n

DS a.1 DS b.1 DS m.1

D a.2

Resources dimension

A
b

s
tra

c
tio

n
 d

im
e

n
s

io
n

DS b.2 DS m.2

DS a.n DS b.n DS m.n

Elementary

development processes

Requirements Model

System

High-level System Model

Figure 5.13 - Development framework for PIS.

The “development framework” is essentially structured in a global development process and

several elementary development processes:

 (1) Global development process. A global development process is responsible for modelling

requirements and for establishing high-level and global system models (such as the logical

architecture model of the whole system and the use case model of the system that expresses

the functionality expected from the system). From these, combinations of functional profiles

and categories of device are established, and the high-level PIM for each combination needed

on the system is specified. The global development process can establish milestones that each

individual structure development has to accomplish. The global development process has the

responsibility for making all the necessary arrangements for integration of the several artefacts

that result from individual threads of development and for final composition, testing, and

deployment of the system.

(2) Elementary development processes. Development structures do not have to follow the

same development process to carry out the development of that part of the system; for each

of the development structures, an adequate development process can be chosen, as long as it

respects the principles of the approach globally adopted. Therefore, elementary development

structures for functional profiles may be subject of their own thread of development process.

The implicit strategy to this development framework enables the adoption of development

process and techniques most suitable to development of that individual development

5 Approach to PIS Development

114

structure. It also eases the assignment of those structure units to different collaborating teams

and, eventually, the outsourcing of the development.

Besides the traditional documentation, the development approach should provide

documentation for each development structure. Among this documentation, it is expected to

be found information about the platform independent models (PIMs) at the top model-level,

the PSMs at the intermediate model-level, the PSM at the bottom model-level, the mappings

(either vertical or horizontal) and inherent transformation techniques used on the model’s

transformations, as well as information regarding to code generation. It becomes clear that it

is convenient the use of suitable CASE tools to support global and individual development

process developments as herein proposed. It is also expected the use of well-established

standards on languages and techniques for modelling (models and transformations models),

support for code generation, change management, and documentation of all artefacts and

design decisions.

The global process and the elementary process are not prescribed to be performed by any

particular existent development process, being the choice of process development left to the

developer. The global process can be see can be seen as being similar to macro process, as it

respect to the overall development process, and fed the elementary processes as the macro

also does for the micro process. The elementary process is somehow different from the micro

process as it has a distinct scope: it respects to a whole development structure, which can be

seen by itself as a system for which it can be applied a development process that can

inclusively include the strategy of development associated with the macro and micro concepts

presented.

5.3 Extension to SPEM 2.0 Base Plugin Profile

Software and Systems Process Engineering Meta-Model 2.0 (SPEM 2.0) provides to process

engineers a conceptual framework for modelling method contents and processes.

SPEM2. 0 is defined as a meta-model as well as a UML 2 Profile (concepts are defined as meta-

model classes as well as UML stereotypes). SPEM 2.0 meta-model describes the structures and

the structuring rules needed to express and maintain development method content and

processes. It is a MOF-based model and reuses some elements from UML 2 meta-model (key

classes from UML 2 Infrastructure (OMG, 2010)).

The SPEM 2.0 UML Profile provides an alternative representation to the SPEM 2.0 meta-model.

It defines a set of stereotypes that allows presenting SPEM 2.0 methods and processes using

5.3 Extension to SPEM 2.0 Base Plugin Profile

115

UML 2, and relies on the SPEM 2.0 meta-model to define all of its constraints. In addition to

SPEM 2.0 Profile, the specification also defines a “second non-standard convenience profile called ‘SPEM 2.0

Base Plugin Profile’” (OMG, 2008) that provides other useful stereotypes (OMG, 2008).

In the context of the approach presented for software development of pervasive information

systems, it is proposed additional stereotypes to this SPEM 2.0 Base Plugin. Next paragraphs

present these additional stereotypes; these are related to “Activity Kind” and “Work Product

Kind” stereotypes already defined in SPEM 2.0 Base Plugin.

Regarding to Activity Kinds, in addition to the predefined “Process”, “Phase”, and “Iteration”, it

is proposed the stereotypes “FrameworkSupport” and “Transformation” with its

specializations “ModelTransformation” and “CodeGeneration. Additionally, to the “Process”

Activity Kind, it is proposed as its specializations the “GlobalProcess” and “ElementaryProcess”

stereotypes.

Figure 5.14 illustrates the inclusion of these new Activity Kinds (in white boxes are the

predefined activities kinds; in grey boxes are the proposed additional activity kinds).

The purpose of each of the Activity Kinds stereotypes proposed is next briefly exposed:

 “GlobalProcess”. The “GlobalProcess” stereotype allows the representation of a global

process that encompasses all the development of the system.

 “ElementaryProcess”. The “ElementaryProcess” activity allows the representation of

processes of development occurring in the global development process and framed by

specific devised functionalities and resources categories.

 “Transformation”. The “Transformation” stereotype is an abstract generalization

projected allowing to generically represent the activities of transforming models (or

other artefacts) either to other models or into code; these are, respectively,

represented by “Model Transformation” and “Code Generation” stereotypes.

 “ModelTransformation”. The “ModelTransformation” stereotype intends to represent

activities that can be termed as model transformations.

 “CodeGeneration”. The “CodeGeneration” stereotype intends to represent code

transformations activities (to source code, to executable code, or to other executable

artefact).

 “FrameworkSupport”. The “FrameworkSupport” stereotype intends to represent

special activities related to deployment of the development framework, such as the

definition of the resources categories, the functional profiles, the functional profile

instances, or the elementary development processes.

5 Approach to PIS Development

116

«stereotype»

ActivityKind

«stereotype»

Process

«stereotype»

Phase

«stereotype»

Iteration

«stereotype»

GlobalProcess

«stereotype»

ElementaryProcess

«stereotype»

Transformation

«stereotype»

ModelTransformation

«stereotype»

CodeGeneration

«stereotype»

FrameworkSupport

«metaclass»

Classifier

Figure 5.14 – Inclusion of new Activity Kinds.

Regarding to Work Product Kinds, in addition to “Artefact”, “Deliverable”, and “Outcome”

stereotypes, it is proposed the addition of “FunctionalProfile”, “ResourceCategory”,

“FP_Instance”.

Figure 5.15 illustrates the inclusion of these new Artefact Kinds (in white boxes are the

predefined artefact kinds; in grey boxes are the proposed additional artefact kinds).

«stereotype»

WorkProductKind

«stereotype»

Artifact

«stereotype»

Deliverable

«stereotype»

Outcome

«metaclass»

Class

«stereotype»

ResourceCategory

«stereotype»

FunctionalProfile

«stereotype»

FP_Instance

Figure 5.15 - Inclusion of new Artefacts Kinds.

The purpose of each of the WorkProduct Kinds stereotypes proposed is next briefly exposed:

 “ResourceCategory”. The “ResourceCategory” stereotype intends to representation of

a resource category.

 “FunctionalProfile”. The “FunctionalProfile” stereotype intends to represent a

functional profile.

5.3 Extension to SPEM 2.0 Base Plugin Profile

117

 “FP_Instance”. The “FP_Instance” stereotype intends to represent a functional profile

instance.

5.4 Approach to Software Development of PIS

This section aims, in the context the proposed approach, to provide a set of guidelines and

auxiliary tools to be used either to software development of new PIS or to analysis existing

projects developed on a model-based/driven basis and in context of a pervasive information

system. As a note, what is hereafter said about performing analysis can be applied to the

definition of new processes as long as the convenient considerations or adaptations are taken

into account.

In the context of a pervasive system, a development project based/driven by models should: (i)

stress out clearly the use of model transformation activities, activities interconnection, and

inputs/output of activities; (ii) provide a way to deal with heterogeneity and changes on the

resources on which software units are deployed for execution; (iii) provide a way to deal with

changes on the functionalities to be deployed on the resources. A development process can be

put in perspective through its activities or through the work. Therefore, an analysis approach

of model-based/driven projects for PIS can be sustained either by analysis of work products or

activities performed that promote the evolution of the system’s definition.

Software & Systems Process Engineering Meta-model Specification (SPEM) 2.0 (OMG, 2008)

can be used as an important auxiliary tool for the definition, diagnosis, and optimization of

processes. The system of concepts subjacent to its meta-model allows the capture of relevant

structure of existing processes for which one may want to deepen the knowledge. This

structure is a fundamental basis for observation and for analysis of the process, from which

further robust rationale can be realized about the process properties.

SPEM 2.0 specification provides, not only the metamodel, but also a set of corresponding

stereotypes of the metamodel concepts that can be used to easier illustrate the process

elements. Additionally, it also provides several examples of representation of workflow of

activities and work products, and of how these two representations can relate to each other

(including change of states of the work products).

The analysis of the projects, or the definition of new ones, has to take into account two

different points of view that highlight issues or peculiarities pertinent to model-based/driven

development and to pervasive information systems. These points of view are: (i) the pervasive

point of view, which takes into account elements relating to consideration of pervasive issues;

5 Approach to PIS Development

118

(ii) the model-based/driven point of view, which take into account elements related to the

models produced, model transformations applied, other modelling techniques/strategies or

conceptions used, and the suitability of the process approach utilised.

To pursuit this goal, it’s introduced: (i) the framing structure as an auxiliary tool for the

identification of the functional profile instances; (ii) a development framework pattern, which

to assist on the analysis an existing SPEM 2.0 development process diagram or to define new

projects based on the conceptions of the proposed approach.

The proposed approach for software development of pervasive information systems suggests a

strategy that assists in coping with the heterogeneity existing in pervasive systems and in

sustaining structurally model-based/driven software development. This strategy incorporates a

set of useful conceptions for its deployment; some of these conceptions were expressed in the

proposed extension of SPEM 2.0 Base Plug-In. This perspective searches for that parts of the

project model that may be potentially susceptible of application of those conceptions; these

parts are candidates for further attention as they may be subject of considerations and

eventual propositions for changes or enhancements.

The motivation for this perspective is twofold. First, to assist in identifying facts, issues, or

pertinent parts that have impact on the effectiveness of a strongly model-based approach and

on the suitability for dealing with pervasive information systems. Second, to contribute for the

improvement of software development of pervasive information systems and to exemplify, in

the projects, where and how this approach and its conceptions can be deployed.

How to do it? The analysis is based on the SPEM diagram of the project development process,

and as such, in the case that it does not exist, one must elaborate it. There are two levels of at

which the analysis/definition can be made: a structural level and a process’s element level. At

structural level, one has the purpose of: (i) fitting the structuring concepts of the framework

that give a basis to organize models development; (ii) copping with resources’ heterogeneity of

pervasive systems. At process’s elements level, one has the purpose to identify, enhance, or

promote work units to be formalized and defined, as far as possible, as transformations in

order to support an approach strongly based on models. The following paragraphs further

detail these issues.

Structural level

At a structural level, the main goals are to identify/establish a well-defined structure in

accordance to the proposed approach whose benefits were expressed in previous sections of

this document. Several conceptions were introduced earlier in this chapter and in previous

chapter; based on these, a crossing of conceptions can be made to produce useful result.

5.4 Approach to Software Development of PIS

119

Figure 5.16 depicts a conception crossing of instances of functional profiles for resource

categories, development framework for PIS, with the SPEM model of the project.

Global development

process

F
u
n
c
ti
o
n
a
l
d
im

e
n
s
io

n

DS a.1 DS b.1 DS m.1

D a.2

Resources dimension

A
b

s
tra

c
tio

n
 d

im
e

n
s

io
n

DS b.2 DS m.2

DS a.n DS b.n DS m.n

Elementary

development processes

Requirements Model

System

High-level System Model

XX

Project
Management

Management

Dissemination

Requirements
Analysis and
Elicitation

Characterization of
the Environment

Elicitation and
classification of user
requirements

Formalization of system
requirements

Refined Planning

Research and
Technological
Development

Definition of architecture's
solution

Development of comPCA

Development of software
for sPDAs pPDAs

Development of software
for the pSC

Development of
anesthesiology database

Technological integration
and prototype
installation

AV Communications
(streaming)

Development of data
mining techniques

Test and correction

Extension for
GSM/GPRS/UMTS

Exploration and Evaluation
of the Application

Characterization of the
information system before the
prototype

Exploration of the
prototype

Evaluation of support
offered by the system

Medical
Research

Preparation of
psycho-socio-cultural surveys

Execution of individual surveys to
 volunteers for test and
improvement

Pain assessment in patients
from HSO with uPAIN
prototype

Context Diagram
development

Use Case Diagrams
development

Context Diagram

Use Case Diagrams
[initial]

Problem Description

Use Case Diagrams
development

Sequence Diagrams
development

Use Case Diagrams
[refined]

Sequence Diagrams

Petri lattices
development CPNs

Refined activities plan

Components
diagram

Executable prototype
construction for
requirements validation

Executable prototype for
requirements validation

System architecture

System Requirements

Refined activities plan
elaboration

Refined activities plan

Electrical and Electronic
Project construction Electrical and

Electronic Project

Image processing software
development Image processing software

comPCA

Software components
development for sPDAs

Software components for
pPDAs

Software components
for sPDAs

Software components
for pPDAs

Software for sPDAs
and pPDAs

Software components
development for PSC Software components

for PSC

Integration of sPC and
SONHO DB Results from Integration with

SONHO DB

Software for PSC

Anesthesiology DB
development

PHP application development

for surveys support

Anesthesiology DB

PHP application for
surveys support

Anesthesiology DB

Technological

integraion

Prototype instalation

Prototype #1

Results from Prototype #1

installation

Prototype # 1 - initial
version

Data mining techniquesData mining techniques
development Data mining

techniques

Multimedia services
development Multimedia services

Multimedia services

Testing and Correction

Prototype # 2
Prototype # 2Expansion for

GSM/GPRS/UMTS

Prototype # 1 completed
and corrected

Prototype # 1 completed
and corrected

4SRS execution

User Requirements

 «composition»

 «output»

 «input»

 «composition»

 «composition»

 «nesting»

 «output»

 «input»

 «nesting»

 «output»

 «predecessor»

 «input»

 «output»

 «composition»

 «nesting»

 «output»

 «input»

 «composition»

 «nesting»

 «output» «composition»

 «composition»

 «nesting»

 «predecessor» «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «output»
 «nesting»

 «output» «nesting»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «composition»

 «nesting» «output»

 «composition» «nesting» «output»

 «composition»

 «output» «nesting»

 «output»

 «composition»

 «input»

 «composition»

 «nesting»

 «output»

 «composition»

 «nesting»
 «output»

 «composition»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «output»

 «composition»

 «nesting» «output»

 «input»

 «composition»

 «nesting»

 «output»
 «composition»

 «output»

 «input»

 «output»

SPEM model of the projectConcept of Development structure

Cat. A Cat. B Cat. C Cat. ... Cat. M

F
P

 1

F
P

 2

F
P

 3

F
P

..
.

1A

2C

F
P

 n

...

2B

3A

nM

i j Instance of functional profile i for resource category j

Concept of functional profile instances

Figure 5.16 - Crossing conceptions.

The crossing of these conceptions results on a conceptual structure that allows the definition

and framing of functional profile instances. This conceptual structure can be expressed by a

schema similar to the one presented in Figure 5.17. It can be seen that all the relevant

functional profiles are listed at the left side of the framing structure, and the resources

categories identified are listed at the middle top.

The definition of functional profile instances are signalled in the proper intersections of lines of

functional profile with the columns of resource categories. For each functional profile instance

there will be an associated development framework (not depicted in the figure); for each of

these development frameworks there will be a corresponding elementary development

process.

There are starting and ending activities of the global development process that produces the

high-level and low-level models/specifications/artefacts, (it is important to notice that in

parallel with the elementary development process activities, there may be in course other

global development processes activities; this proposal constitutes structuring framework and

not a methodology). An example of the application of this technique will be presented latter

when revisiting the projects.

A B C D E

6A

...

2B

nM

Category Category Category Category Category

Functional profile

Functional profile

Functional profile

Functional profile

Functional profile

Global low-level model/specification/artefact

Global high-level model/specification/artefact

3A

5C

Functional profile

...

...

1

2

3

4

5

6

5 Approach to PIS Development

120

Figure 5.17 - Framing structure for a project.

Taking into account the project framing structure, the SPEM 2.0 Base Plug-In extensions, the

project’s SPEM model, and the guideline actions of this perspective; it is possible to proceed to

analysis, definition, analysis, or rearrangement of the SPEM-based model. Figure 5.18

illustrates a pictorial representation of the use of those concepts in this SPEM model

rearrangement.

Depending on the project, the restructured project’s SPEM model will include a number of the

stereotypes of the extension of the SPEM Base Plug-In. Figure 5.19 presents a synthesis of the

earlier proposed extending stereotypes to the SPEM Base Plug-in.

Trying to realize a first time attempt, all the conceptions behind this rationale, can be a difficult

endeavour; a pragmatic guidance of how these conceptions can be deployed in the SPEM

diagram would be of value. A possible guidance could be in having, beforehand, a probable

configuration of the stereotypes’ concretization at the time of the models (re)definition. To

assist this purpose, a pattern is proposed.

X

X =

SPEM 2.0 Base Plug-in extension

A B C D E

1A

4C ...

2B

nM

Category Category Category Category Category

Functional profile

Functional profile

Functional profile

Functional profile

Functional profile

Global low-level model/specification/artefact

Global high-level model/specification/artefact

3B

5C

Functional profile

...

...

1

2

3

4

5

6

Framming structure of the project

SPEM model of the project

Project
Management

Management

Dissemination

Requirements
Analysis and
Elicitation

Characterization of
the Environment

Elicitation and
classification of user
requirements

Formalization of system
requirements

Refined Planning

Research and
Technological
Development

Definition of architecture's
solution

Development of comPCA

Development of software
for sPDAs pPDAs

Development of software
for the pSC

Development of
anesthesiology database

Technological integration
and prototype
installation

AV Communications
(streaming)

Development of data
mining techniques

Test and correction

Extension for
GSM/GPRS/UMTS

Exploration and Evaluation
of the Application

Characterization of the
information system before the
prototype

Exploration of the
prototype

Evaluation of support
offered by the system

Medical
Research

Preparation of
psycho-socio-cultural surveys

Execution of individual surveys to
 volunteers for test and
improvement

Pain assessment in patients
from HSO with uPAIN
prototype

Context Diagram
development

Use Case Diagrams
development

Context Diagram

Use Case Diagrams
[initial]

Problem Description

Use Case Diagrams
development

Sequence Diagrams
development

Use Case Diagrams
[refined]

Sequence Diagrams

Petri lattices
development CPNs

Refined activities plan

Components
diagram

Executable prototype
construction for
requirements validation

Executable prototype for
requirements validation

System architecture

System Requirements

Refined activities plan
elaboration

Refined activities plan

Electrical and Electronic
Project construction Electrical and

Electronic Project

Image processing software
development Image processing software

comPCA

Software components
development for sPDAs

Software components for
pPDAs

Software components
for sPDAs

Software components
for pPDAs

Software for sPDAs
and pPDAs

Software components
development for PSC Software components

for PSC

Integration of sPC and
SONHO DB Results from Integration with

SONHO DB

Software for PSC

Anesthesiology DB
development

PHP application development

for surveys support

Anesthesiology DB

PHP application for
surveys support

Anesthesiology DB

Technological

integraion

Prototype instalation

Prototype #1

Results from Prototype #1

installation

Prototype # 1 - initial
version

Data mining techniquesData mining techniques
development Data mining

techniques

Multimedia services
development Multimedia services

Multimedia services

Testing and Correction

Prototype # 2
Prototype # 2Expansion for

GSM/GPRS/UMTS

Prototype # 1 completed
and corrected

Prototype # 1 completed
and corrected

4SRS execution

User Requirements

 «composition»

 «output»

 «input»

 «composition»

 «composition»

 «nesting»

 «output»

 «input»

 «nesting»

 «output»

 «predecessor»

 «input»

 «output»

 «composition»

 «nesting»

 «output»

 «input»

 «composition»

 «nesting»

 «output» «composition»

 «composition»

 «nesting»

 «predecessor» «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «output»
 «nesting»

 «output» «nesting»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «composition»

 «nesting» «output»

 «composition» «nesting» «output»

 «composition»

 «output» «nesting»

 «output»

 «composition»

 «input»

 «composition»

 «nesting»

 «output»

 «composition»

 «nesting»
 «output»

 «composition»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «output»

 «composition»

 «nesting» «output»

 «input»

 «composition»

 «nesting»

 «output»
 «composition»

 «output»

 «input»

 «output»

Rearranged SPEM model of the project

X

«stereotype»

ActivityKind

«stereotype»

Process

«stereotype»

Phase

«stereotype»

Iteration

«stereotype»

GlobalProcess

«stereotype»

ElementaryProcess

«stereotype»

Transformation

«stereotype»

ModelTransformation

«stereotype»

CodeGeneration

«stereotype»

FrameworkSupport

«metaclass»

Classifier

«stereotype»

WorkProductKind

«stereotype»

Artifact

«stereotype»

Deliverable

«stereotype»

Outcome

«metaclass»

Class

«stereotype»

ResourceCategory

«stereotype»

FunctionalProfile

«stereotype»

FP_Instance

Restructured

Requirements
Analysis and
Elicitation

Characterization of
the Environment

Elicitation and
classification of user
requirements

Formalization of system
requirements

Refined Planning

Research and Technological
Development

Definition of architecture's
solution

Development of
comPCA

Development of
software for sPDAs

Development of software
for the pSC

Development of
anesthesiology database

Technological integration
and prototype
installation

AV Communications
(streaming)

Development of data
mining techniques

Test and correctionExtension for
GSM/GPRS/UMTS

Use Case Diagrams
[refined]

Components
diagram

System architecture

«FrameworkSupport»
Framework Creation

«FrameworkSupport»
Elementary Processes Creation

«GlobalProcess»
uPAIN

«ModelTransformation»

4SRS application

«ElementaryProcess»

1A - ComPCA

«ElementaryProcess»

2B - sPDA

«ElementaryProcess»

3B - pPDA

«ElementaryProcess»

4C - pSC

«ElementaryProcess»

5C - Anesthesiology DB

«ElementaryProcess»

2D - staff Desktop

«ElementaryProcess»

6D - Survey's supporting app

«ElementaryProcess»

2E - staff cellular

Development of
software for pPDAs

Development of Survey's
supporting application

Development of staff
Desktop

Development of staff
Cellular

 «nesting»

 «nesting»

 «nesting»
 «output»

 «nesting» «nesting»

 «nesting»

 «nesting»

 «nesting»

 «input»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

PIS development framework pattern

«FrameworkSupp...

Framework Creation

«FrameworkSupport»

Functional Profiles Definition

«FrameworkSupport»

FP Instances Definition

«FrameworkSupport»

Elementary Processes Creation

«FrameworkSupport»

Resources Categories Definition

Resource Categories Functional Profiles

Functional Profile
Instances

«GlobalProcess»
projectName

«ResourceCategory»

A ...

«ResourceCategory»

... M

«FunctionalProfile»

1 ...

«FunctionalProfile»

... n

«ElementaryProcess»

1A ...

«ElementaryProcess»

... nM

«FP_Instance»

1A ...

«FP_Instance»

... nM

«ModelTransformation»
modelTransf-based Activity name

 «nesting»

 «composition»

 «composition»

 «composition» «composition»

 «nesting»

 «nesting»

 «output»

 «composition»

 «nesting»

 «output»

 «output»

 «nesting» «input» «input»

 «input»

 «nesting»

 «nesting»

 «composition»

Figure 5.18 - Rearrangement of a project’s SPEM model.

«stereotype»

ActivityKind

«stereotype»

Process

«stereotype»

Phase

«stereotype»

Iteration

«stereotype»

GlobalProcess

«stereotype»

ElementaryProcess

«stereotype»

Transformation

«stereotype»

ModelTransformation

«stereotype»

CodeGeneration

«stereotype»

FrameworkSupport

«metaclass»

Classifier

«stereotype»

WorkProductKind

«stereotype»

Artifact

«stereotype»

Deliverable

«stereotype»

Outcome

«metaclass»

Class

«stereotype»

ResourceCategory

«stereotype»

FunctionalProfile

«stereotype»

FP_Instance

Figure 5.19 - Synthesis of extending SPEM stereotypes.

Taking into account the extension of SPEM 2.0 Plug-In, the conceptions aforementioned, the

context software development for PIS, it is suggested a SPEM-based PIS’s development

5.4 Approach to Software Development of PIS

121

framework pattern to assist in the task of defining or restructuring a SPEM-based software

development approach. Figure 5.20 illustrates the pattern.

This pattern arranges the extending stereotypes in the following way:

 An activity kind instance stereotyped as «global process», named with project’s name.

It includes, besides all the major activities of the project that are deemed as being

global process activities, a special activity named “Framework creation” that is

stereotyped as «FrameworkSupport».

 An activity kind instance stereotyped as «FrameworkSupport», named as “Framework

Creation”. This is instance central to the incorporation of the several concepts of

development framework. It includes activities for resources categories definition,

functional profiles definition, functional profiles instances definition, and elementary

process creation.

 An activity instance stereotyped as «FrameworkSupport», named as “Resources

Categories Definition”. This activity instance has the responsibility to provide the

definition of the resources categories, which is materialized by the artefact “Resource

Categories” that includes a work product instance stereotyped as «ResourceCategory»

for each of the resource categories (symbolically named as A, ..M).

 An activity instance stereotyped as «FrameworkSupport», named as “Functional

Profiles Definition”. This activity instance has the responsibility to provide the

definition of the functional profiles, materialized by the artefact “Functional Profiles”,

which includes a work product instance stereotyped as «FunctionalProfile» for each of

the functional profile (symbolically named as 1, ...n).

 An activity instance stereotyped as «FrameworkSupport», named as “FP Instances

Definition”. This activity instance has the responsibility to provide the definition of the

functional profiles instances, materialized by the artefact “Functional Profile

Instances”, which includes a work product instance stereotyped as «FP_Instance» for

each of the functional profile instance (symbolically named in the pattern as 1A…,

...nM). This activity has as input the artefacts “Functional Profiles” and “Resource

Profiles”.

 An activity instance stereotyped as «FrameworkSupport», named as “Elementary

Processes Creation”. This activity instance has the responsibility to provide the creation

of the elementary processes. It includes one activity instance stereotyped as

«ElementaryProcess» for each of the defined functional profile instances, and each

giving origin to a conceptual development structure (these elementary processes are

symbolic named in the pattern as 1A…, …nM). This activity has as input the artefact

“Functional Profiles Instances”.

5 Approach to PIS Development

122

Complementing the presentation, and belonging to the definition of this pattern, some notes

are stated about the use of the pattern application and, additionally, some guidance actions

are also provided.

First, it is possible to intersperse activities among the patterns activities. For example, in the

redefinition of SPEM diagram of a development process, it is possible to put an existing major

development activity between the «GlobalProcess» activity and the «FrameworkSupport»

activity named “FrameworkCreation”. Nonetheless, the structural organization of the pattern

should be present and recognized in the overall SPEM model.

Second, it is not represented in in the pattern, as it is assumed as implicit, the fact that each of

the activities (with exception for the ones corresponding to the global process), it is available

the existent higher-levels models specifying requirements and system architecture.

Third, the realization of this pattern is considered complete after the identification of the

transformations. Fourth, after the complete realization of the pattern, other actions can be

undertaken, being these ones out of the scope of this pattern definition.

5.4 Approach to Software Development of PIS

123

Figure 5.20 - PIS development framework pattern.

For the realization of the pattern, some guidance actions are provided in form of steps. Table

5.1 list these steps, grouped in four tasks; each of this task has a variable number of steps.

«FrameworkSupp...

Framework Creation

«FrameworkSupport»

Functional Profiles Definition

«FrameworkSupport»

FP Instances Definition

«FrameworkSupport»

Elementary Processes Creation

«FrameworkSupport»

Resources Categories Definition

Resource Categories Functional Profiles

Functional Profile
Instances

«GlobalProcess»
projectName

«ResourceCategory»

A ...

«ResourceCategory»

... M

«FunctionalProfile»

1 ...

«FunctionalProfile»

... n

«ElementaryProcess»

1A ...

«ElementaryProcess»

... nM

«FP_Instance»

1A ...

«FP_Instance»

... nM

«ModelTransformation»
modelTransf-based Activity name

 «nesting»

 «composition»

 «composition»

 «composition» «composition»

 «nesting»

 «nesting»

 «output»

 «composition»

 «nesting»

 «output»

 «output»

 «nesting» «input» «input»

 «input»

 «nesting»

 «nesting»

 «composition»

5 Approach to PIS Development

124

Task

Id.

Task name

/ Step id. – Step name. Step description

T1 Elements identification

S1.1 – Identify global process activities. Identify the activities that should be considered as belonging

to the scope of global process.

S1.2 – Identify elementary process activities. Identify the activities and respective structure that shall

be considered as belonging to elementary processes.

S1.3 - Identify resources categories.

S1.4 - Identify functional profiles.

S1.5 – Define functional profile instances. Define the functional profile instances that shall come to

existence. You may use a framing structure to visualize the functional profile instances.

T2 Pattern creation

S2.1 – Create the pattern structure. Create in the SPEM diagram, the raw pattern structure,

materializing the «GlobalProcess», «ResourceCategory», «FunctionalProfile», «FP_Instance», and

«ElementaryProcess» stereotype instances with the information available. All «FrameworkSupport»

can be materialized with the name used in the pattern (nonetheless, if deemed relevant, other names

can be given).

T3 Pattern framing

S.3.1 – Include global process activities. Include in the «GlobalProcess» activity instance, all the

identified global process activities.

S3.2 - Include elementary process activities. Include each of the «ElementaryProcess» activity

instances, as well as any corresponding activity structures of them. Make the adaptions and

rearrangements needed.

T4 Transformations identification

S4.1 – Identify transformations. After the (re)arrangements for proper pattern framing, it should be

identified the existing activities that are susceptible to be classified as a transformation; for the ones

that are validated as such, replace the activity by and activity instance stereotyped as

«ModelTranformation» or «CodeGeneration» as appropriate.

S4.2 – Formalize the transformations. For each of the transformations, formalize, in a separate SPEM

diagram, the transformation.

Table 5.1 - Tasks for pattern realization.

These guidance actions for pattern realization can be also formalized in a SPEM 2.0 model,

using the concepts of activity, tasks, and steps. Figure 5.21 depicts the pattern realization

SPEM 2.0 model.

5.4 Approach to Software Development of PIS

125

Framing structures nesting for large projects

Projects vary in size and complexity. There may be huge projects involving the definition of

large subsystems, for which there is the interest to define their own functional profiles and

resources categories.

Figure 5.21 - Pattern realization SPEM 2.0 model.

For such cases, a framing structure can be defined for the system and a framing structure for

each of the subsystems. The system framing structure will contain elements with a system

level granularity, while the subsystem framing structure will have their own suitable subsystem

level granularity. The nesting of framing structures allows dealing with any project dimension.

Pattern realization

T1. Elements

identification

T2. Pattern

creation

T3. Pattern

framing

T4. Transformations

identification

S1.1 Identify global

process activities

S1.2 – Identify elementary

process activities
S1.3 - Identify resources

categories

S1.4 - Identify functional

profiles

S1.5 – Define functional

profile instances.

S2.1 – Create the

pattern structure

S.3.1 – Include global

process activities

S3.2 - Include elementary

process activities

S4.1 – Identify

transformations

S4.2 – Formalize the

tranformations

Analyst

SPEM 2.0 Model

SPEM 2.0 Model

(re)Structured

Guidance actions and
framming structure

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «nesting»

 «nesting» «nesting»

 «performs»

 «input»

 «nesting»

 «predecessor»

 «predecessor»

 «predecessor»

5 Approach to PIS Development

126

 Figure 5.22 depicts the nesting of the framing structures to deal with the size of huge projects.

.

2B

1M

3B

5C

1A

2D

A B C D M

Category Category Category Category Category

Subsystem functional profile

Subsystem functional profile

Subsystem functional profile

Subsystem functional profile

Subsystem functional profile

1

2

3

4

5

nSubsystem functional profile

Global system high-level specification/model/artefact

...

Global system low-level specification/model/artefact

...

.

...

2B

1M

3B

5C

1A

2

A B C D M
Category Category Category Category Category

1

2

3

4

5

n

Global subsystem high-level specification/model/artefact

...

Global subsystem low-level specification/model/artefact

...

.

...

2

1M

3B

5C

1A

2D

A B C D M
Category Category Category Category Category

Functional profile

Functional profile

Functional profile

Functional profile

Functional profile

1

2

3

4

5

nFunctional profile

Global subsystem high-level specification/model/artefact

...

Global subsystem low-level specification/model/artefact

...

...

.

...

2B

1M

3B

5C

1A

2D

A B C D M

Category Category Category Category Category

1

2

3

4

5

n

Global subsystem high-level specification/model/artefact

...

Global subsystem low-level specification/model/artefact

...

.

2B

1M

3B

5C

1A

2D

A B C D M

Category Category Category Category Category

Functional profile

Functional profile

Functional profile

Functional profile

Functional profile

1

2

3

4

5

nFunctional profile

Global subsystem high-level specification/model/artefact

...

Global subsystem low-level specification/model/artefact

...

...

Figure 5.22 - Nesting of framing structures for huge projects.

Their deployment in the SPEM model can be achieve through proper realization of the

proposed development framework pattern for PIS for each of the framing structures,

independently of the part of the system they respect to. Each of the framing structures

implicitly defines its own namespace for its constituent elements.

Process’ elements level

At this level the attention is centred in the identification/definition of individual elements,

focusing on its structure or properties. The elements of major interest are those belonging to

the kind of work unit.

These kinds of elements are the ones that have the main contribution to an effective

deployment of a model-based approach, and that are on the crux of the matter of the

transition from qualifying an approach as model-based or model-driven development

approach (or in the middle of the two). These work unit elements define the inputs, outputs,

and task/steps that materialize the activity. The inputs are used as available, but in what

respects to the outputs produced, the activity can elaborate on its content, form, and quality.

5.4 Approach to Software Development of PIS

127

These outputs are the ones that made available and are posteriorly used as inputs in

succeeding activities.

The quality of the specification of the inner tasks/steps is of crucial relevance to the process

and may provide the grounding for a model-based “navigation” along the process. Among

quality properties of the activity specification are the activity elements and sequence

formalization, the precision, the clearness, and completeness.

SPEM 2.0 diagrams can be used as means to formalize and to assist in achieving/analysing

quality properties of activities. Figure 5.23 is an example of a SPEM 2.0 materialization of the

4SRS technique; it aims to produce an object system model representing the logical

architecture of the system, essentially based on an input use case model representing

functional requirements of the system.

Figure 5.23 - 4SRS model transformation technique under a SPEM 2.0 perspective.

From Use Cases to Objects:
An Industrial IS Case Study
Analysis

Functional Model

System Logical
Architecture

Functional Model
(from 4SRS)

Analyst

Optional task.

It is executed if :

(i) the functional model is not

expressed in a use case model form;

(ii) or the use case model have no

identifying tag values assigned to the

use cases.

"Each use case at the system-level is

assigned a tagged value (example:

ref=2), and if this use case is

eventually refined by other sub-use

cases, each one of these will have a

reference that uses the super-use

case as a prefix (example: ref=2.3).

This numbering scheme can be

repeated to any depth and is used to

ease the mapping from use cases to

objects."

«optional, output»

This output use case model has the

tagged values resulting from the

preparation step.

May be coincident with the input use

case model if this one already has the

tagged values.

«mandatory, input»

It is expected to be in a use case

model form.

Non-functional
requirements

«optional, input»

«mandatory, output»

Use Case Model
Preparation

1. Transform each use
case into three objects

2. Choose survival objects

3.Create aggregations of
semantically consistent
survival objects

4. Link the aggregations to
specify the associtions among
existing objects

Associate non-functional requirements
and design decisions to objects

«optional, output»

4SRS Model
Transformation

 «nesting»

 «nesting» «predecessor»

 «predecessor»

 «predecessor»

 «nesting»

 «input»

 «performs»

 «nesting»

 «output»

 «input»

 «predecessor»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «predecessor»

5 Approach to PIS Development

128

As it can be seen in the SPEM diagram depicted in Figure 5.23, 4SRS defines its inputs, outputs,

tasks of processing and roles, and provides a guidance to assist the technique implementation.

As far as possible and convenient, the activities in the process should then be described by a

SPEM 2.0 diagram in order to access or improve their quality, and properly distinguish from

the others.

5.5 Conclusion

This chapter presented an approach to software development of PIS based on model-

based/driven development concepts and techniques. It was introduced: (i) three dimensions of

system development that are relevant to the approach; (ii) a development framework to

support the approach; a SPEM Base Plug-In extension; (iii) a development framework pattern

for PIS; (iv) considerations relative to the framing of MDD concepts and techniques; and

supporting artefacts to the construction of PIS. It is expected that this approach suitably brings

the model-driven benefits to the development of pervasive information systems.

Some of the main concepts introduced in this chapter are summarized in Table 5.2.

Concepts Meaning

Category of resources Heterogeneous resources (e.g. computational devices) are grouped in category of resources

reflecting common basic resource and capabilities of the resources.

Development

structure

Different development structures for the different functional profiles of the category of devices

reflect pathways of software development in order to satisfy major categories of functionality.

Modelling levels For each of the development structures and transversal to all of the development structures, there

are several modelling levels.

 At the top level, the platform-independent model (PIM) for each of class of devices is derived from

models resulted from development of the system as a whole.

 At intermediate levels, there are PSM models.

 At the bottom model level, there are the lower-level (Platform-Specific Models) PSMs from which the

final code is produced (either automatically generated or handcrafted).

Dimensions The approach for the development of PIS has three dimensions: resource, functional, and abstraction

dimensions.

 The resource dimension focus on classification of resources in categories according to common

properties or capabilities of these resource.

 The functional dimension focus on functional profiles specified for categories of resources.

 The abstraction dimension focus on the abstraction modelling levels; these involve transformations

of models from higher-levels to low-levels of abstraction.

5.5 Conclusion

129

Concepts Meaning

Modelling levels Three modelling levels can be distinguished: high, intermediate, and bottom modelling levels.

 The high modelling level. At this level, there is a PIM for each of category of resources. The PIM

derivates from models resulting from initial development of the system as a whole.

 The intermediate modelling levels. At these levels, there are PSM models that can be either

associated to subcategories of resources or to design decisions that may somehow introduce a

certain degree of platform/technological dependence.

 The bottom modelling level. At this level, there are the lowest-level PSMs from which the final code

will be produced (either automatically generated or handcrafted). From a PSM, it may be possible to

derive one or more different code artefacts due to platform differences where the code will be

deployed.

Global development

process

Global development effort is responsible for modelling requirements and for the establishment of

high-level global system’s models. From these, combinations of functional profiles and resources

categories are determined, and the high-level PIM for each combination needed on the system is

specified.

Elementary

development process

Individual development structures corresponding to the referred combinations, and are subject of its

own thread of development process referred as elementary development processes.

Types of model

mappings

Between models, two types of model mappings can be identified: vertical and horizontal model

mappings.

 Vertical model mapping. Between the model levels, there are vertical model mappings, which being

based on well-established transformations, bring the abstract system’s models to a more concrete

and refined system model (nearer to technological aspects and to its final realization).

 Horizontal model mappings. These mappings have the purpose to achieve, through specific

transformations, other goals than the one of a decrease of abstraction. For example, these horizontal

model mappings may exist in order to facilitate validation goals.

Table 5.2 - Main concepts of the proposed approach to the development PIS.

Chapter 6

Analysis of the Projects

Chapter Contents

6 Analysis of the Projects .. 133

6.1 Introduction .. 133

6.2 Analysis of uPAIN Project .. 134

6.3 Analysis of USE-ME.GOV Project ... 144

6.4 Lessons Learned .. 160

6.5 Conclusion ... 164

132

133

6

Analysis of the Projects

In this chapter, the projects of study in this thesis, projects uPAIN and USE-ME.GOV,

are revisited in order to be analysed. For each project, a pictorial description

illustrates generically illustrates the main activities and artefacts, a SPEM model

describes further detail the elements of the process development, and having in mind

the conceptions and structures introduced in chapter 5, it is performed analysis and

considerations about the project. The chapter then ends with reflections and

considerations considering both projects.

6.1 Introduction

Revisiting the projects presents an opportunity to observe them with attention focused on

particular items of interest in order to achieve the proper analysis. This analysis resorts to

SPEM 2.0 for building the diagrams that depict the structure of projects, making graphically

visible their main activities, artefacts, and relationships among them. Therefore, for each of

the projects, it was built a SPEM model of the project that is presented in this document.

Resorting to SPEM 2.0 for looking into the projects revealed, as it will be perceived, a proper

way to bring to light the understanding of the process internals.

Due to the size of project models and aiming to facilitate the presentation, the SPEM model

of each project is further divided and presented through diagrams related to specific main

Analysis of the Projects

134

phases/activities. Additionally, preceding and complementing the presentation of the SPEM

model, an auxiliary pictorial description is provided; it aims to ease the general understanding

of project activities and deliverables/artefacts.

The analysis use selective parts of the model (or diagrams) to stress points where issues are

verified or interventions are needed, or to make proper exemplifications. It is considered that

the use, where needed, of selective parts of the model instead of its totality, is proper and

sufficient for the presentation of the knowledge that the analysis intents to express, and does

not affect its precision or the proper expansion of the rationale for the whole project model.

To pursuit the goal of the analysis, it’s presented for each project: (i) the SPEM 2.0 model,

illustrating the main activities and artefacts; (ii) the framing structure as an auxiliary tool for

the identification of the functional profile instances; (iii) the application of the development

framework pattern, which allows to easier analysing an existing SPEM 2.0-based

development process its structure in the light of the approach conceptions; (iv) Reflection

and considerations about issues and facts of the project.

The remainder of this chapter is structured in three parts: (i) a first part related to analysis of

the uPAIN project; (ii) a second part related to analysis of USEME.GOV project; and (iii) a third

part in which is expressed and synthesized the knowledge that emerges for from these

project analysis.

6.2 Analysis of uPAIN Project

uPAIN grouped the activities by major concerns into five phases (as illustrated by Figure 6.1).

Project Management

Requirements Analysis and Elicitation

Research and Technological Development

Exploration and Evaluation of the Application

Medical Research

Figure 6.1 - Phases of uPAIN project.

In each of the phases, several activities were carried out that were designed to produce

several deliverables (SPEM diagrams, latter in this uPAIN section, will depict these activities).

6.2 Analysis of uPAIN Project

135

6.2.1 Pictorial Description of Major Activities and Deliverables

The deliverables designed to be produced in phases of “Project Management”, “Exploration

and Evaluation of the Application”, and “Medical Research”, are those illustrated by Figure

6.2.

Exploration and Evaluation of the Application

Refined specification of

the information system

Databases with information

from the protoype exploration

Report of usefulness, usability

and technology impact

Medical Research

Psycho-socio-cultural

surveys

Realized tests Pain assessment

Project Management

Periodic assessments of

project progress

Technical Meetings Project financial

management

Promotion and dissemination

of project results

Figure 6.2 - Major results in Project Management, Exploration and Evaluation of the Application, and Medical Research phases of

the uPAIN project.

These three phases don’t have the relevance for this study as the remaining others, as they

do not have activities that directly concerns to creation of artefacts that software

development of the system. As such, they are not subject of further analysis.

The phase of “Requirement Analysis and Elicitation” was designed to produce the

deliverables presented by Figure 6.3.

Figure 6.3 - Major results in Requirements Analysis and Elicitation phase of the uPAIN project.

Requirements Analysis and Elicitation phase is described (uPAIN, 2008) as having the tasks of

“Characterization of the environment”, “Elicitation and classification of user requirements”,

“Formalization of system requirements”, and “Refined planning”. These produce,

respectively, the deliverables “Problem Description”, User Requirements”, “System

Requirements” and “Refined Activities Plan”. The relationships between the phase, activities

and deliverables are better perceived through the SPEM diagram presented later.

Requirements Analysis and Elicitation

Problem Description User Requirements System Requirements Refined Activities Plan

Analysis of the Projects

136

The phase of “Research and Technological Development” was designed to produce the

deliverables presented by Figure 6.4.

Research and Technological Development

System Architecture comPCA Software for sPDAs Software for PSC Anesthesiology DB

Prototype # 1

(initial version)

Multimedia services Data mining techniques Prototype # 1 (completed

and corrected)

Prototype # 2

Figure 6.4 - Major results in Research and Technological Development phase of the uPAIN project.

Research and Technological Development phase is described (uPAIN, 2008) as including the

several tasks. Among these, it can be found the “Definition of architecture's solution”,

“Development of comPCA”, “Development of software for sPDAs pPDAs”, “Development of

software for the pSC”, “Development of anaesthesiology database”, “Technological

integration and prototype installation”, “AV Communications (streaming)”, “Development of

data mining techniques”, “Test and correction”, and “Extension for GSM / GPRS / UMTS”.

These tasks produce the deliverables illustrated by Figure 6.4.The relationships between the

phase, activities and deliverables are perceived better through the SPEM diagram presented

later.

6.2.2 SPEM 2.0-Based Description of Activities and Artefacts

The uPAIN project phases, main activities, tasks, artefacts, deliverables, and their

relationships are graphically visible through the SPEM model presented in Figure 6.5. In the

figure, the graphical elements are in a small dimension in order to one being able to see the

global picture; later illustrations will show, in visually comfortable diagrams, separated parts

of this model.

Among the several phases that constitute the project, “Requirements Analysis and

Elicitation”, and “Research and Technological Development” have greater dimension. They

are depicted with detail, as they are the ones of more interest in this study.

The rectangular shadow shape signals the tasks and artefacts that were not

explicitly/formally defined in the project.

6.2 Analysis of uPAIN Project

137

Analysis and Requirements Elicitation

The SPEM diagram depicting the phase of “Analysis and Requirements Elicitation” is

presented in Figure 6.6. The main tasks of this phase (represented in the diagram as

activities)) are “Characterization of the Environment”, “Elicitation and classification of user

requirements”, “Formalization of system requirements”, and Refined Planning.

Figure 6.5 - uPAIN development process under a SPEM 2.0 perspective.

The activities, with their specific results (expressed in the diagram as deliverables), are

generally structured in smaller units of work (represented in the diagram as tasks). These

tasks, having specific purposes, produce results (represented in the diagram as artefacts) that

usually belong to the deliverable and are consumed by other tasks. For example, the activity

of “Characterization of the Environment” is structured/decomposed in two tasks: a first task

that has the purpose to develop the context diagram artefact; and a second task that, based

on previously produced context diagram artefact, aims to develop a first set of use cases

expressed in a use case diagram artefact.

Project
Management

Management

Dissemination

Requirements
Analysis and
Elicitation

Characterization of
the Environment

Elicitation and
classification of user
requirements

Formalization of system
requirements

Refined Planning

Research and
Technological
Development

Definition of architecture's
solution

Development of comPCA

Development of software
for sPDAs pPDAs

Development of software
for the pSC

Development of
anesthesiology database

Technological integration
and prototype
installation

AV Communications
(streaming)

Development of data
mining techniques

Test and correction

Extension for
GSM/GPRS/UMTS

Exploration and Evaluation
of the Application

Characterization of the
information system before the
prototype

Exploration of the
prototype

Evaluation of support
offered by the system

Medical
Research

Preparation of
psycho-socio-cultural surveys

Execution of individual surveys to
 volunteers for test and
improvement

Pain assessment in patients
from HSO with uPAIN
prototype

Context Diagram
development

Use Case Diagrams
development

Context Diagram

Use Case Diagrams
[initial]

Problem Description

Use Case Diagrams
development

Sequence Diagrams
development

Use Case Diagrams
[refined]

Sequence Diagrams

Petri lattices
development CPNs

Refined activities plan

Components
diagram

Executable prototype
construction for
requirements validation

Executable prototype for
requirements validation

System architecture

System Requirements

Refined activities plan
elaboration

Refined activities plan

Electrical and Electronic
Project construction Electrical and

Electronic Project

Image processing software
development Image processing software

comPCA

Software components
development for sPDAs

Software components for
pPDAs

Software components
for sPDAs

Software components
for pPDAs

Software for sPDAs
and pPDAs

Software components
development for PSC Software components

for PSC

Integration of sPC and
SONHO DB Results from Integration with

SONHO DB

Software for PSC

Anesthesiology DB
development

PHP application development

for surveys support

Anesthesiology DB

PHP application for
surveys support

Anesthesiology DB

Technological

integraion

Prototype instalation

Prototype #1

Results from Prototype #1

installation

Prototype # 1 - initial
version

Data mining techniquesData mining techniques
development Data mining

techniques

Multimedia services
development Multimedia services

Multimedia services

Testing and Correction

Prototype # 2
Prototype # 2Expansion for

GSM/GPRS/UMTS

Prototype # 1 completed
and corrected

Prototype # 1 completed
and corrected

4SRS execution

User Requirements

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «output»

 «output»

 «composition»

 «composition»

 «nesting»

 «output»

 «nesting»

 «composition»

 «predecessor»

 «output»

 «output»

 «output»

 «nesting»

 «nesting»

 «predecessor»

 «composition»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «composition»

 «output»

 «composition»

 «nesting»

 «nesting» «output»
 «composition»

 «nesting»

 «output»

 «composition»

 «composition»

 «composition»

 «output»

 «nesting»

 «output»

 «composition»

 «input»

 «input»

 «input»

 «input»

 «input»

 «nesting»

 «output»

 «output»

 «output»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «output»

 «input»

 «composition»

 «composition»

 «composition»

 «output»

 «output»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «output»

 «output»

 «composition»

 «nesting»

 «nesting»

 «input»

 «nesting»

Analysis of the Projects

138

In this diagram, the project has made explicit only the phase, the activities, and the

deliverables. The tasks and artefacts were not made explicit, but were referenced during the

project development or implicit related to a work product realization. The rectangular

shadow shape signals these tasks and artefacts.

Figure 6.6 - SPEM 2.0 diagram of the phase “Requirements Analysis and Elicitation" of uPAIN project.

Research and Technological Development

The SPEM diagram depicting the phase of “Research and Technological Development” is split

(for legibility) into two parts that are shown respectively in Figure 6.7 and Figure 6.8. Figure

6.7 shows several activities that, based on results produced in preceding phase of

“Requirements Analysis and Elicitation”, conduct to the development of a first version of the

system prototype. The rectangular shadow shape signals the tasks and artefacts that were

not explicitly defined.

Requirements
Analysis and
Elicitation

Characterization of
the Environment

Elicitation and
classification of user
requirements

Formalization of system
requirements

Refined Planning

Context Diagram
development

Use Case Diagrams
development

Context Diagram

Use Case Diagrams
[initial]

Problem Description

Use Case Diagrams
development

Sequence Diagrams
development

Use Case Diagrams
[refined]

Sequence Diagrams

Petri lattices
development CPNs

Refined activities plan

Executable prototype
construction for
requirements validation

Executable prototype for
requirements validation

System Requirements

Refined activities plan
elaboration

Refined activities plan

User Requirements

 «output»

 «predecessor»

 «nesting»

 «nesting»

 «predecessor»

 «output»

 «output»
 «composition»

 «output»

 «composition»

 «composition»

 «predecessor»

 «output»

 «nesting»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «output»

 «output»

 «input»

 «input»

 «input»

 «input»

 «input»

6.2 Analysis of uPAIN Project

139

While the activities and results are explicitly defined in the project, the tasks and the

artefacts consumed by the tasks for the production of the resulting artefacts are not. The

exception is on the well-defined and explicit 4SRS activity, which consumes as input the use

case diagram produced in the previous “Requirements Analysis and Elicitation” phase and

produces the components diagram representing the system architecture. As implicit inputs

for the remainder activities, are the use case diagrams and the system logical architecture

produced by the 4SRS technique.

Figure 6.7 - SPEM 2.0 diagram of the phase “Research and Technological Development" of uPAIN project (part 1of 2).

Figure 6.8 presents the second part of the SPEM diagram, which includes the activities that

conduct to the creation of the second version of the system prototype.

Research and
Technological
Development

Definition of architecture's
solution

Development of comPCA

Development of software
for sPDAs pPDAs

Development of software
for the pSC

Development of
anesthesiology database

Technological integration
and prototype
installation

Use Case Diagrams
[refined]

Components
diagram

System architecture

Electrical and Electronic
Project construction Electrical and

Electronic Project

Image processing software
development Image processing software

comPCA

Software components
development for sPDAs

Software components for
pPDAs

Software components
for sPDAs

Software components
for pPDAs

Software for sPDAs
and pPDAs

Software components
development for PSC Software components

for PSC

Integration of sPC and
SONHO DB Results from Integration with

SONHO DB

Software for PSC

Anesthesiology DB
development

PHP application development

for surveys support

Anesthesiology DB

PHP application for
surveys support

Anesthesiology DB

Technological

integraion

Prototype instalation

Prototype #1

Results from Prototype #1

installation

Prototype # 1 - initial
version

4SRS execution

 «nesting»

 «output»

 «output»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «composition»

 «composition»

 «output»

 «composition»

 «composition»

 «output»

 «composition»

 «nesting»

 «nesting»

 «output»

 «output»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «composition»

 «nesting»

 «output»

 «output»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «output»

 «output»

 «input»

Analysis of the Projects

140

Regarding this second part of the model, the same considerations of the first part apply (the

tasks and artefacts that were not explicitly defined are signalled by the rectangular shadow

shape).

Figure 6.8 - SPEM 2.0 diagram of the phase “Research and Technological Development" of uPAIN project (part 2of 2).

Project Management, Exploitation and Application Evaluation, and Medical Research

These phases are herein presented (Figure 6.9) are deemed to be not relevant for the focus

of this work and thus are not further analysed. They are presented here only in order to allow

a better legibility of the several parts of the SPEM model of the project.

Figure 6.9 - SPEM 2.0 diagram of the phases “Project Management”, “Exploitation and Application Evaluation”, and “Medical

Research” of uPAIN project.

Research and
Technological
Development

AV Communications
(streaming)

Development of data
mining techniques

Test and correction

Extension for
GSM/GPRS/UMTS

Data mining techniquesData mining techniques
development Data mining

techniques

Multimedia services
development Multimedia services

Multimedia services

Testing and Correction

Prototype # 2
Prototype # 2Expansion for

GSM/GPRS/UMTS

Prototype # 1 completed
and corrected

Prototype # 1 completed
and corrected

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «output»

 «nesting»

 «nesting»

 «composition»

 «output»

 «composition»

 «nesting»

 «output»

 «nesting»

 «composition»

Project
Management

Management

Dissemination

Exploration and Evaluation
of the Application

Characterization of the
information system before the
prototype

Exploration of the
prototype

Evaluation of support
offered by the system

Medical
Research

Preparation of
psycho-socio-cultural surveys

Execution of individual surveys to
 volunteers for test and
improvement

Pain assessment in patients
from HSO with uPAIN
prototype

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

6.2 Analysis of uPAIN Project

141

6.2.3 Development Framework Pattern

Attending to the projects dimension and for the purposes of this perspective, in either its

structural level or its process’ elements level and where suitable, only a part of the model will

be used for illustration purposes (this does not affect the rationale to be taken for the whole

model).

Figure 6.10 illustrates the framing structure for uPAIN project. It shows the functional profile

instances that get existence in the project.

A B C D

1A

4C

6D

2B 2D

ComPCA PDA Server Desktop

ComPCA

Staff

Patient

pSC

Anesthesiology DB

System architecture

3B

5C

Requirements specification

Prototype #2

Prototype #1

1

2

3

4

5

6

FP – Functional Profile
1A – ComPCA FP
2B – sPDA FP
2D – staff desktop

3B – pPDA FP
4C – pSC FP
5C – Anesthesiology DB
6D – Survey’s support application

Survey’s support
application

Figure 6.10 - Framing structure for uPAIN project.

The realization of the PIS development framework pattern had as input, the SPEM model

previously defined for the uPAIN project and this framing structure. Figure 6.11 and Figure

6.12 present the diagrams that illustrate the main results. The remainder SPEM model is not

presented; nonetheless, it follows a light and coherent rearrangement reflecting the

restructuration meanwhile realized.

Figure 6.11 highlight the results of performing Tasks T1, T2, and T3, excepting the step S3.2

(“Include elementary process activities”) that is later presented in Figure 6.12. As it can be

seen in Figure 6.11, between the «GlobalProcess» instance “uPAIN” and the

«FrameworkSupport» “Framework Creation”, it was interspersed the “Research and

Technological Development” activity instance.

The resources categories, functional profiles, and functional profiles instances are in

conformity with the framing structure presented in Figure 6.10.

Analysis of the Projects

142

The structure of the pattern is easily recognized, since it follows an identical disposition. It

can be noted that, relatively the original SPEM diagram of the project, some

precision/completeness deemed of interest is introduced, either in functional profiles

(through “Survey’s support app) or in the elementary processes (through distinction between

“2B - sPDA” and ”3B-pPDA).

Figure 6.11 – uPAIN’s restructured SPEM diagram (major structuring elements).

Figure 6.12 highlight the results from performing step S3.2 (“Include elementary process

activities”) of task T3, and the steps of task T4. For each of the elementary processes, it was

included the corresponding activity previously identified in step S1.2 (“Identify elementary

process elements”); for those that were not explicitly identified an activity, it was defined one

with a consistent name, which is to be appropriately accommodated with the remainder

elements in the SPEM diagram.

Research and
Technological
Development

«FrameworkSuppo...

Framework Creation

«FrameworkSupport»

Functional Profiles Definition

«FrameworkSupport»

FP Instances Definition

«FrameworkSupport»

Elementary Processes Creation

«FrameworkSupport»

Resources Categories Definition

«GlobalProcess»
uPAIN

«ResourceCategory»

comPCA

«ResourceCategory»

PDAs

«ResourceCategory»

Server

«ResourceCategory»

Desktop

«FunctionalProfile»

ComPCA

Resource Categories Functional Profiles

«FunctionalProfile»

Staff

«FunctionalProfile»

Patient

«FunctionalProfile»

pSC

Functional Profile
Instances

«FunctionalProfile»

Anesthesiology DB

«FunctionalProfile»

Survey' supporting app

«FP_Instance»

1A - ComPCA

«FP_Instance»

2B - sPDA

«FP_Instance»

3B - pPDA

«FP_Instance»

4C - pSC

«FP_Instance»

5C - Anesthesiology DB

«FP_Instance»

2D - staff Desktop

«FP_Instance»

6D - Survey's supporting app

«ElementaryProcess»

1A - ComPCA

«ElementaryProcess»

2B - sPDA

«ElementaryProcess»

3B - pPDA

«ElementaryProcess»

4C - pSC

«ElementaryProcess»

5C - Anesthesiology DB

«ElementaryProcess»

2D - staff Desktop

«ElementaryProcess»

6D - Survey's supporting app

Requirements
Analysis and
Elicitation

Project
Management

Medical
Research

Exploration and
Evaluation of the
Application

 «nesting»

 «composition»

 «composition»

 «composition»

 «output» «output»

 «composition»

 «composition»

 «composition»

 «nesting»

 «composition»

 «output»

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «composition»

 «composition»

 «input» «input»

 «input»

 «composition» «composition»

 «composition»

 «nesting»

 «composition»

6.2 Analysis of uPAIN Project

143

Figure 6.12 also highlight the identification of a transformation corresponding to the 4SRS

technique; this transformation was previously formalized, and as such, is not here again

further detailed.

Some short notes about the uPAIN project’s development process: (i) uPAIN’s designated

phases should be designated as activities (phases as connotation to time, and activities are

connoted to doing work; for example, for project management it is more suitable the

classification as an activity than as a phase); (ii) It should be clearly made distinct the

objectives and the results (in the template definition of the project, objectives and results are

mixed together); (iii) It should be defined separated tasks (and not to be implicitly the

objectives/results) for each developed artefact (such as a task for sPDAs and another for

pPDAs); (iv) It should also be explicit stated as tasks implicit artefacts development (such as

the Survey’s supporting application). The inclusion of the development framework pattern

was simple; it did not pose any special difficulty.

Figure 6.12 - uPAIN’s restructured SPEM diagram (transformations and elementary process activities).

Requirements
Analysis and
Elicitation

Characterization of
the Environment

Elicitation and
classification of user
requirements

Formalization of system
requirements

Refined Planning

Research and Technological
Development

Definition of
architecture's solution

Development of
comPCA

Development of
software for sPDAs

Development of software
for the pSC

Development of
anesthesiology database

Technological integration
and prototype
installation

AV Communications
(streaming)

Development of data
mining techniques

Test and correctionExtension for
GSM/GPRS/UMTS

Use Case Diagrams
[refined]

Components
diagram

System architecture

«FrameworkSupport»
Framework Creation

«FrameworkSupport»
Elementary Processes Creation

«GlobalProcess»
uPAIN

«ModelTransformation»

4SRS application

«ElementaryProcess»

1A - ComPCA

«ElementaryProcess»

2B - sPDA

«ElementaryProcess»

3B - pPDA

«ElementaryProcess»

4C - pSC

«ElementaryProcess»

5C - Anesthesiology DB

«ElementaryProcess»

2D - staff Desktop

«ElementaryProcess»

6D - Survey's supporting app

Development of
software for pPDAs

Development of Survey's
supporting application

Development of staff
Desktop

 «nesting»

 «nesting»

 «nesting»
 «output»

 «nesting» «nesting»

 «nesting»

 «nesting»

 «nesting»

 «input»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Analysis of the Projects

144

6.3 Analysis of USE-ME.GOV Project

USE-ME.GOV project established several efforts for the development of the system. The most

relevant of these from the point of view of this study are: (i) an initial work to clarify

requirements and settle the logical architecture of the system; (ii) development of the core

platform subsystem; (iii) development of repository services; (iv) development of the four

target pilot services, namely, the “Healthcare” service, the “Mobile Student” service, the

“Report of Complaint” service, and the “City Information” service. Figure 6.13 illustrates

these development efforts.

Project Management

Service Scenario Definitions and Evaluation

Preliminary Design and Mock-Up

Requirements Analysis

Detailed Design Specifications

Implementation and Integration

Validation

Recommendations

Figure 6.13 - USE-ME.GOV major development efforts.

6.3.1 Pictorial Description of Major Activities and Deliverables

The deliverables designed to be produced in the phases of “Project Management”,

“Validation”, and “Recommendations”, are those illustrated by Figure 6.14.

Validation

Validation Plan Validation Review

Report

Recommendations

...for “Business

Planning”

...for “Implementation

Planning”

...for “Standardizations

and Regulations”

Platform Requirements

Analysis

Project Management

Quality Assurance Plan

Figure 6.14 - Deliverables in Implementation and Integration, in Validation, and in Recommendations.

 6.3 Analysis of USE-ME.GOV Project

145

These three phases do not have the relevance to this study as the remaining others, as they

do not have activities that directly concerns to creation of development artefacts of the

system. As such, they are not subject of further analysis.

The phase of “Service Scenario Definitions and Evaluation” was designed to produce the

deliverables presented by Figure 6.15.

Service Scenario Definitions and Evaluation

User Requirements Analysis Review of Available Business

Models

Review of state of art for Intuitive

and Mobile Interface Design
Review of state of art for Platform

Architecture and General Design

Service Use and Scenario Defintion

...for “Broadcasting of Critical

Information”

...for “Reports and Complaints”...for “The Mobile Student” ...for “Local Event Promotion”...for “Health Care Information”

Technical Implementation

Requirements

Figure 6.15 - Deliverables for Service Scenario Definitions and Evaluation.

The phase of “Requirements Analysis” was designed to produce the deliverables presented

by Figure 6.16.

Requirements Analysis
Platform Requirements

Analysis

Usability Requirements Analysis

...for “Broadcasting of

Critical Information”

...for “Reports and

Complaints”

...for “The Mobile

Student”

...for “Health Care

Information”

Pilot Service Requirements Specifications

...for “Broadcasting of

Critical Information”

...for “Reports and

Complaints”

...for “The Mobile

Student”

...for “Health Care

Information”

Figure 6.16- Deliverables in Requirements Analysis.

The phase of “Preliminary Design and Mock-Up Evaluation” was designed to produce the

deliverables presented by Figure 6.17.

Preliminary Design & Mock-Up

Platform Preliminary Design

and Mock-up Evaluation

Usability-Driven and Mock-Up Evaluation

...for “Broadcasting of

Critical Information”

...for “Reports and

Complaints”

...for “The Mobile

Student”

...for “Health Care

Information”

Figure 6.17 – Deliverables in Preliminary Design and Mock-up.

Analysis of the Projects

146

The phase of “Detailed Design and Specification” was designed to produce the deliverables

presented by Figure 6.18.

Detailed Design and Specification

Platform and Application Detailed Design

Core Platform ...for “Reports and

Complaints”

Service Repository ...for “Health Care

Information”

...for “Broadcasting of

Critical Information”

Managment Console...for “The Mobile

Student”

Platform Services External Data

Sources

Pilot Services Detailed Services Specifciation

...for “Broadcasting of

Critical Information”

...for “Reports and

Complaints”

...for “The Mobile

Student”

...for “Health Care

Information”

Figure 6.18 - Deliverables in Detailed Design and Specification.

The phase of “Implementation and Integration” was designed to produce the deliverables

presented by Figure 6.19.

Implementation and Integration

Integration and Test plan Integration and Test Report

Figure 6.19 - Deliverables in Implementation and Integration.

6.3.2 SPEM 2.0-Based Description of Activities and Artefacts

The USE-ME.GOV project’s phases, main activities, tasks, artefacts, deliverables, and their

relationships are graphically visible through the SPEM model presented in Figure 6.20. In the

figure, the graphical elements are in a small dimension in order to one being able to see the

global picture; later illustrations will show, in visually comfortable diagrams, separated parts

of this model.

The rectangular shadow shape signals the tasks and artefacts that were not

explicitly/formally defined in the project.

The project references the consumption/production at deliverable level and uses coarse work

units, which is reflected in the SPEM model (artefacts are they are usually part of some

deliverable and tasks are part of the structure of some activity).

 6.3 Analysis of USE-ME.GOV Project

147

Where appropriate in this document, segments of the SPEM diagram are shown with those

modelling artefacts and associated tasks.

Figure 6.20- USE-ME.GOV development process under a SPEM 2.0 perspective.

Technical Implementation
Requirements

User Requirements

Review of Available
Business Models

Review of State of the Art for Intuitive
and Mobile Interface Design

Review of State ot the Art for Platform
Architecture and General Design

Service Use and Scenario
Definition

Usability Requirements
Analysis

Platform Requirements
Analysis

Requirements
Analysis

Service Scenario Definition
and Evaluation

Requirements Review

Usability-Driven and
Mock-Up Evaluation

Platform Architecture
Design Mock-Up

Preliminary Design &
Mock-Up

Components Functional
Design

Distributed Sharing
of Content

User Authentication and
Security

Components Functional
Design

Distributing Sharing of
Content

User Authentication
and Security

Detailed Design and
Specification

Requirements Revision

Core Platform
Specification

Detailed Components Interf. and
Appl. Specification

Service Repository
Specification

Platform Services

Pilot Services

Management
Console

External Data
Sources

Pilot Services

External Data
Sources

Platform Functional Design
(implicit research task)

Core Platform

Service
Repository

Management
Console

Platform Services

Pilot Services

Meta Protocol of
Services Design

Service Models Business
Definition

Service Application Integration
Specification

Components
Development

Service Applications
Development

Components Development
Results

Service Applications
Development Results

Integration and Test
Plan Definition

Integration and
Testing

Pilot Services
Installation

Pilot Services
Operation

Validation Plan Definition

Validation

Validation Review

Working System

Project Coordination

Project Assessment

Consortium Agreement

Consortium Agreement - Annex I -
Description of Work

Project Kick-off

Business
Planning

Implementation
Planning

Standardization and
Regulations

Business Planning

Implementation
Planning

Standardization and
Regulations

Recommendations

User Requirements
Analysis

Quality Assurance Plan

Assessment and Evaluation
ReportReview of Available Business

Models

Review of State of the Art in
User Interface design for
Mobile Applications

Open Platform for Mobile Services –
State of the Art

Tecnhical Implementation
Requirements

Service and Use
Scenario Definition

Usability Requirements
Definition for Selected
Scenarios

Plataform Requirements
Analysis

Pilot Services Requirements Specifications

Usability-Driven and Mock-Up Evaluation

Platform Preliminary Design and
Mock-Up Evaluation

Platform Architecture
Design

Platform Functional
Design

Meta Ptotocol of
Service Types

Service Business
Model Definition

Pilot Services Detailed
Services Specification

Platform and Application
Detailed Design

Platform Components
and Applications

Integration and Test
plan

Software Product

Validation Plan

Validation Review
Report

Integration and
Test Report

Results from Service
Application Integration
Specification

Pilot Services Specification

Platfrom Functional
Design

Project Kick-Off

Quality assurance plan

Service and Use Scenario
Evaluation

Usability Requirements
Definition

Preliminary Interface
Design and Mock-Up
Evaluation

Protoype Implementation
and Validation

Interface Intuitive Design for
Mobile Services in Public
Administration

Interface Design
Evaluation

Platfom Requirements
Definition

Platform Architecture
Design and Mock-Up

Meta-Protocol and
Preliminary Funct.Design

Platform and Application
Detailed Design

Platform Components and
Service Applications

Final Recommendations

Implementation
and Integration

Validation

Validation plan

Validation review and
results

Integration and test
plan

Final Integration

Results ffrom Pilot
Services Installation

Dissemination and
Exploitation Planning

Dissemination and Prelim.
Explotation Plan

Dissemination and Prelim.
Exploitation Plan

Dissemination Activities and
Events

Dissemination Review

Dissemination Plan Definition

Dissemination review report
Dissemination Review,
Exploit. Plan

Compliation of Plaform and
Application Detailed Design
contributions

Compilation of Platform
Architecture Design
contributions

Recommendations
Elaboration

 «composition»

 «output»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «output»

 «output»

 «input»

 «output»

 «required results»

 «output»

 «output»

 «output»

 «output»

 «composition»

 «input»

 «composition»

 «required results»

 «required results»

 «input»

 «output»

 «input»

 «input»

 «input»

 «input»

 «nesting»

 «input»

 «input»

 «composition»

 «composition»

 «composition»

 «output»

 «composition»

 «composition»

 «input»

 «input»

 «input»

 «output»

 «nesting»

 «output»

 «input»

 «nesting»

 «composition»

 «composition»

 «input»

 «output»

 «input»

 «nesting»

 «output»

 «output»

 «output»

 «output»

 «output»

 «output»

 «input»

 «output»

 «predecessor»

 «composition»

 «nesting»

 «input»

 «input»

 «nesting»

 «input»

 «nesting»

 «input»

 «input»

 «output»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «composition»

 «input»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «required results»

 «nesting»

 «required results»

 «nesting»

 «nesting»

 «nesting»

 «required results»

 «required results»

 «required results»

 «required results»

 «output»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «input»

 «composition»

 «composition»

 «required results»

 «required results» «output»

 «required results»

 «nesting»

 «required results»

 «nesting»

 «output» «required results»

 «required results»

 «required results»

 «required results»

 «output»

 «output»

 «predecessor»

 «output»

 «output»

 «input»

 «output»

 «input»

 «input»

 «output»

 «input»

 «required results»

 «output»

 «input»

 «predecessor»

 «predecessor»

 «predecessor»

 «input»

 «input»

 «required results»

 «predecessor»

 «nesting»

 «output»

 «composition»

 «nesting»

 «required results»

 «required results»

 «required results»

 «required results»

 «required results»

 «required results»

 «input»

 «output»

 «composition»

 «output»

 «output»

 «composition»

 «output»

 «output»

 «output»

 «input»

 «input»

 «output»

 «input»

Analysis of the Projects

148

Scenario Definition and Evaluation

Figure 6.21 illustrates the main activities, deliverables and other outcomes related to

“Scenario Definition and Evaluation Activity” (mentioned as ‘work package’ in the project). It

had as milestone the production of service scenarios for each of the pilot services of the

project.

Figure 6.21 - SPEM 2.0 perspective over Service Scenario Definitions and Evaluation in USE-ME.GOV.

To achieve such milestone, several activities were performed, from gathering user

requirements (from the public authorities’ perspective), reviewing state-of-the-art, to

defining technical implementation requirements.

“Technical Implementation Requirements” established, among other technical definitions, a

first schema for the platform architecture and for the added-value service architecture.

“Service Use and Scenario Definition” elaborated, for each target service, an initial use case

model enriched with activity diagrams.

Schema for Platform
Architecture

Technical Implementation
Requirements

User Requirements

Review of Available
Business Models

Review of State of the Art for
Intuitive and Mobile Interface
Design

Review of State ot the Art for
Platform Architecture and General
Design

Service Use and Scenario
Definition

Service Scenario
Definition and
Evaluation

User Requirements
Analysis

Review of Available Business
Models

Review of State of the Art in
User Interface design for
Mobile Applications

Open Platform for Mobile
Services – State of the Art

Tecnhical Implementation
Requirements

Service and Use
Scenario Definition

Service and Use Scenario
Evaluation

Use case model (complemented
with activity diagrams) for each
target service

Schema for Added Value
Service Architecture

 «nesting»

 «output»

 «output»

 «output»

 «output»

 «nesting»

 «input»

 «input»

 «input»

 «output»

 «output»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «input»

 «required results»

 «composition»

 «composition»

 «input»

 6.3 Analysis of USE-ME.GOV Project

149

Requirements Analysis

Figure 6.22 illustrates the main activities, deliverables, and other outcomes from

“Requirements Analysis”. All the activities had the “Service and Use Scenario Definition”

deliverable as input artefact. A relevant activity, included in “Platform Requirements

Analysis”, is the model transformation technique called “4SRS”, which formalizes the passage

from use cases models to an object model representing the logical system architecture.

Figure 6.22 - SPEM 2.0 perspective over Requirements Analysis in USE-ME.GOV.

“Requirements Review” was the name of the activity that produced the “Pilot Services

Requirements Specifications” deliverable, which defined the requirements specification for

the each of the target pilot services (this specification was latter used for detailed service

specifications). In this activity, service scenarios were defined for each service (sequence

diagrams were used); additionally, a list of functional requirements were specified for each

service.

Preliminary Design & Mock-Up

Preliminary Design & Mock-Up activities had the purpose of anticipating design decisions.

Some mock-ups evaluations of user interfaces for each of the pilot services were performed.

Mock-ups were also elaborated for the system and some modelling artefacts were produced,

Usability Requirements
Analysis

Platform Requirements
Analysis

Requirements
Analysis

Requirements Review

Service and Use
Scenario Definition

Usability Requirements
Definition for Selected
Scenarios

Plataform Requirements Analysis

Pilot Services Requirements
Specifications

Usability Requirements
Definition

Platfom Requirements
Definition

4SRS High-level object/components of
the system

 «input»

 «input»

 «output»

 «output»

 «nesting»

 «nesting»

 «input»

 «input»

 «nesting»

 «nesting»

 «required results»

 «required results»

 «input»
 «output»

 «composition»

 «output»

Analysis of the Projects

150

such as the high-level system diagram or the core platform layers view. Class diagrams and

sequence diagrams are among typical UML diagrams used.

Figure 6.23 illustrates the main activities, deliverables and other outcomes related to

Preliminary Design and Mock-Up.

Figure 6.23 - SPEM 2.0 perspective over Preliminary Design and Mock-Up in USE-ME.GOV.

Detailed Design and Specification

The “Detailed Design and Specification” activities further detail the preliminary design. “Pilot

Services Detailed Design” details the design for the selected pilot services. This design appear

again detailed by the activity of “Platform and Application Design”, which also details the

design for the core platform, service repository, management console, and external data

sources.

Other important activities were carried: the “Meta-Protocol of Services Design”, which aimed

to constitute a framework for meaningful communication among platform components; the

“Platform Functional Design”, being a research task, described research findings and

Usability-Driven and
Mock-Up Evaluation

Platform Architecture
Design Mock-Up

Preliminary Design &
Mock-Up

Core Platform

Service
Repository

Management
Console

Platform Services

Pilot Services

Service and Use Scenario
Definition

Usability Requirements
Definition for Selected
Scenarios

Plataform Requirements
Analysis

Pilot Services
Requirements
Specifications

Usability-Driven and
Mock-Up Evaluation

Platform Preliminary Design and
Mock-Up Evaluation

Platform Architecture
Design

Preliminary Interface
Design and Mock-Up
Evaluation

Protoype Implementation
and Validation

Interface Intuitive Design for
Mobile Services in Public
Administration

Interface Design
Evaluation

Platform Architecture
Design and Mock-Up

Compilation of Platform
Architecture Design
contributions

Pilot services
mock-ups

 «composition»

 «output»

 «nesting»

 «input» «input» «input»

 «nesting»

 «output»

 «composition»

 «output»

 «composition»

 «input»

 «composition»

 «input»

 «required results»

 «required results»

 «nesting»

 «output»

 «required results»

 «required results»

 «composition»

 «composition»

 «composition»

 6.3 Analysis of USE-ME.GOV Project

151

decisions taken. Figure 6.24 illustrates the main activities, deliverables, and other outcomes

related to “Detailed Design and Specification” activities.

Figure 6.24 - SPEM 2.0 perspective over Detailed Design and Specification in USE-ME.GOV.

Implementation and Integration

“Implementation and Integration” activities had the purpose of realizing the models into

tangible application components and of integrating them into a working system. Testing and

Components Functional
Design

Distributed Sharing
of Content

User Authentication and
Security

Components Functional
Design

Distributing Sharing of
Content

User Authentication
and Security

Detailed Design and
Specification

Pilot Services Detailed
Services Specification

Core Platform
Specification

Detailed Components Interf. and
Appl. Specification

Service Repository
Specification

Platform Services

Pilot Services

Management
Console

External Data
Sources

Pilot Services

External Data
Sources

Platform Functional Design
(implicit research task)

Meta Protocol of
Services Design

Tecnhical Implementation
Requirements

Pilot Services Requirements
Specifications

Usability-Driven and
Mock-Up EvaluationPlatform Architecture

Design

Platform Functional
Design

Meta Ptotocol of
Service Types

Pilot Services Detailed
Services Specification

Platform and Application
Detailed Design

Platfrom Functional
Design

Meta-Protocol and
Preliminary Funct.Design

Platform and Application
Detailed Design

Compliation of Plaform and
Application Detailed Design
contributions

 «output»

 «output»

 «output»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «input» «input»

 «input»

 «input»

 «input»

 «input»

 «input»

 «composition»

 «composition»

 «composition»

 «output»

 «input»

 «output»

 «composition»

 «input» «composition»

 «output»

 «required results»

 «required results»

 «required results»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

Analysis of the Projects

152

installation were also included activities. Figure 6.25 illustrates the main activities,

deliverables, and other outcomes related to “Detailed Design and Specification” activities.

Figure 6.25 - SPEM 2.0 perspective over Implementation and Integration in USE-ME.GOV.

Service Models Business
Definition

Service Application Integration
Specification

Components
Development

Service Applications
Development

Components Development Results

Service Applications
Development Results

Integration and Test
Plan Definition

Integration and
Testing

Pilot Services
Installation

Pilot Services
Operation

Working System

Platform Preliminary
Design and Mock-Up
Evaluation

Service Business
Model Definition

Platform and Application
Detailed Design

Platform Components
and Applications

Integration and Test
plan

Software Product

Integration and
Test Report

Results from Service
Application Integration
Specification

Pilot Services Specification

Platform Components and
Service Applications

Implementation
and Integration

Integration and test
plan

Final Integration

Results ffrom Pilot
Services Installation

 «composition»

 «composition»

 «predecessor»

 «input» «input»

 «predecessor»

 «predecessor»

 «output»

 «output»
 «input»

 «required results»

 «output»

 «required results»

 «output»

 «output»

 «input»

 «output»

 «nesting»

 «required results»

 «required results»

 «output»

 «required results»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «required results»

 «nesting»

 «nesting»

 «nesting»

 «required results»

 «output»

 «input»

 «nesting»

 6.3 Analysis of USE-ME.GOV Project

153

Validation, Project Planning, Recommendations, and Dissemination

The activities in “Validation”, “Project Planning”, “Recommendations”, and “Dissemination”,

illustrated by Figure 6.26 and Figure 6.27, are deemed not relevant for the focus of this work.

Figure 6.26 - SPEM 2.0 perspective over Validation in USE-ME.GOV.

Figure 6.27 - SPEM 2.0 perspective over Project Planning, Recommendations, and Dissemination in USE-ME.GOV.

Validation Plan Definition

Validation

Validation Review

Working System

Quality Assurance Plan Plataform Requirements
Analysis

Validation Plan

Validation Review
Report

Validation

Validation plan

Validation review and
results

User Requirements
Analysis

 «required results»

 «required results»

 «nesting»

 «nesting»

 «nesting»

 «input»
 «input» «input»

 «input»

 «output»

 «input»

 «output»

 «predecessor»

 «predecessor»

Project Coordination

Project Assessment

Consortium
Agreement

Consortium Agreement - Annex
I - Description of Work

Project Kick-off

Business
Planning

Implementation
Planning

Standardization and
Regulations

Business
Planning

Implementation
Planning

Standardization and
Regulations

Recommendations

Quality Assurance Plan

Assessment and Evaluation
Report

Project Kick-Off

Quality
assurance plan

Final
Recommendations

Dissemination and
Exploitation Planning

Dissemination and Prelim.
Explotation Plan

Dissemination and Prelim.
Exploitation Plan

Dissemination Activities and
Events

Dissemination Review

Dissemination Plan
Definition

Dissemination review report
Dissemination Review,
Exploit. Plan

 «required results»

 «output»

 «output»

 «output»

 «input»

 «output»

 «output»

 «output»

 «composition»

 «output»

 «required results»

 «composition»

 «required results»

 «required results»

 «required results» «output»

 «nesting»

 «nesting»

 «nesting» «predecessor»

 «output» «required results»

 «composition»

Analysis of the Projects

154

6.3.3 Development Framework Pattern

Taking into account the projects dimension and the purposes of this perspective in either its

structural level or its process’ elements level, only a part of the model (where appropriate)

will be used for illustration purposes (this does not affect the rationale to be taken for the

whole model).

The USE-ME.GOV project is extensive and includes several subsystems services. In the light of

the approach proposed, these subsystems can be seen as a system for which a whole

development process can be applied. As such, the analysis/restructuration of this project will

have certain nuances from the analysis performed for the previous project. It will have a

context framing structure identifying the major subsystem’s functional profile and

subsystem’s resource category groupings. Then, for each of the subsystems functional profile

instance (the crossing of subsystem’s functional profile with subsystems’ resources category

grouping) is developed a new framing structure. This framing structure will consider as the

high-level models the ones regarding to the specific subsystem’s functional profile instance.

For each subsystem’s functional profile instance, there will be their functional profiles and

resources categories, as expected (unless there is another level of subsystems, in which case,

the rationale is applied again). This last framing structure is similar to what was conceived for

previous project.

The USE-ME.GOV SPEM diagram from USE-ME.GOV project assisted in the definition of

several framing structures. The following paragraphs show the context framing structure of

USE-ME.GOV and the redefinition of the SPEM diagram to reflect the pattern realization at

this contextual level. For one of the identified subsystem’s functional profile instances, the

respective nested framing structure is illustrated. Further nested framing structures of this

last one will not be presented here, once that the rationale behind is analogous to the one

performed for previous project, where no subsystems were included.

Figure 6.28 illustrates the framing structure for the system level. It shows the subsystem’s

functional profile instances that get existence in the project. The global process

models/artefacts designated as “Requirements specification” include the results from

project’s SPEM activities of “Service Scenario Definition and Evaluation” and the results from

“Requirements Analysis” (with the exception of the results from “Platform Requirements

Analysis” which is included in the global process activity “Platform Architecture”). The global

process artefacts/products “Integrated System” and “Final Executable System” are not clearly

explicit from the SPEM model. The figure represents them because the finalization of the

development process implicitly involves them.

 6.3 Analysis of USE-ME.GOV Project

155

The framing structure has two major subsystems’ functional profiles: “Platform” and “Pilot

Services”. The resources categories related to subsystem functional profiles (as it also

happens at the system level), have symbolic names of “Category group A”, “Category group

B”, and so on. In these cases, it is acceptable to make no explicit

identification/characterization of the resources categories. The framing structure assigns

each of the subsystem functional profiles to only one18 resource group, giving origin to a

single subsystem functional profile.

2B

1A

A B

Category group

1

2

3

Requirements specification

...System architecture

Integrated system

Final executable system

Platform

Pilot Services

Category group

Figure 6.28 - Framing structure at system level for USE-ME.GOV project.

The “Platform” functional profile instance has also a corresponding framing structure. Figure

6.29 shows the faming structure for Platform functional profile instance. The figure shows

that the Platform subsystem (corresponding to the previous functional profile instance) has

its own functional profiles “Core Platform”, “Service Repository”, “Platform Services”,

“Management Console”, and “External Data Sources”.

.

2B

3C

5E

1A

A B C D E

Category group

1

2

3

4

5

1A - Functional profile instance for Platform subsystem

...

Core platform

Service repository

Platform services

Management console

External data sources

Category group Category group Category group Category group

4D

Figure 6.29 - Functional profile instance for Platform subsystem.

18 The absence of resource group characterization and the reasonable assumption that a subsystem needs only one supporting resource category
group gives origin to a single resource category group for a subsystem functional profile.

Analysis of the Projects

156

As before, the assignment of each subsystem functional profile to a resource category group

results in a new subsystem functional profile instance, and consequently, a new

corresponding framing structure. Figure 6.30 represents, as an illustration of a nested

framing structure, the framing structure related do “Pilot Services”.

The Pilot Services has several subsystems, one for each of the services of “Complaint

Information Broadcasting”, “Mobile Student”, “Healthcare Information”, and “Citizen

Complaint”. Again, as before in the preceding framing structure, there are resource

categories groups.

Symbolic names identify the several elements of the framing structure; Figure 6.30 shows

these names. Note that there is no conflict on the names used for resource categories

groupings, functional profiles, or functional profiles instances. The framing structure

(possessing an own identification, in this case, ‘2B’), implicitly defines a namespace.

Therefore, for example, “Category group A” has, in the global scope of all framing structures,

the identification of “Category group 2B.A”. This naming scheme extends for other nested

framing structures.

Each of these functional profiles instances gives origin of another framing structure. Since

none of these framing structures includes subsystems, the procedure is now similar to the

one carried in the previous project. As such, this document does not present or further detail

these framing structures.

.

2B

3C

1A

A B C D

Category group

1

2

3

4

5

6

2B - Functional profile instance for Pilot Services subsystem

City Information Broadcasting

Mobile Student

Healthcare Information

Citizen Complaint

Category group Category group Category group

4D

Figure 6.30 - Framing structure for Pilot Services subsystem of USE-ME.GOV.

Notice that there are other global development process activities carried in the development

process. The results of these activities, spite of being not exclusive to a particular subsystem,

are of interest to the subsystems. For example, among the activities identified (some

explicitly and others implicitly in the deliverables) in the SPEM diagram, are the “Meta-

Protocol of Service Types Definition” and the “Platform Functional Design”.

 6.3 Analysis of USE-ME.GOV Project

157

As seen, the size and the system decomposition in subsystems result in the definition of

several nested framing structures. For each framing structure, the SPEM model instantiates a

development framework pattern.

The original organization of the complete USE-ME.GOV development process elements, spite

of its waterfall-like major activities disposition, is not clear. USE-ME.GOV, sometimes,

expresses the process elements in chunks of implicit development activities or work

products. The SPEM model built tries to reflect this organization. As consequence, it needs

extensive rearrangements in order to accommodate the rationale behind the use of the

development frameworks patterns (which are associated to the framing structures

identified).

This section presents the application of the first pattern related to the framing structure at

system level. For the remaining framing structures, the rationale of the corresponding

realizations of the development framework patterns is identical to this pattern or to the one

already presented in the earlier project. For the realizations of the patterns in the SPEM

model, the approach reorganizes, modifies, or properly creates the existing activities.

Figure 6.31 - USE-ME.GOV’s restructured SPEM diagram (major structuring elements at system level).

Requirements
Analysis

Service Scenario
Definition and
Evaluation

Preliminary Design &
Mock-Up

Detailed Design and
Specification

Implementation
and Integration

Validation

Dissemination and
Exploitation Planning

Project
Management

Recommendations
Elaboration

«FrameworkSupp...

Framework Creation

«FrameworkSupport»

Functional Profiles Definition

«FrameworkSupport»

FP Instances Definition

«FrameworkSupport»

Elementary Processes Creation

«FrameworkSupport»

Resources Categories Definition

Resource Categories Functional Profiles

Functional Profile
Instances

«GlobalProcess»
projectName

«ResourceCategory»

Group A

«ResourceCategory»

Group B

«FunctionalProfile»

Platform

«FunctionalProfile»

Pilot Services

«ElementaryProcess»

1A - Platform

«ElementaryProcess»

2B - Pilot Services

«FP_Instance»

1A - Platfrom

«FP_Instance»

2B - Pilot Services

These activities include
activities that are spread
through several elementary
processes regarding
diverse subsystems.
These have to be
accordingly
spread/redefined through
the appropriate elementary
processes

 «input»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «composition»
 «composition»

 «output»

 «nesting»

 «input»

 «nesting»

 «composition»

 «input» «nesting»

 «output»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»

Analysis of the Projects

158

The global process activity of “Project Management” includes “Project Coordination” and

“Project Assessment” activities. “Recommendations” global process activity includes

“Business Planning”, “Implementation Planning”, and “Standardization and Regulations”

activities. The restructuration has to distribute (and eventually to redefine) the activities of

“Preliminary Design & Mock-Up”, “Detailed Design ad Specification”, and “Implementation

and Integration” by the several elementary processes regarding diverse subsystems.

Figure 6.32 illustrate the nesting of a framing structure achieved through new realization of

the development framework pattern in connection to an elementary process of a higher

framing structure. This elementary process assumes in the pattern the place usually allocated

to the global development process. Note that there is a namespace established by the

framing structure, reflected in this case by the symbolic designation of the element that is

representing the global process, in this case the elementary process “1A-Platform”. As such,

the absolute name of another relative identified element in the diagram will be, its element’s

type reference followed by a tag in the form 1A.relative_id_of_diagramElement. For example,

“elementary process 1A.3C” refers to the elementary process “3C-Platform Services”.

Figure 6.32 - USE-ME.GOV restructured SPEM diagram (major structuring elements at Platform subsystem level).

Preliminary Design &
Mock-Up

Detailed Design and
Specification

Implementation
and Integration

«FrameworkSupp...

Framework Creation

«FrameworkSupport»

Functional Profiles Definition

«FrameworkSupport»

FP Instances Definition

«FrameworkSupport»

Elementary Processes Creation

«FrameworkSupport»

Resources Categories Definition

Resource Categories
Functional
Profiles

Functional Profile
Instances

«ResourceCategory»

Group A

«ResourceCategory»

Group B

«FunctionalProfile»

Core Platform

«FunctionalProfile»

External Data Sources

«ElementaryProcess»

1A - Platform

«ElementaryProcess»

2B - Service Repository

«FP_Instance»

1A - Platfrom

«FP_Instance»

5D - Pilot Services

These activities include
activities that are
spread through several
elementary processes
regarding diverse
subsystems.
These have to be
accordingly
spread/redefined
through the
appropriate elementary
processes

«ResourceCategory»

Group C

«ResourceCategory»

Group D

«ResourceCategory»

Group E

«FunctionalProfile»

Service Repository

«FunctionalProfile»

Platform Services

«FunctionalProfile»

Management Console

«ElementaryProcess»

1A - CorePlatform

«FP_Instance»

2B - Service Repository

«FP_Instance»

3C - Platform Services

«FP_Instance»

4D - Management Console

«ElementaryProcess»

3C - Platform Services

«ElementaryProcess»

4D - Management Console

«ElementaryProcess»

5D - External Data sources

 «composition»

 «input»

 «output»

 «nesting»

 «input»

 «nesting»

 «output»

 «composition»

 «composition»

 «composition»

 «composition»

 «nesting»

 «input»

 «composition»

 «nesting»

 «nesting»

 «output»

 «nesting»

 «composition»
 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition» «composition» «composition»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 6.3 Analysis of USE-ME.GOV Project

159

Figure 6.33 illustrates another nesting of a framing structure, through further realization of

the development framework pattern in connection to an elementary process of a higher

framing structure. In this case, it respects to the “Pilot Services” subsystem.

Figure 6.33 - USE-ME.GOV’s restructured SPEM diagram (major structuring elements at Pilot Services subsystem level).

Short notes on USE-ME.GOV:

 Some activities need reformulation in order to accommodate the deployment of the

PIS development framework pattern.

 The way in which the baseline is expressed is not the most suitable to favour the

clarity of the project structure. The activities are disposed in a way that suggests the

conception of “phases”, while the name of activities suggests the conception of

"discipline".

 There is no match between Project baseline and work planning. Sometimes, it's not

easy to figure out, from the work planning, the activities that belong to the main

efforts expressed in the baseline of the chosen methodology (see (USE-ME.GOV,

2003b)).

Preliminary Design &
Mock-Up

Detailed Design and
Specification

Implementation
and Integration

«FrameworkSupp...

Framework Creation

«FrameworkSupport»

Functional Profiles Definition

«FrameworkSupport»

FP Instances Definition

«FrameworkSupport»

Elementary Processes Creation

«FrameworkSupport»

Resources Categories Definition

Resource Categories
Functional
Profiles

Functional Profile
Instances

«ResourceCategory»

Group A

«ResourceCategory»

Group B

«FunctionalProfile»

City Information Broadcasting

«ElementaryProcess»

2B - Pilot Services

«ElementaryProcess»

2B - Mobile Student

«FP_Instance»

1A - City Information Broadcasting

These activities include
activities that are
spread through several
elementary processes
regarding diverse
subsystems.
These have to be
accordingly
spread/redefined
through the
appropriate elementary
processes

«ResourceCategory»

Group C

«ResourceCategory»

Group D

«FunctionalProfile»

Mobile Student

«FunctionalProfile»

Healthcare Information

«FunctionalProfile»

Citizen Complaint

«ElementaryProcess»

1A - City Information

Broadcasting

«FP_Instance»

2B - Mobile Student

«FP_Instance»

3C - Healthcare Information

«FP_Instance»

4D - Citizen Complaint

«ElementaryProcess»

3C - Healthcare Information

«ElementaryProcess»

4D - Citizen Complaint

 «composition»

 «composition»

 «nesting»

 «nesting»

 «nesting»

 «output»

 «composition»

 «nesting»

 «nesting»

 «composition»

 «composition»

 «composition»

 «composition»

 «composition»

 «output»

 «composition»

 «nesting»

 «composition»

 «nesting»

 «composition»

 «nesting»

 «input»

 «nesting»

 «output»

 «input» «input»

 «composition»

Analysis of the Projects

160

 Some activities do not have proper names and are not consistent with the respective

work product output (ex: "Requirements Revision" task and its resulting "Pilot Services

Requirements Specifications").

 Work products should have had a clear, distinct formalization on the project structure.

6.4 Lessons Learned

Resorting to SPEM 2.0 diagrams allowed, along with the conceptions and structures of the

proposed approach, to reveal the internals of projects. Based on intervention on the SPEM

model of each the projects, the scattered observation of the SPEM structure and the analysis

of the suitability of approach’s conceptions accommodation, it was possible to stress out

pertinent issues.

Among several issues detected are the following: the lack of explicit artefacts, activities, or

relationships among them; the inconsistent or improper naming; the incoherent sequence

activities; the improper formalization of process elements; the misused process conceptions;

the improper granularity of activities and artefacts; the inappropriate structural organization

to deal with pervasive issues.

Considering the projects goals, the resulting artefacts, as well the means of achieving those in

the projects, several facts, and pertinent issues about can be point out. Regarding

pervasiveness of the systems, some questions may raise up, such as: (i) how well the system

will adapt for new resources (as or new kind of mobile/embedded computing devices or

smart phones); (ii) how much and how coherently structured development effort will be

needed in order to reflect those changes, or changes on functional requirements.

The projects revealed a structure of development that can difficult its resilience to deal with

some perverseness issues, such as addition of different resources categories or addition of

functionalities specific one or several resources. The projects used models to express their

development work, and in some parts, explicit model transformations were expressed. The

model-driven/visibility of the projects, while explicit at a high-level of activities and products,

could be improved at its and clarity a low or more detailed level. The PIS development

pattern allowed perceiving how they could be structured in order to enhance their capability

to deal with pervasiveness.

6.4 Lessons Learned

161

The following paragraphs synthesises some of the lessons learned.

Need for explicit manifestation of model-driven approach for PIS. The projects did not make

explicitly clear in the project design the strategy to accommodate a model-driven approach

appropriate for PIS, spite of using models in the several phases of the project.

Ensure properly defined elements. The use SPEM 2.0 to represent a project facilitates the

analysis of a project in order to correct mistakes or poorly defined elements. It is important

pay attention for several issues. Among these, is the lack of explicit artefacts, activities, or

relationships among them; the inconsistent or improper naming; the incoherent sequence

activities; or the misused of conceptions. The attention given to them is the belief that they

are a core level at which is fundamental to assure that the process is well defined in order to

pursuit, at higher levels, the goals of model-driven development. A SPEM like standard can be

used to specify/verify the project.

Formalize of activities as model transformations and other elements with correctness.

Without having a coherent, consistent, and clear formalization of the several projects

constituents’ elements, it will not be possible to establish, with an acceptable quality, a

model-based/driven process development. Without the existence of coherently

interconnected and precise process elements, it is hard, even impossible, to a large extent

and depth of the process to achieve a model-based/driven development orientation. This is

consequence of the difficulties in: (i) incorporating new activities or optimizing the existing

ones with model transformations techniques; (ii) reorganizing or redefining the process in

order to pursuit a clearer and enhanced model-based/driven quality. A SPEM like standard

can help to formalize the model transformation.

Seek model-driven semantic continuity/visibility. How much model-based/driven is a

software development process? When does a software development project go from

being model-“based” to being model-“driven”? Towards the answers to these questions, it

is suggested that model-based/driven extension and depth can be made visible in SPEM

2.0 diagrams, allowing one to reason about the robustness of process and suitability of

activities and artefacts regarding its use on a model-based/driven orientation. The

suitability of an artefact is related to its expression and ability to be consumed/reused on

subsequent modelling tasks. The suitability of an activity is related to its ability to

incorporate formal/explicit model transformation techniques that (optionally) consume

models and produce models. The robustness of the process is related to the degree of the

modelling semantic continuity provided by the chains of activities, from the beginning to

the end of the development process. The links among model artefacts and model

Analysis of the Projects

162

transformation activities (or well-structured and formalized activities) of the process

define the visibility. The longer the path, the more model-driven is the development

process. So, to enhance model-based/driven visibility, it is needed to pay attention to

activities (or tasks) and the realization and flow of models. This perspective allows to

materialize, through graphical presentation, the concept of model-based/driven visibility

of a process Visibility can be expressed in a SPEM diagram. This concept constitutes a tool

that can assist an approach to process analysis or optimization. Figure 6.34 depicts (as a

non-SPEM-based example) a general schematic (not exhaustive) of the structure of the

models, transformation models, code generation, and code resulting from and insight into

artefacts produced on the project development.

Structure the design of the project in order to properly support PIS. The way the elements

are structured can have a positive impact to way the project cope with heterogeneity in

devices and in functionalities of PIS. Consider to use a SPEM 2.0 diagram (or an equivalent

representation) as a mean to express the intended/designed software development project

for PIS. Use the proposed development structure approach, which provides assisting

techniques to deal with pervasive characteristics such as heterogeneity of devices and

changing functionalities. Among these techniques, is the framing structure that helps to

Figure 6.34 – Models, model mappings/transformations, and code generation in the development of the uPAIN system.

6.4 Lessons Learned

163

define resources categories, functional profiles, and functional profile instances. The

proposed PIS development framework pattern makes use of them later. The application of

this pattern assumes a SPEM 2.0 diagram. Nevertheless, the application of the patterns can

resort to other forms of representation as long as there is respect to the principles of

patterns’ conceptions and architecture. To each of the elementary process of the pattern,

connect the development process aimed for that development structure (related to a specific

functional profile instance).

Verify the structural quality of the project. For the global and elementary process activities,

and recursively its constituents, verify if they reflect quality properties that avoid the issues

aforementioned. Some guidelines can provide some useful orientations to assure a robust

development process definition. These guidelines take the form of questions to help to look

for and to measure relevant properties that contribute for the perception of the quality of

the approach, and establish solid ground for project development. These properties are next

presented, complemented with guideline question(s) to assist in discovering the proper value

those:

 Comprehensiveness and depth – Do all the phases and major activities, explicitly

define the tasks, subtasks, artefacts, deliverables and other process elements?

 Semantic correctness – Does the process structure definition use correctly the process

elements types?

 Naming coherency and consistency – Do the names of the process elements

adequately reflect its contents? Are the names consistently structured/build among

the same types of process elements?

 Flows clearness – Does the process clearly define the flows of execution among units

of work, expressing precedence, parallelism or other execution flow dependency?

 Input/output clearness – Does the project clearly and completely express, for each

unit of work, artefacts used as inputs and produced/changed as outputs?

 Work unit’s robustness – Are the work unit’s inner construction based on explicit

steps and robust techniques for the transformation of inputs into the expected

outputs? Are they, or can they, be specified in SPEM 2.0 like specification?

 Overall rationale robustness - Does the overall structure provide a convincing

rationale for efficient project development?

 Seek to achieve a significant for model-based/driven visibility.

Projects of these types, aiming to embrace a model-based driven perspective to develop

software for pervasive information systems, have to give attention to the issues

Analysis of the Projects

164

aforementioned. It is expected that model-based/driven visibility concept constitute an

effective contribution for the acceptance of model-based/driven development, not as a

utopia, but as a viable practice into which firm convictions and deeper efforts can be made.

Among these efforts are directed research investment, gradual and normative adoption of

modelling/process best practices and standards.

6.5 Conclusion

This analysis resorts to SPEM 2.0 for building the diagrams. It enables to depict clearly the

structure of projects, making their main activities, artefacts, and relationships among them

graphically visible. Resorting to SPEM 2.0 for looking into the projects revealed a proper way

to bring to light the understanding of the process internals. In this chapter, the projects are

observed with the conceptual framework constructed by the approach developed in previous

chapter. For each of the projects, this document presented the built SPEM model of the

project, and the deployment of the approach conceptions elaborated in chapter 5. This

allowed deducing relative considerations and generalizations.

The proposed approach revealed to be an effective, well-structured, and reasoned way to

assist in the analysis of existent SPEM-based projects or to development of new pervasive

information systems based on a model-based/driven approach. As it can be reasoned out

from the approach use in projects, the development framework pattern deals well either in

the context of small or large projects. It allows to: (i) clearly sustain a structured and well-

organized set of development process elements; (ii) to suitable cope with the heterogeneity

and quantity of computation devices (through the concepts of resources categories,

functional profiles, and functional profile instances); (iii) to promote a model-based/driven

approach to software development (through use of transformations and the conception of

mode-based/driven visibility).

Chapter 7

Conclusion

Chapter Contents

7 Conclusion ... 167

7.1 Focus of the Work ... 167

7.2 Synthesis of Research Efforts .. 169

7.3 Synthesis of Scientific Results ... 170

7.4 Future Work .. 172

166

167

7

Conclusion

This chapter is the conclusion of this work. It contextualizes the work in the thematic

of pervasive and modelling. It then synthesizes the research efforts, the results that

express the contributions of the thesis, and proposes future work.

7.1 Focus of the Work

Information accessibility is a key factor for efficient use and integration of information on an

organization. Over networked computing devices, software systems store, process, and

interchange information with other applications, fulfilling a planned and established role in

the overall organization’s information system. Pervasive systems and technologies have been

increasingly employed in business domains, trying to improve the way business is done or

even to enable new and innovative ways of carrying business. In in more personal or social

domains, they have been employed to improve the people’s life quality. Nowadays, pervasive

computing systems are still considered a "special" kind of systems; however, in a near future

they will be so common that nobody will consider them “special" anymore. This will demand

a completely transparent capability of designing computing solutions by means of model

manipulations and technology abstraction.

Considering the potential large number of computational devices, their high heterogeneity,

and increasingly frequent changes needed on software at device and system levels, it turns

out that it is needed attention to design methodology in order to define and apply best

7 Conclusion

168

approaches and techniques to software development for pervasive information systems. In

opposite to the past, applications are no longer conceived to be standalone applications

scarcely needing repair, integration, or evolution. Applications must be built to last, to be

integrated, and/or subject to revision or evolution. Their conception and development must

be done with conscientiousness that reality is such adverse that there is a need to have

flexibility to cope with changes on the previous established requirements or in technology.

Software supporting pervasive information systems is target of frequent modifications due

either to technological evolutions or to requirement changes. This requires that software

development process and process elements (for example, activities, tasks, and artefacts)

must be, in its essence, well-structured, designed, and developed. By this way, it will be

possible to satisfy requirements and explore the potential offered by the pervasive

computing, maximizing the revenue of this kind of systems. In particular, model-driven

development (MDD) approaches, currently in research at academic and industrial arenas,

offer potential benefits that can be applied to design and evolution of these pervasive

information systems. Model-driven development approaches promote the idea that, through

focus of development on models, one can obtain better software systems development and

evolutions. They also allow for higher independence of technological platforms, reduction of

semantic gaps, greater development productivity, and longevity of software artefacts. MDD

approaches essentially centre the focus of development on models, involving concepts such

as Platform-Independent Models, Platform-Specific Models, model transformations, and use

of established standards.

This thesis focus on software development of for pervasive information systems, aiming to

contribute to an increased efficiency and effectiveness on development of ubiquitous

services/applications, supported on pervasive information systems (PIS). These PIS are

composed of conveniently orchestrated embedded or mobile computing devices. The

definition and correct use of model-based/driven MDD-based conceptions, techniques, and

procedures to software development for PIS assume major importance on current days.

The thesis uses two projects. The first project presented was the uPAIN project (Ubiquitous

Solutions for Pain Monitoring and Control in Post-Surgery Patients), and the second project is

the USE-ME.GOV (USability-drivEn open platform for MobilE GOVernment) project. From

these projects, facts were presented along with methodological contributions, issues, and

challenges pertinent to software development of pervasive information systems on a model-

driven basis.

7.2 Synthesis of Research Efforts

169

7.2 Synthesis of Research Efforts

The effort on analysing real projects whose main purpose is the development of pervasive

computing systems, should be kept by the scientific community to allow a thoroughly

understanding of the fundamental issues that model-based/driven methodologies should be

capable of dealing with.

The work carried out and reflected in this document was achieved through the development

of the following major activities stated in the following paragraphs.

Beginning the work, it was a presentation of an introductory context of the thematic

involved, the goals, the strategy, contributions, and the structure of this document. After this

introduction, several efforts were carried.

It was performed a research on the state-of-art in the area of ubiquitous computing and

model-driven development. This allowed to characterize ubiquitous computing and pervasive

systems and to clarify the distinction between the terms ubiquitous and pervasive, which are

in the literature interchangeably used with the same semantics. It was also expressed

business opportunities brought by pervasive computing, either to improve existent business

models or to enable new business models. It was revealed some social concerns that arise by

the penetration of computing technology in the daily life, which implies the danger of its

misuse in gathering people sensitive information and in controlling or restricting people from

living freely. It was introduced and justified the expression “Pervasive Information Systems”

to refer to information systems that, incorporating pervasive technology and aiming to take

advantage of their potential, have do deal with the characteristics, issues and challenges

inherent to them and to their use.

The projects, uPAIN and USE-ME.GOV, were presented. They represented two projects

dealing with the same pervasive issues a model-based development, but being significantly

different on its size. For each project, it was presented the pervasive and modelling

perspectives and the common facts, issues, and challenges of them.

Aiming so assist in the project analysis and, at the same time being able to be used for the

development of new projects, it was introduced new conceptions, conceptual framing

structures, and an extension to SPEM 2.0 Base Plug-In to help to deal with pervasiveness

issues of systems. The resulting knowledge from those conceptions, conceptual framing

7 Conclusion

170

structures, and SPEM extension were materialized into a development framework pattern

conceived for the effect.

The projects were revisited in order to proceed to their analysis. Each project was expressed

in a SPEM diagram. This form of expression of the structure allowed turning graphically

visible their main activities, artefacts, and relationships among them. This helped in

understanding the project’s development process internals. The analysis was performed

using as auxiliary tool the development framework pattern, preceded by framing structures.

7.3 Synthesis of Scientific Results

Based on the SPEM 2.0 model of the project, the scattered observation of the SPEM structure

and the analysis of the suitability of approach’s conceptions accommodation, it is possible to

stress out pertinent issues in the context of the perceived generic project orientations.

For sake of enforcement of a methodological model-development orientation, it is needed

greater clarity and well-defined establishment of the structure and elements of a

development process. Avoiding some flaws or omissions on process definition brings several

important benefits as it can contribute for a better development project, either structurally

or dynamically in the course of the project development. Solid project structures ease

process analysis, facilitate the adoption of efforts for optimization, make processes

consistently reusable, allow processes to be more resilient to occasional but necessary

process changes, and give higher confidence to stakeholders regarding processes’ quality and

success. In the course of the project development, it is assured that are no

misunderstandings regarding interpretation objectives, activities, artefacts, and the flow of

either activities or the input/output artefacts among activities. The communication among

stakeholders is clearer, and process planning can be more complete and precise in the

definition of its elements, which may result on better estimation of time and effort to

conclude the project.

The consideration of these issues and challenges, in the context of achieving an effective way

to develop software for PIS, allows one develop consistent and coherent efforts in order to

improve software development for PIS projects. By this way, one can expect a progression

towards the establishment of well-established foundations for smooth model-based/driven

software development suitable the effective construction of pervasive information systems.

This thesis provides several contributions. Among these contributions are:

7.3 Synthesis of Scientific Results

171

 Development Framework. Due to the complexity of pervasive information systems,

software development for PIS can be facilitated by an approach that properly focuses

the system, and the system development, with perspectives that help to abstract their

relevant properties. The approach to PIS development proposes a development

framework that encompasses concepts suitable for the model-based/driven

development of pervasive information systems. This framework introduces and

describes the concepts sustained on a few perspectives of relevance to the

development, called dimensions of development .Besides the dimensions of

development, there are the functional profiles, resources categories, functional profile

instances, global and elementary development process.

 SPEM Base 2.0 Plug-In Extension. Software and Systems Process Engineering Meta-

Model 2.0 (SPEM 2.0) provides to process engineers a conceptual framework for

modelling method contents and processes. SPEM2. 0 is defined as a meta-model as

well as a UML 2 Profile (concepts are defined as meta-model classes as well as UML

stereotypes). SPEM 2.0 meta-model describes the structures and the structuring rules

needed to express and maintain development method content and processes. In

consonance with this development framework, the thesis proposes a SPEM 2.0 Base

Plug-In extension and a development framework pattern to assist in the analysis of

the projects. The SPEM 2.0 Base Plug-In extension defines elements that are

fundamental to the definition and application of a development framework pattern.

 Development Framework Pattern. Taking into account the extension of SPEM 2.0

Base Plug-In, the conceptions in the development framework, and the context

software development for PIS, it is suggested the use of a SPEM-based PIS’s

development framework pattern to assist in the task of defining or restructuring a

SPEM-based software development approach. The thesis defines a development

framework pattern that may be applied each of the projects to facilitate the analysis,

and also to illustrate how projects could be improved in order to better cope with the

development of PIS and adopting a model-based/driven approach.

 Insight to PIS development using MDD approaches. Software & Systems Process

Engineering Meta-Model Specification v2.0 (SPEM 2.0) allows to represent in a

suitable form the structure and elements of projects, allowing to proceed with an

analysis about their suitability for PIS and the model-based/driven characteristics.

From the analysis of the projects, the thesis synthesizes a set of pertinent issues that

hamper or difficult the proper suitability of the project to cope with pervasive systems

(in particular issues related with heterogeneity), and to support model-based/driven

approaches. It provides guidelines to the adoption of model-based/driven approaches

7 Conclusion

172

to pervasive information system development. It shows how the projects could

improve to deal with PIS, using an MDD approach.

During this thesis, some presentations and publications were made. The doctoral proposal

was presented in the Symposium for PhD students in Software Engineering, SEDES’2004 (J. E.

Fernandes, 2004), and the publications made were:

 Paper with the title “Model-Driven Methodologies for Pervasive Information Systems

Development (J. E. Fernandes, Machado, & Carvalho, 2004b) in MOMPES’04

Conference.

 Paper with the title “Model-Driven Software Development for Pervasive Information

Systems Implementation”, in QUATIC 2007 Conference (J. E. Fernandes, Machado, &

Carvalho, 2007).

 Book chapter with the title “Model-Driven Development for Pervasive Information

Systems”, in the book “Advances in Ubiquitous Computing: Future Paradigms and

Directions”, from IGI Publishing (J. E. Fernandes, Machado, & Carvalho, 2008).

Additionally, it is expected further publications from this dissertation related to the results

and conclusion of the analysis of projects.

7.4 Future Work

Research of model-based/driven development (MDD) approaches for pervasive information

systems (PIS) tries to raise and to bring light to several issues (such as essential

considerations, techniques, frameworks, tools, etc.) pertaining to the strong adoption of

models for these kinds of systems.

In a vision of model-based/driven development for pervasive information systems, several

issues can be further explored, namely:

 Further formalization of the development framework and conceptions, providing

suitable representation of resource categories, research of functional profiles, and

functional profiles instantiation.

 Further exploration of the development framework pattern.

 Incorporation of the extending SPEM Base Plug-In concepts into the SPEM

metamodel.

 Formalization of the model-based/driven visibility of processes and further

exploration of the quality of modelling semantic continuity provided in the chain, or

7.4 Future Work

173

parts of it. This effort can look for common semantic gaps found on common

processes. It can also establish possible model transformation activities/techniques

that can be used to make this semantic continuity to look like a smooth walk rather

than a hard jump, or even an impossible crossing.

175

References

Abowd, G. D., & Mynatt, E. D. (2000). Charting Past, Present, and Future Research in
Ubiquitous Computing. ACM Transactions on Computer-Human Interaction, 7(1), 29-
58. doi: http://doi.acm.org/10.1145/344949.344988

Abowd, G. D., Mynatt, E. D., & Rodden, T. (2002). The human experience [of ubiquitous
computing]. Pervasive Computing, IEEE, 1, 48-57.

Accenture. (2004a). Freight tracking Retrieved 08 August 2006, from
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/Fr
eightTracking.htm

Accenture. (2004b). Manufacturing services Retrieved 08 August 2006, from
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/
ManufacturingServices.htm

Accenture. (2004c). Networked Automation Retrieved 08 August 2006, from
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/N
etworkedNetwork.htm

Accenture. (2004d). Physical media tracking Retrieved 08 August 2006, from
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/P
hysicalTracking.htm

Accenture. (2004e). Real-world showroom Retrieved 08 August 2006, from
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/R
ealWorldShowroom.htm

Accenture. (2004f). Ubiquitous and Mobile Computing: Accenture Technology Labs Retrieved
08 August 2006, from
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/Ubiquitous
Labs.htm

Accenture. (2004g). Virtual Home Improvement Services Retrieved 08 August 2006, from
http://www.accenture.com/Global/Research_and_Insights/By_Subject/Enterprise_In
tegration/VirtualServices.htm

http://doi.acm.org/10.1145/344949.344988
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/FreightTracking.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/FreightTracking.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/ManufacturingServices.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/ManufacturingServices.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/NetworkedNetwork.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/NetworkedNetwork.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/PhysicalTracking.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/PhysicalTracking.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/RealWorldShowroom.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/R_and_I/RealWorldShowroom.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/UbiquitousLabs.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/UbiquitousLabs.htm
http://www.accenture.com/Global/Research_and_Insights/By_Subject/Enterprise_Integration/VirtualServices.htm
http://www.accenture.com/Global/Research_and_Insights/By_Subject/Enterprise_Integration/VirtualServices.htm

References

176

Adi. Agência de Inovação (Adi) Retrieved October 2006, 11th, from http://www.adi.pt/

Alhir, S. (2003). Understanding the Model Driven Architecture.

Anne, A. (1999). Users' perception of privacy in multimedia communication CHI '99 extended
abstracts on Human factors in computing systems %@ 1-58113-158-5 (pp. 53-54).
Pittsburgh, Pennsylvania: ACM Press.

Apple. (2010). The iPAD Retrieved 2010-10-22, from http://www.apple.com/ipad/

Appukuttan, B., Clark, T., Reddy, S., Tratt, L., & Venkatesh, R. (2003). A model driven
approach to model transformations. Proceedings of Model Driven Architecture:
Foundations and Applications (CTIT Technical Report TR–CTIT–03–27, University of
Twente).

Arakne. Arakne home page Retrieved December 1st, 2006, from
http://www.arakne.it/azienda/azienda_ing.html

Ark, W. S., & Selker, T. (1999). A look at human interaction with pervasive computers. IBM
Systems Journal, 38(4), 504-507.

Atkinson, C., & Kuhne, T. (2003). Model-driven development: a metamodeling foundation.
Software, IEEE, 20(5), 36-41.

Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman, J., & Zukowski, D. (2000). Challenges:
an application model for pervasive computing. Paper presented at the 6th annual
international conference on Mobile Computing and Networking, Boston-
Massachusetts, United States.

Banavar, G., & Bernstein, A. (2002). Software infrastructure and design challenges for
ubiquitous computing applications. Communications of ACM, 45(12), 92-96. doi:
http://doi.acm.org/10.1145/585597.585622

Barton, J., & Kindberg, T. (2001, 08 August 2006). The Cooltown User Experince, from
http://www.hpl.hp.com/techreports/2001/HPL-2001-22.pdf

Beckwith, R. (2003). Designing for ubiquity: the perception of privacy. [Magazine Article].
Pervasive Computing, IEEE, 2(2), 40-46.

Bell Labs. (03 August 2006). The transistor, from http://www.lucent.com/minds/transistor/

Beresford, A. R., & Stajano, F. (2003). Location privacy in pervasive computing. [Magazine
Article]. Pervasive Computing, IEEE, 2(1), 46-55.

Birnbaum, J. (1997). Pervasive Information Systems. Communications of ACM, 40(2), 40-41.
doi: http://doi.acm.org/10.1145/253671.253695

Bohn, J., Coroamã, V., Langheinrich, M., Mattern, F., & Rohs, M. (2004). Living in a world of
smart everyday objects - social, economic, and ethical implications. Human and
Ecological Risk Assessment, 10(5).

Bologna. Bologna city's home page Retrieved December 1st, 2006, from
http://www.comune.bologna.it/

http://www.adi.pt/
http://www.apple.com/ipad/
http://www.arakne.it/azienda/azienda_ing.html
http://doi.acm.org/10.1145/585597.585622
http://www.hpl.hp.com/techreports/2001/HPL-2001-22.pdf
http://www.lucent.com/minds/transistor/
http://doi.acm.org/10.1145/253671.253695
http://www.comune.bologna.it/

References

177

Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J., Conallen, J., & Houston, K. A. (2007).
Object-Oriented Analysis and Design with Applications: Addison-Wesley.

Brown, A. W. (2004). Model driven architecture: Principles and practice. Software and
Systems Modeling, 3, 314-327.

Burrell, J., Brooke, T., & Beckwith, R. (2004). Vineyard computing: sensor networks in
agricultural production. Pervasive Computing, IEEE, 3, 38-45.

Ciarletta, L., & Dima, A. (2000). A conceptual model for pervasive computing. Paper presented
at the Parallel Processing, 2000. Proceedings. 2000 International Workshops on.

CORDIS. USE-ME.GOV Project Fact Sheet Retrieved November 29, 2006, from
http://cordis.europa.eu/fetch?CALLER=FP6_PROJ&ACTION=D&DOC=1&CAT=PROJ&Q
UERY=1164804162217&RCN=74677

Davies, N., & Gellersen, H.-W. (2002). Beyond prototypes: challenges in deploying ubiquitous
systems. Pervasive Computing, IEEE, 1, 26-35.

Debaty, P., Goddi, P., & Vorbau, A. (2005). Integrating the Physical World with the Web to
Enable Context-Enhanced Mobile Services. Mobile Networks and Applications, 10(4),
385-394.

Denno, P., Steves, M. P., Libes, D., & Barkmeyer, E. J. (2003). Model-driven integration using
existing models. Software, IEEE, 20(5), 59-63.

Dryer, D. C., Eisbach, C., & Ark, W. S. (1999). At what cost pervasive? A social computing view
of mobile computing systems. IBM Systems Journal, 38(4), 652-676.

EDISOFT. (December 1st, 2006). EDISOFT, from
http://www.usemegov.org/partners/portugal.php

ElMundo. Amena y Wanadoo se 'pintan' de Orange Retrieved December 1st, 2006, from
http://www.elmundo.es/mundodinero/2006/09/22/economia/1158912649.html

Elrod, S., Pier, K., Tang, J., Welch, B., Bruce, R., Gold, R., . . . Pedersen, E. (1992). Liveboard: a
large interactive display supporting group meetings, presentations, and remote
collaboration. Paper presented at the Conference on Human Factors in Computing
Systems, Monterey, California, United States.

Fano, A., & Gershman, A. (2002). The future of business services in the age of ubiquitous
computing. Communications of ACM, 45(12), 83-87.

Fernandes, J., & Machado, R. J. (2001). From use cases to objects: an industrial information
systems case study analysis. Paper presented at the 7th Int. Conf. Object-Oriented
Informaiton Systems (OOIS'01), Calgary, Canada.

Fernandes, J. E. (2004). Desenvolvimento de Software em Sistemas de Informação Ubíquos:
Orientação aos Modelos. Paper presented at the SEDES' 2004 - Simpósio para
Estudantes de Doutoramento em Engenharia de Software 2004.

Fernandes, J. E., Machado, R. J., & Carvalho, J. Á. (2004a, May 2004). Model-driven
methodologies for pervasive information systems development. Paper presented at

http://cordis.europa.eu/fetch?CALLER=FP6_PROJ&ACTION=D&DOC=1&CAT=PROJ&QUERY=1164804162217&RCN=74677
http://cordis.europa.eu/fetch?CALLER=FP6_PROJ&ACTION=D&DOC=1&CAT=PROJ&QUERY=1164804162217&RCN=74677
http://www.usemegov.org/partners/portugal.php
http://www.elmundo.es/mundodinero/2006/09/22/economia/1158912649.html

References

178

the MOMPES'04 -1st International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software, Hamilton, Ontario, Canada.

Fernandes, J. E., Machado, R. J., & Carvalho, J. Á. (2004b). Model-Driven Methodologies for
Pervasive Information Systems Development. Paper presented at the MOMPES'04 -
1st International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, Hamilton, Ontario, Canada.

Fernandes, J. E., Machado, R. J., & Carvalho, J. Á. (2007). Model-Driven Software Development
for Pervasive Information Systems Implementation. Paper presented at the QUATIC
2007 - 6th International Conference on the Quality of Information and
Communications Technology, Lisbon, Portugal.
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSe
arch&qid=3&SID=Z1meCDfeaAPeP@36COg&page=3&doc=23&colname=WOS

Fernandes, J. E., Machado, R. J., & Carvalho, J. Á. (2008). Model-Driven Development for
Pervasive Information Systems. In S. K. Mostefaoui, Z. Maamar & G. M. Giaglis (Eds.),
Advances in Ubiquitous Computing: Future Paradigms and Directions

 (pp. 45-82): IGI Publishing.

FIT. Fraunhofer Institute for Applied Information Technology home page Retrieved
December 1st, 2006, from http://www.fit.fraunhofer.de/index_en.html

Fleck, M., Frid, M., Kindberg, T., O'Brien-Strain, E., Rajani, R., & Spasojevic, M. (2002a). From
informing to remembering: ubiquitous systems in interactive museums. [Magazine
Article]. Pervasive Computing, IEEE, 1(2), 13-21.

Fleck, M., Frid, M., Kindberg, T., O'Brien-Strain, E., Rajani, R., & Spasojevic, M. (2002b). From
informing to remembering: ubiquitous systems in interactive museums. Pervasive
Computing, IEEE, 1, 13-21.

Formatex. Formatex home page Retrieved December 1st, 2006, from
http://www.formatex.org/

Gates, B. (2007, Juary, 2007). A Robot in every home. Scientific American, 296, 58-65.

Gdynia. Gdynia city's home page Retrieved December 1st, 2006, from
http://www.gdynia.pl/?lang=en

Gershman, A. (2002). Ubiquitous commerce - always on, always aware, always pro-active.
Paper presented at the Applications and the Internet, 2002. (SAINT 2002).
Proceedings. 2002 Symposium on, Nara, Japan.

GET. Telecomputing Engineering Group (GET) Retrieved December 1st, 2006, from
http://get.dsi.uminho.pt/

Gordon, S. R., & Gordon, J. R. (2004a). Information Systems (3rd ed.): Wiley.

Gordon, S. R., & Gordon, J. R. (2004b). Information Systems - A Management Approach (3rd
ed.).

Grimm, R. (2004). One.world: Experiences with a Pervasive Computing Architecture.
Pervasive Computing, IEEE, 03, 22-30.

http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Z1meCDfeaAPeP@36COg&page=3&doc=23&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Z1meCDfeaAPeP@36COg&page=3&doc=23&colname=WOS
http://www.fit.fraunhofer.de/index_en.html
http://www.formatex.org/
http://www.gdynia.pl/?lang=en
http://get.dsi.uminho.pt/

References

179

Grimm, R., Davis, J., Hendrickson, B., Lemar, E., MacBeth, A., Swanson, S., . . . Wetherall, D.
(2001). Systems directions for pervasive computing. Paper presented at the Eighth
Workshop on Hot Topics in Operating Systems.

Gupta, S. K. S., Wang-Chien, L., Purakayastha, A., & Srimani, P. K. (2001). An overview of
pervasive computing. Personal Communications, IEEE [see also IEEE Wireless
Communications], 8(4), 8-9.

Hansmann, U., Merck, L., Nicklous, M. S., & Stober, T. (2003). Pervasve Computing (2nd ed.):
Springer.

HSOG. Hospital da Senhora da Oliveira, Guimarães Retrieved October 2006, 11th, from
http://www.hguimaraes.min-saude.pt/

Indra. Indra home page Retrieved December 1st, 2006, from http://www.indra.es

Intel. Microprocessor Hall of Fame, from
http://www.intel.com/museum/online/hist_micro/hof/index.htm

IntuiLab. IntuiLab home page Retrieved December 1st, 2006, from
http://www.intuilab.com/presentation/en/index.html

Jacobs, A. R., & Abowd, G. D. (2003). A framework for comparing perspectives on privacy and
pervasive technologies. [Magazine Article]. Pervasive Computing, IEEE, 2(4), 78-84.

Jiang, X., & Landay, J. A. (2002). Modeling privacy control in context-aware systems.
[Magazine Article]. Pervasive Computing, IEEE, 1(3), 59-63.

JornaldeNegócios. (2005). France Télécom acorda compra de 80% da Amena por 6,4 mil
milhões. Retrieved December 1st, 2006, from
http://www.jornaldenegocios.pt/default.asp?CpContentId=262619

Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., . . . Spasojevic, M.
(2000). People, places, things: Web presence for the real world. Paper presented at
the Mobile Computing Systems and Applications, 2000 Third IEEE Workshop on.

Kindberg, T., & Fox, A. (2002). System software for ubiquitous computing. Pervasive
Computing, IEEE, 1, 70-81.

Langheinrich, M. (2001). Privacy by Design - Principles of Privacy-Aware Ubiquitous Systems
Lecture Notes in Computer Science (Vol. 2201, pp. 273).

Langheinrich, M., Coroama, V., Bohn, J., & Rohs, M. (2002). As we may live – Real-world
implications of ubiquitous computing: Distributed Systems Group, Institute of
Information Systems, Swiss Federal Institute of Technology, ETH Zurich, Switzerland.

Lessig, L. (1999). Code and other Laws of Cyberspace: Basic Books.

Lyytinen, K., & Yoo, Y. (2002). Introduction [Issues and challenges in ubiquitous computing].
Communications of ACM, 45(12), 62-65.

Machado, R. J., Lassen, K. B., Oliveira, S., Couto, M., & Pinto, P. (2007). Requirements
Validation: Execution of UML Models with CPN Tools. International Journal on

http://www.hguimaraes.min-saude.pt/
http://www.indra.es/
http://www.intel.com/museum/online/hist_micro/hof/index.htm
http://www.intuilab.com/presentation/en/index.html
http://www.jornaldenegocios.pt/default.asp?CpContentId=262619

References

180

Software Tools for Technology Transfer (STTT), 9(3), 353-369. doi: 10.1007/s10009-
007-0035-0

Marx, G. T. (2001). Murky conceptual waters: The public and the private. Ethics and
Information Technology, 3(3), 157-169.

Mattern, F. (2001). The vision and techical foundations of ubiquitous computing. UPGRADE,
2(5), 3-5.

Mellor, S. J., Clark, A. N., & Futagami, T. (2003). Model-driven development - Guest editor's
introduction. Software, IEEE, 20(5), 14-18.

Merriam-Webster. (24 August 2004). Merriam-Webster Online Dictionay, from
http://www.m-w.com/

Miller, G., Ambler, S., Cook, S., Mellor, S., Frank, K., & Kern, J. (2004a). Model driven
architecture: the realities, a year later. Paper presented at the Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, Vancouver, BC, CANADA.

Miller, G., Ambler, S., Cook, S., Mellor, S., Frank, K., & Kern, J. (2004b). (PANEL) Model driven
architecture: the realities, a year later Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications
(pp. 138-140). Vancouver, BC, CANADA: ACM Press.

MobiComp. MobiComp - Computação Móvel, Lda, from http://www.mobicomp.com/

OECD. (1980, 08 August 2006). OECD Guidelines on the Protection of Privacy and Transborder
Flows of Personal Data, from
http://www.oecd.org/document/18/0,2340,en_2649_34255_1815186_1_1_1_1,00.h
tml

OMG. (2003). OMG's MDA Guide Version 1.0.1.

OMG. (2005a). OMG's Home Page.

OMG. (2005b). OMG's UML home page.

OMG. (2008). SPEM - Software & Systems Process Engineering Meta-Model Specification
v2.0: OMG.

OMG. (2010). UML Infrastructure Specification v2.3: OMG.

Orange. Orange Mobile Operator home page Retrieved December 1st, 2006, from
http://www.orange.es/

PARC. (2004, 18 June 2004). Palo Alto Research Center (PARC) Homepage, from
http://www.parc.xerox.com/

PoznanUE. Department of Information Systems at Poznan University of Economics Retrieved
December 1st, 2006, from http://www.kie.ae.poznan.pl/

Russell, D. M., & Weiser, M. (1998). The future of integrated design of ubiquitous computing
in combined real & virtual worlds. Paper presented at the CHI 98 conference

http://www.m-w.com/
http://www.mobicomp.com/
http://www.oecd.org/document/18/0,2340,en_2649_34255_1815186_1_1_1_1,00.html
http://www.oecd.org/document/18/0,2340,en_2649_34255_1815186_1_1_1_1,00.html
http://www.orange.es/
http://www.parc.xerox.com/
http://www.kie.ae.poznan.pl/

References

181

summary on Human factors in computing systems, Los Angeles, California, United
States.

Sage, A. P., & Rouse, W. B. (1999). Information Systems Frontiers in Knowledge Management.
Information Systems Frontiers, 1(3), 205-219.

Saha, D., & Mukherjee, A. (2003). Pervasive computing: a paradigm for the 21st century.
Computer, 36(3), 25-31.

Samsung. (2010). Galaxy Tab Retrieved 2010-10-22, from
http://galaxytab.samsungmobile.com/

Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. Personal
Communications, IEEE [see also IEEE Wireless Communications], 8(4), 10-17.

Schmoelzer, G., Teiniker, E., Mitterdorfer, S., Kreiner, C., Kovacs, Z., & Weiss, R. (2004).
Model-driven development of recursive CORBA component assemblies. Paper
presented at the 30th Euromicro Conference, 2004.

Seidewitz, E. (2003). What models mean. Software, IEEE, 20(5), 26-32.

Selic, B. (2003a). Model-driven development of real-time software using OMG standards.
Paper presented at the Sixth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, 2003 (ISORC'03).

Selic, B. (2003b). The pragmatics of model-driven development. Software, IEEE, 20(5), 19-25.

Sendall, S., & Kozaczynski, W. (2003). Model transformation: the heart and soul of model-
driven software development. Software, IEEE, 20(5), 42-45.

Sommerville, I. (2001). Software Engineering (6th ed.): Addison-Wesley.

Stanford, V. (2002). Using pervasive computing to deliver elder care. Pervasive Computing,
IEEE, 1, 10-13.

Stanford, V. (2003a). Pervasive computing puts food on the table. Pervasive Computing, IEEE,
2, 9-14.

Stanford, V. (2003b). Pervasive computing puts food on the table. [Magazine Article].
Pervasive Computing, IEEE, 2(1), 9-14.

Stone, A. (2003). The dark side of pervasive computing. Pervasive Computing, IEEE, 2, 4-8.

Strassner, M., & Schoch, T. (2002). Today’s Impact of Ubiquitous Computing on Business
Processes.

Suzuki, K. (2004). Ubiquitous services and networking: monitoring the real world. Paper
presented at the Applications and the Internet, 2004. Proceedings. 2004 International
Symposium on.

Texas Instruments. (20 October 2004). Texas Intruments Innovations, from
http://www.ti.com/corp/docs/company/history/innov.shtml

Thomas, D. (2004). MDA: revenge of the modelers or UML utopia? Software, IEEE, 21(3), 15-
17.

http://galaxytab.samsungmobile.com/
http://www.ti.com/corp/docs/company/history/innov.shtml

References

182

Turban, E., McLean, E., & Wetherbe, J. (2001). Information Technology for Management:
Transforming Business in the Digital Economy (3rd ed.): John Wiley & Sons Inc.

UMinho-DSI. Minho University's Information System's Department (DSI) from
http://www.dsi.uminho.pt/

uPAIN. uPAIN - Candidatura de Submissão.

uPAIN. (2005a). Relatório Técnico Científico 200503-200508.

uPAIN. (2005b). Relatório Técnico Científico 200509-200602.

uPAIN. (2008). Relatório Técnico Científico 200709-200802.

USDoC. (2000, 08 August 2006). Safe Harbor Framework, from
http://www.export.gov/safeharbor/index.html

USE-ME.GOV. USE-ME.GOV project home page [doesn't exist anymore] Retrieved November
28, 2006, from http://www.usemegov.org/

USE-ME.GOV. (2003a). Consortium Agreement.

USE-ME.GOV. (2003b). Consortium Agreement - Annex I - Description of Work.

USE-ME.GOV. (2004a). D2.1.1 User Requirements Analysis.

USE-ME.GOV. (2004b). D2.1.2 Technical Implementation Requirements.

USE-ME.GOV. (2004c). D2.1.3 Review of Available Business Models.

USE-ME.GOV. (2004d). D2.2 Service and Use Scenario Definition.

USE-ME.GOV. (2004e). D4.1.2 Usability Requirement Definition for Selected Scenarios.

USE-ME.GOV. (2004f). D4.1.3 Usability-driven Design and Mock-Up Evaluation.

USE-ME.GOV. (2004g). D5.1.1 Platform Requirements Analysis.

USE-ME.GOV. (2004h). D5.1.2 Platform Preliminary Design and Mock-up Evaluation.

USE-ME.GOV. (2004i). D5.1.3 Platform Architecture Design.

USE-ME.GOV. (2004j). D5.2.4 Meta Protocol of Service Types.

USE-ME.GOV. (2004k). D6.1.1 Pilot Services Requirements Specifications.

USE-ME.GOV. (2004l). D6.1.2 Pilot Services Detailed Services Specification.

USE-ME.GOV. (2005). D7.1 Platform and Application Detailed Design.

USE-ME.GOV. (2006). D3.1 Recommendations.

Vaishnavi, V. K., & Jr., W. K. (2008). Design Science Research Methods and Patterns Innovating
Information and Communication Technology: Auerbach Publications.

Varshney, U. (2003). Pervasive healthcare. Computer, 36(12), 138-140.

http://www.dsi.uminho.pt/
http://www.export.gov/safeharbor/index.html
http://www.usemegov.org/

References

183

Verichip. (2006a, 08 August 2006). Verichip Media Resources, from
http://www.verichipcorp.com/content/media/resources

VeriChip. (2006b, 08 August 2006). VeriChip RFID Tags, from
http://www.verichipcorp.com/content/company/rfidtags

VeriChip. (2006c, 08 August 2006). VeriChip Solutions, from
http://www.verichipcorp.com/solutions.html

VNC-ANMP. Vila Nova de Cerveira Retrieved December 1st, 2006, from
http://www.anmp.pt/munp/mun/mun101w3.php?cod=M4920

VNC-CM. Vila Nova de Cerveira Retrieved December 1st, 2006, from http://www.cm-
vncerveira.pt/

VNC-RTAM. Vila Nova de Cerveira Retrieved December 1st, 2006, from
http://www.rtam.pt/index.php?id_categoria=55

Want, R. (2000). Remembering Mark Weiser: Chief Technologist, Xerox Parc. Personal
Communications, IEEE [see also IEEE Wireless Communications], 7(1), 8-10.

Want, R., Hopper, A., Falcão, V., & Gibbons, J. (1992). The active badge location system. ACM
Transactions on Information Systems, 10(1), 91.102.

Want, R., Pering, T., Borriello, G., & Farkas, K. I. (2002). Disappearing hardware [ubiquitous
computing]. Pervasive Computing, IEEE, 1, 36-47.

Want, R., Schilit, B. N., Adams, N. I., Gold, R., Petersen, K., Goldberg, D., . . . Weiser, M.
(1995). An overview of the PARCTAB ubiquitous computing experiment. Personal
Communications, IEEE [see also IEEE Wireless Communications], 2(6), 28-43.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104.

Weiser, M. (1993a). Hot topics-ubiquitous computing. Computer, 26(10), 71-72.

Weiser, M. (1993b). Some computer science issues in ubiquitous computing. Communications
of ACM, 36(7), 75-84. doi: http://doi.acm.org/10.1145/159544.159617

Weiser, M. (1994, January 1994). The world is not a desktop [Perspectives]. Interactions, ACM
Press, 1, 7-8.

Weiser, M. (1998). The future of ubiquitous computing on campus. Commun. ACM, 41(1), 41-
42. doi: http://doi.acm.org/10.1145/268092.268108

Weiser, M., & Brown, J. S. (1997). The coming age of calm technology Beyond calculation: the
next fixty years (pp. 75-85): Copernicus.

Weiser, M., Gold, R., & Brown, J. S. (1999). The origins of ubiquitous computing research at
PARC in the late 1980s. Ibm Systems Journal, 38(4), 693-696.

Yin, R. K. (2003). Case Study Research - Design Methods (3rd ed.): SAGE Publications.

Yourdon. (1983). Yourdon System Method - Model-Driven Systems Development: Prentice-
Hall International, Inc.

http://www.verichipcorp.com/content/media/resources
http://www.verichipcorp.com/content/company/rfidtags
http://www.verichipcorp.com/solutions.html
http://www.anmp.pt/munp/mun/mun101w3.php?cod=M4920
http://www.cm-vncerveira.pt/
http://www.cm-vncerveira.pt/
http://www.rtam.pt/index.php?id_categoria=55
http://doi.acm.org/10.1145/159544.159617
http://doi.acm.org/10.1145/268092.268108

	Capa Exterior
	Início
	Agradecimentos
	Abstract
	Resumo
	Table of Contents
	Acronyms
	Table of Figures
	List of Tables
	Chapter 1
	1 Introduction
	1.1 Pervasive Systems
	1.2 Methodological Challenges
	1.3 Goals and Research Strategy
	1.4 Contributions
	1.5 Structure of this Document

	Chapter 2
	2 Pervasive Computing
	2.1 Introduction
	2.2 A New Computing Paradigm
	2.3 Business Opportunities and Social Concerns
	2.4 Pervasive Information Systems
	2.5 Conclusion

	Chapter 3
	3 Model-Driven Development
	3.1 Introduction
	3.2 Models in Software Development
	3.3 Model-Driven Architecture
	3.4 Research Efforts
	3.5 Conclusion

	Chapter 4
	4 Presentation of the Projects
	4.1 Introduction
	4.2 Presentation of the uPAIN Project
	4.2.1 The Pervasive Perspective
	4.2.2 The Modelling Perspective

	4.3 Presentation of the USE-ME.GOV Project
	4.3.1 The Pervasive Perspective
	4.3.2 The Modelling Perspective

	4.4 Common Facts, Issues and Challenges
	4.5 Conclusion

	Chapter 5
	5 Approach to PIS Development
	5.1 Introduction
	5.2 Development Dimensions and Framework
	5.2.1 Resources Dimension
	5.2.2 Functional Dimension
	5.2.3 Abstraction Dimension
	5.2.4 Development Framework

	5.3 Extension to SPEM 2.0 Base Plugin Profile
	5.4 Approach to Software Development of PIS
	5.5 Conclusion

	Chapter 6
	6 Analysis of the Projects
	6.1 Introduction
	6.2 Analysis of uPAIN Project
	6.2.1 Pictorial Description of Major Activities and Deliverables
	6.2.2 SPEM 2.0-Based Description of Activities and Artefacts
	6.2.3 Development Framework Pattern

	6.3 Analysis of USE-ME.GOV Project
	6.3.1 Pictorial Description of Major Activities and Deliverables
	6.3.2 SPEM 2.0-Based Description of Activities and Artefacts
	6.3.3 Development Framework Pattern

	6.4 Lessons Learned
	6.5 Conclusion

	Chapter 7
	7 Conclusion
	7.1 Focus of the Work
	7.2 Synthesis of Research Efforts
	7.3 Synthesis of Scientific Results
	7.4 Future Work

	References

