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Abstract 

This thesis begins with analyzing user functional requirements (as use cases) from the 

perspective of detail. In that sense, it investigates the applicability of the UML (Unified 

Modeling Language) «include» relationship to the representation of use case refinement and 

proposes another relationship for that purpose. It also clarifies the process of modeling use 

cases with UML when refinement is involved and provides for some guidelines in order to 

conduct that process. Afterwards, the work of this thesis on use case modeling is expanded to 

the field of SPLs (Software Product Lines) by means of exploring the UML «extend» 

relationship. It talks about alternative, specialization and option use cases as the 

representation of the three variability types this thesis proposes to be translated into 

stereotypes to mark use cases. Then, this thesis incorporates the refinement of logical 

architectures with variability support from use cases also with variability support in the 4SRS 

(Four Step Rule Set) transition method for model transformation of analysis artifacts (use 

cases) into design artifacts (logical architectures represented as UML component diagrams). 

The model transformation the 4SRS guides in a stepwise way, from use cases into 

logical architectures, is based on a software development pattern that addresses architecture. 

This thesis yields a multilevel and multistage pattern classification that grounds the use of 

that pattern to generate system functional requirements (as logical architectures). 

Lastly, the 4SRS transition method is modeled with the SPEM (Software & Systems 

Process Engineering Metamodel) and formalized as a small software development process 

dedicated at transitioning from the analysis to the design of software. After that, this thesis 

presents a case study on the automation of the 4SRS and thoroughly elaborates on the 

transformation rules that support the model transformations of the 4SRS. 
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Resumo 

Esta tese começa por analisar requisitos funcionais de utilizador (enquanto casos de 

utilização) sob a perspectiva do detalhe. Nesse sentido, esta tese investiga a aplicabilidade da 

relação UML (Unified Modeling Language) «include» para a representação do refinamento 

de casos de utilização e propõe outra relação para esse fim. Esta tese também clarifica o 

processo de modelação de casos de utilização com a UML quando esse processo envolve 

refinamento e fornece algumas diretrizes para a condução desse processo. De seguida, o 

trabalho desta tese em modelação de casos de utilização é expandido para o campo das linhas 

de produtos de software através da exploração da relação UML «extend». Esse trabalho fala 

de casos de utilização alternativos, de especialização e opcionais como a representação dos 

três tipos de variabilidade que esta tese propõe que sejam traduzidos em estereótipos para a 

marcação de casos de utilização. Depois, esta tese incorpora o refinamento de arquitecturas 

lógicas com suporte à variabilidade a partir de casos de utilização também com suporte à 

variabilidade no método de transição 4SRS (Four Step Rule Set) para a tranformação de 

modelos de artefatos de análise (casos de utilização) em modelos de artefatos de design 

(arquitecturas lógicas representadas como diagramas de components UML). 

A transformação de modelos que o 4SRS guia por passos, de casos de utilização em 

arquitecturas lógicas, baseia-se num padrão de desenvolvimento de software que visa 

arquitetura. Esta tese produz uma classificação multinível e multietapa de padrões, que 

sustenta a utilização desse padrão na geração de requisitos funcionais de sistema (enquanto 

arquitecturas lógicas). 

Por fim, o método de transição 4SRS é modelado com o SPEM (Software & Systems 

Process Engineering Metamodel) e formalizado como um pequeno processo de 

desenvolvimento de software dedicado a transitar da análise para o design the software. 

Depois disso, esta tese apresenta um estudo de caso sobre a automatização do 4SRS e elabora 

minuciosamente acerca das regras de transformação que apoiam as transformações de 

modelos do 4SRS. 
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1 

This chapter is targeted at introducing the three main research contribution topics of this thesis: UML 

modeling of functional requirements and logical architectures with support for software variability and 

functional refinement, software development patterns and the automation of SPEM process models 

dedicated at transitioning from software analysis to software design. This chapter also presents the goals of 

this thesis, the demonstration case and the roadmap of the document. 

1. Introduction 

1.1. Research Problem 

This thesis is targetd at solving some problems related to the following topics:  

(1) UML (Unified Modeling Language) [1] modeling of functional requirements and logical 

architectures with support for functional refinement and software variability; (2) software 

development pattern classification for model transformation; and (3) automation of SPEM 

process models dedicated at transitioning from software analysis to software design. 

Developing software with model-driven approaches involves dealing with diverse 

modeling artifacts such as use case diagrams, component diagrams, class diagrams, activity 

diagrams, sequence diagrams and others. This thesis focuses on use cases for software 

development and analyzes them from the perspective of detail. In that context, the UML 

«include» relationship was explored. This thesis allows understanding the use case modeling 

activity with support for refinement and provides for specific guidelines on how to conduct 

such activity. 
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Modeling SPLs (Software Product Lines) [2, 3] shall imply modeling from different 

perspectives with different modeling artifacts such as those previously enumerated. This 

thesis elaborates on use cases for modeling product lines and explores them from the 

perspective of variability by working with the UML «extend» relationship. It also explores 

use cases for modeling product lines from the perspective of detail by (functionally) refining 

use cases with «extend» relationships between them. One of the intents of this thesis is to 

provide for comprehension about use case modeling with support for variability and with 

functional refinement when variability is present. 

Modeling by means of specific methods is still a relevant concern in engineering 

software product lines. From user requirements to logical software architectures there is a 

long way to go. Currently modeling methods applicable for modeling logical architectures 

with variability support do not comprise refinement at the user requirements level (the use 

cases level) and in a stepwise, therefore guided way. Likewise approaches to functional 

decomposition of software systems do not contemplate a method for handling use cases to get 

to the design of those systems or a technique for refining use cases. These lacks imply 

dealing with a lot of complexity during the application of such methods to a high number of 

functional requirements. The detail degree of logical software architectures can be increased 

with the technique of refinement. To support the refinement of logical software architectures 

with variability support, this thesis suggests the extension of a modeling method applicable 

for modeling those architectures, which is the 4SRS (Four Step Rule Set) UML modeling 

method [4-6]. The GoPhone [7] was used as the case study to illustrate the approach and the 

recursion capability of the method has ben used as the solution to the challenges of modeling 

such architectures. A cohesive logical software architecture with variability support, without 

redundant requirements and without missed requirements was generated for a part of the 

GoPhone’s messaging domain and refined with the 4SRS method. The strength of this thesis’ 

approach resides in its stepwise nature and in allowing the modeler to work at the user 

requirements level without delving into lower-abstraction-level concerns. The 4SRS allows 

the methodic transition from user requirements to system requirements. In other words, the 

transformation of use cases (dealt with during the analysis of software) into logical 

architectures (dealt with during in the beginning of the design of software) is conducted with 

a method specifically elaborated for the purpose. 

Software patterns are reusable solutions to problems that occur often throughout the 

software development process. This thesis formally states which sort of software patterns 
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shall be used in which particular moment of the software development process and in the 

context of which Software Engineering professionals, technologies and methodologies. The 

way to do that is to classify those patterns according to the proposed multilevel and 

multistage pattern classification based on the software development process. The pattern 

classification fundaments the (architectural) pattern 4SRS uses to transform user functional 

requirements (in the shape of use cases) into system functional refinements (in the shape of a 

logical architecture represented with a component diagram): the MVC (Model-View-

Controller) pattern [8]. The classification is based on the OMG modeling infrastructure or 

Four-Layer Architecture and also on the RUP (Rational Unified Process) [9]. It considers that 

patterns can be represented at different levels of the OMG modeling infrastructure and that 

representing patterns as metamodels is a way of turning the decisions on their application 

more objective. Classifying patterns according to the proposed pattern classification allows 

for the preservation of the original advantages of those patterns and avoids that the patterns 

from a specific category are handled by the inadequate professionals, technologies and 

methodologies. This thesis illustrates the proposed approach with the classification of some 

patterns. 

Software process modeling is a model-driven approach for defining new or 

formalizing existing software development processes. It benefits from the advantages of 

MDD (Model-Driven Development) [10, 11]. The SPEM (Software & Systems Process 

Engineering Metamodel) [12] is a process modeling language for the domain of software and 

systems. This thesis elaborates on the formalization of the 4SRS method as a small software 

development process that can be plugged into larger software development processes. It is a 

transition method because it is dedicated at transitioning from the analysis to the design of 

software. This thesis explores the particularities of formalizing a transition method as a small 

dedicated software development process. The formalization is conducted with the SPEM. 

Automation is the essence of MDD. Transforming models into models following a set 

of rules is at the core of automation. It allows using tools to enliven previously defined 

processes. Transition methods are most likely the most important player in the engineering of 

software. This thesis exemplifies how a transition method like the 4SRS can be modeled with 

the SPEM as a way to study the benefits of the automatic execution of a transition method as 

a small dedicated software development process. 
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Various methods have been proposed over time to model variability in software 

product lines. The 4SRS is a transition method that generates design artifacts out of analysis 

artifacts. It is applicable for modeling both design models and analysis models with support 

for variability. Besides the formalization of the 4SRS with the SPEM as a small software 

development process dedicated at transitioning from the analysis to the design of software, 

this thesis presents the transformation rules specified to automate that transition and provide 

tool support for the execution of the 4SRS over models with variability. 

1.2. Research Goals 

The goals of this thesis are the following: (1) providing specific guidelines on how to 

conduct the activity of use case modeling with support for functional refinement; (2) providing 

specific guidelines on how to conduct the activity of use case modeling with support for both 

functional refinement and software variability; (3) supporting the refinement of logical 

software architectures with variability support by extending a UML modeling method 

applicable for modeling those architectures (the 4SRS); (4) classifying software patterns 

according to a multilevel and multistage pattern classification based on the software 

development process to justify the pattern used for the model transformation the 4SRS 

guides; (5) exploring the particularities of modeling transition methods (like the 4SRS) to 

formalize them as small dedicated software development processes; (6) exemplifying the 

SPEM modeling of a transition method like the 4SRS as a way to study the benefits of the 

automatic execution of transition methods as small dedicated software development 

processes; and (7) reflecting on the impact of variability over the automation of transition 

methods (like the 4SRS) modeled with SPEM. 

1.3. Research Method 

This thesis adopted two research approaches: the proof of concept, or concept 

implementation, and the formulative research approach [13]. 

The proof of concept research approach is about developing a system to demonstrate 

the feasibility of a solution to a problem. The question with feasibility in this thesis is 

whether it is possible to formalize the 4SRS as a transition method and benefit from the 

automatic execution of a transition method as a small dedicated software development 

process by modeling a transition method (like the 4SRS) with SPEM. The Moderne tool [14], 

which is a tool developed at the Federal University of Bahia (Brazil), was adapted to support 

the automated execution of the 4SRS. 
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The formulative research approach is concerned with the formulation of methods, 

among other kind of artifacts. This thesis extends a UML modeling method (the 4SRS) 

applicable for transforming user functional requirements into logical architectures, both with 

variability support, in order for the method to support the refinement of such architectures. 

The pattern classification can also be considered as a method for classifying patterns to be 

used in model transformation, from use cases to component diagrams, in the case of the 

4SRS. The Fraunhofer IESE’s GoPhone case study [7] (that presents a series of use cases for 

a part of a mobile phone product line particularly concerning the interaction between the user 

and the mobile phone software for the sending of messages) is used in order to demonstrate 

the feasibility of the proposed solution to the addressed problem, therefore the GoPhone is 

used as a means of validation of that solution. 

1.4. Thesis Roadmap 

The remainder of this thesis is organized as follows. Chapter 2 presents the work of 

other authors on the refinement of use cases, the refinement of logical architectures and 

variability modeling with the UML «extend» relationship. Chapter 2 also affords a state-of-

the-art that suits the purpose of substantiating the strength of this thesis’ approach on the use 

of software development patterns, including the one 4SRS uses. Chapter 2 also concentrates 

on the transition from software development analysis to design as a process and its modeling. 

At last, it concentrates on process automation and execution. 

Chapter 3 introduces the process of refining use cases. It defines the «refine» 

relationship, and discusses the difference between the «include» and the «refine» 

relationships. Chapter 3 also elaborates on the different types of variability this thesis 

proposes. It provides for the analysis of the UML «extend» relationship in contexts of 

variability and also for the extension this thesis proposes to the UML metamodel. It also 

analyzes the process of handling variability in use cases in contexts of functional refinement. 

Lastly it elaborates on the refinement of logical architectures with variability support 

according to both the formalization of use case refinement and the systematization of use case 

variability modeling this thesis proposes. 

Chapter 4 is devoted to exhibiting the proposed pattern classification in abstract terms 

before formalizing categories and positioning patterns at those categories. Chapter 4 is also 

targeted at demonstrating the feasibility of the proposed solution to the systematic use of 

software development patterns by using some concrete examples of patterns positioned at 
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distinct categories of the proposed classification to illustrate the different types of patterns 

formalized, including the pattern used by the 4SRS in the transformation it guides. 

Finally, chapter 5 shows the extension of the SPEM this thesis proposes for defining a 

visual language to model transition (from the analysis to the design of software) methods and 

formalize small dedicated software development processes like the 4SRS. Chapter 5 also 

shows the preparation necessary for the automation of transition methods modeled with the 

SPEM, particularly the work undertaken to prepare the automation of the 4SRS. Chapter 5 

also provides for an insight over the impact of automating transitions methods (like the 

4SRS) in contexts of variability.  
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Section 2.1 presents the work of other authors on the refinement of use cases, the refinement of logical 

architectures and variability modeling with the UML «extend» relationship.  

Section 2.2 affords a state-of-the-art that suits the purpose of substantiating the strength of this thesis’ 

approach on the use of software development patterns, including the one 4SRS uses. 

Section 2.3 concentrates on the transition from software development analysis to design as a process and its 

modeling. It also concentrates on process automation and execution.  

2. Related Work 

2.1. Refinement and Variability Modeling in Requirements 

Functional Refinement 

Refinement has been treated over the years. Paech and Rumpe provide in [15] for a 

formal approach to incrementally design types through refinement. Types represent the static 

part of a system captured through software models, and consist of attributes and operations. 

The approach in this thesis is not formal and relates to the refinement of external 

functionalities of software systems, which shall be taken into account before the static part of 

those systems. Quartel, et al. propose in [16] an approach for the refinement of actions. It 

consists of replacing an abstract action with a concrete activity (composition of actions) 

based on the application of rules to determine the conformance of the concrete activity to the 

abstract action. Again the approach in this thesis relates to a perspective that shall be taken 

into account before behavior is. Darimont and van Lamsweerde talk in [17] about goal 
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refinement. In their approach the refinement process is guided by refinement patterns used for 

pointing out missing elements in refinements. This time the approach of this thesis to 

refinement relates to a perspective that shall be taken into account after goals. Schrefl and 

Stumptner face in [18] refinement as the decomposition of states and activites into substates 

and subactivities though inheritance. The approach of this thesis to refinement considers that 

refinement shall not be treated through generalization as it will be stated later on in this 

thesis. Mikolajczak and Wang present in [19] an approach to vertical conceptual modeling of 

concurrent systems through stepwise refinement using Petri net morphisms. The approach of 

this thesis to refinement is not formal. Batory created a model (the AHEAD model [20]) for 

expressing the refinement of system representations as equations. Despite his approach being 

based on stepwise refinement he worked at a code-oriented level. The work this thesis reports 

allows refining (also in a stepwise manner) software models that shall be handled before code 

is handled during the software construction phase. 

Cherfi, et al. [21] (in their work on quality-based use case modeling with refinement) 

describe the refinement process as the application of a set of decomposition and restructuring 

rules to the initial use case diagram. Their approach is iterative and incremental. It consists of 

decomposing the initial use case diagram into smaller and more cohesive ones to decrease the 

complexity of the diagram and increase its cohesion. In their approach a use case is a set of 

activities that varies according to scenarios, which are flows of actions belonging to those 

activities. In the first phase of the refinement process a use case is decomposed into other use 

cases according to one or more scenarios. The second phase of the refinement process is 

about eliminating the redundant activities that compose the use cases obtained from the first 

phase, which generates «include» relationships. Their approach allows defining «include» 

relationships based on the commonality among the system’s activities performed for different 

scenarios. The approach in this thesis considers that the «include» relationship is defined 

based on the non-stepwise textual descriptions of use cases and that stepwise descriptions 

(like those considered by Cherfi, et al.) shall be treated separately (stepwise textual 

descriptions are structured textual descriptions in natural language that provide for a stepwise 

view of the use case as a sequence of steps, alert for the decisions that have to be made by the 

user and evidence the notion of use case actions temporarily dependent on each other; 

Cockburn presents in [22] different forms of writing textual descriptions for use cases). Also 

in the approach of Cherfi, et al. to refinement, use cases are not actually detailed (like in the 

approach of this thesis), rather they are decomposed without detail being added to the 

description of those use cases. 
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Pons and Kutsche [23] present the refinement activity as a way to trace code back to 

system requirements and system requirements back to business goals, which allows verifying 

whether the code meets the business goals and the system requirements as expected in the 

specification of the system. Although these authors do not formally extend the UML 

metamodel to incorporate a new kind of relationship between use cases, they use this new 

kind of relationship between diagrams. But Pons and Kutsche use the relationship to connect 

two use cases belonging to two different diagrams, whereas the vision in this thesis is that the 

refinement relationship shall be established between one use case (a diagram) and two or 

more use cases (another diagram) to distinguish the different levels of abstraction both 

diagrams are situated at. Despite that Pons and Kutsche distinguish between refinement by 

decomposition and refinement by specialization, they achieve refinement by specialization 

through a generalization relationship between use cases that belong to the same diagram. The 

position of this thesis towards refinement is that the refinement relationship may be defined 

by decomposition but it is established between different diagrams as the use cases connected 

through the refinement relationship are situated at different levels of abstraction. Besides this, 

the approach in this thesis considers that generalization is different from refinement, which 

implies that refinement cannot be represented through a generalization relationship (e.g. the 

use case Borrow Book can be specialized into Borrow Book to Student and Borrow Book to 

Teacher; the use case Borrow Book can be refined into Request Book Borrowing and Return 

Borrowed Book; despite the request and the return happening in different points in time, both 

are needed in order to fulfill a book borrowing, which means that a book cannot be borrowed 

without requesting it and without returning it). 

Eriksson, et al. [24] treat refinement as a relation between features that are obtained 

from decomposing other features. Features at different levels of decomposition maintain 

relationships with use cases or parts of their textual descriptions. This thesis considers that 

refining use cases includes their decomposition as well as features do. It also considers that 

use cases can be decomposed without being refined: in the approach of this thesis, refining 

use cases includes their detailing (adding detail to the description of use cases) besides their 

decomposition. In order for the relationship between features and use cases to be considered 

at different levels of abstraction, those different levels of abstraction shall be defined based 

on both decomposition and detailing.  

Working at the level of user requirements is the strength of this thesis when 

comparing its perception of refinement to the perception of refinement that also Greenfield 
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and Short [2], and Egyed, et al. [25] have. Greenfield and Short [2] refer to refinement as the 

inverse of abstraction or the process of turning a description more complex by adding 

information to it. They refer to the process of developing software through refinement as 

progressive refinement. The process starts with requirements and ends up with the more 

concrete description of the software (the executable). They consider refinement as a 

concatenation of interrelated transformations mapping a problem to a solution. The goal of 

refinement is to smoothly decrease the abstraction levels that separate the problem from the 

solution. In general terms, Greenfield and Short talk about refinement as the stepwise 

decomposition of features’ granularity. In the context of use cases, refinement is their 

detailing. However this thesis defends that use cases can themselves be refined in order to 

facilitate the transformation of a problem (which can be modeled with use cases) to a solution 

(which shall be modeled with design artifacts e.g. logical architectures). 

Gomaa [26] explored refinement in the context of feature modeling, where a feature 

can be a refinement of another. But in order to get to the features, use cases have to be 

modeled and mapped to features. The approach in this thesis eliminates this mapping activity. 

To Gomaa the refinement is expressed through «extend» relationships in the context of use 

cases. This thesis considers that the refinement shall be expressed through the «refine» 

relationship it proposes. Eriksson et al. [24] have an understanding of refinement similar to 

the Gomaa’s. 

Fowler made the following advice in his book “UML Distilled” [27]: “don’t try to 

break down use cases into sub-use cases and subsub-use cases using functional 

decomposition. Such decomposition is a good way to waste a lot of time”. The work in this 

thesis is not in agreement with Fowler’s opinion at a certain extent. The pertinence of 

functional decomposition lies in the scale of the software system under development. The 

development of large software systems benefits from decomposing the functionality of those 

systems to a level that allows delivering less complex modeling artifacts to the teams 

implementing the software system. All the more, large software systems are frequently built 

from a series of components developed by different teams. A single team is not expected to 

develop the whole system, therefore it shall not be delivered the modeling artifacts 

concerning the whole system in order to guide the ellaboration of the component that is 

required to be developed by that team [5]. Fowler made another suggestion in his book: “The 

UML includes other relationships between use cases beyond the simple includes, such as 

«extend». I strongly suggest that you ignore them. I’ve seen too many situations in which 
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teams can get terribly hung up on when to use different use case relationships, and such 

energy is wasted. Instead, concentrate on the textual description of a use case; that’s where 

the real value of the technique lies”. The work in this thesis is in complete agreement with 

Fowler when he says that the value of use case modeling lies in the textual descriptions of use 

cases. The approach of this thesis to use case refinement is based on those descriptions. But 

the work in this thesis is not in agreement with Fowler when he says that the relationships 

besides the «include» relationship shall be ignored when modeling use cases. The the 

«refine» relationship this thesis proposes cannot be ignored. It is needed in order to formalize 

at an early time (the use case modeling) where functional decomposition shall happen in 

order to decrease the complexity of the modeling artifacts delivered to the different 

development teams. 

Variability Modeling 

Despite use cases being sometimes used as drafts during the process of developing 

software and not as modeling artifacts that actively contribute to the development of 

software, use cases shall have mechanisms to deal with variability in order for them to have 

the ability to actively contribute to the process of developing product lines. Consider that the 

variability types this thesis proposes in the context of use cases can be represented by option, 

alternative and specialization use cases. For instance, modeling variability in use case 

diagrams is important to later model variability in activity diagrams [28]: option use cases 

map to alternative insertions in activity diagrams (alternative insertion is a type of sequences 

of actions in the context of activity diagrams), and both alternative and specialization use 

cases map to alternative fragments in activity diagrams (alternative fragment is another type 

of sequences of actions in the context of activity diagrams). This thesis does not elaborate 

further in this topic since it is out of its scope. This thesis talks thoroughly about option, 

alternative and specialization use cases as the representation of the three different types of 

variability in use cases it considers. 

The work in this thesis is inspired on the approach of Bragança and Machado to 

variability modeling in use case diagrams [29]. Bragança and Machado represent variation 

points explicitly in use case diagrams through extension points. Their approach consists of 

commenting «extend» relationships with the name of the products from the product line on 

which the extension point shall be present. Their approach to product line modeling is 

bottom-up (rather than top-down), which means that all the product line’s products are known 

a priori. A top-down approach would consider that the product line would support as many 
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products as possible within the given domain. In [30] Bayer, et al. refer that all variants do 

not have to be anticipated when modeling the product line. In [31, 32] John and Muthig refer 

to required and anticipated variations as well as to a planned set of products for the product 

line, which indicates that their approach to product line modeling is bottom-up. The approach 

in this thesis adopts the top-down approach for product line modeling, therefore discarding 

the comments to the «extend» relationships.  

In [32] John and Muthig refer the benefits of representing variability in use cases, 

namely establishing a variability and product line mindset among all involved roles in a 

product line’s engineering, supporting the derivation of models and instantiation in 

application engineering, and communicating the possible products to different stakeholders. 

Although this thesis is in total agreement with the position of these authors towards the 

benefits of representing variability in use cases, it is not in agreement when they state that 

information on whether certain use cases are optional or alternatives to other use cases shall 

only be in decision models as it would overload use case diagrams and make them less 

readable (decision models in this context are feature models [33]). John and Muthig use one 

variability stereotype in use cases (the «variant» stereotype) applicable for variant use cases 

(use cases that are not supported by some products of the product line, whether optional or 

alternative). The position in this thesis is that features as well as use cases shall be suited for 

treating variability in its different types. If a use case is an alternative to another use case then 

both use cases shall be modeled in the use case diagram, otherwise the use case diagram will 

only show a part of the possible products John and Muthig mention in [32]. Bachmann, et al. 

mention in [34] that variability shall be introduced at different phases of the development of 

product families. Bühne, et al. propose in [35] a metamodel for representing variability in 

product lines based on the metamodel of Bachmann, et al for representing variability in 

product lines [34]. 

Coplien, et al. defend in [36] the analysis of commonality and variability during the 

requirements analysis in order for the analysis decisions not to be taken during the 

implementation phase by the professionals who are not familiar with the implications and 

impact of decisions that shall be made much earlier during the development cycle. They refer 

that early decisions on commonality and variability contribute to large-scale reuse and the 

automated generation of family members.  
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Maßen and Lichter talk about three types of variability in [37]: optional, alternative 

and optional alternative (as opposite to alternatives that represent a “1 from n choice”, 

optional alternatives represent a “0 or 1 from n choice”). In this context they propose to 

extend the UML metamodel to incorporate two new relationships for connecting use cases. 

The approach in this thesis considers options and alternatives as well but it introduces these 

concepts into the UML metamodel through stereotypes (it considers that the «extend» 

relationship is adequate for modeling alternatives and a stereotype applicable to use cases for 

modeling options). 

Gomaa and Shin [38, 39] analyze variability in different modeling views of product 

lines. They mention the «extend» relationship models a variation of requirements through 

alternatives. They also model options in use case diagrams by using the stereotype «optional» 

in use cases. This thesis adopts these approaches to alternatives and options but it elaborates 

on another form of variability (specializations, which this thesis considers a special kind of 

alternatives; Gomaa and Shin refer specialization as a means to express variability in [38, 

39]). Besides alternative and optional use cases, Gomaa and Shin consider kernel use cases 

(use cases common to all product line members). Gomaa, together with Olimpiew, talks again 

about kernel, optional and alternative use cases in [40]. Gomaa models in [26] kernel and 

optional use cases both with the «extend» as well as with the «include» relationships (the 

approach in this thesis is towards modeling kernel and optional use cases independently of 

their involvement in either «extend» or «include» relationships and with a stereotype in use 

cases). In [41] Webber and Gomaa propose the Variation Point Model to model variation 

points. In that context the variation point shall be treated from four different views, one of 

which is the requirements variation point view. This view captures requirements together 

with variation points during the product line’s domain analysis phase. Variation points are 

considered to be mandatory or optional (the difference between both is that mandatory 

variation points do not supply a default variant, whether optional ones do). In the approach of 

this thesis to variability modeling more types of variability besides the optional one 

(alternative and specialization) are considered. 

Halmans and Pohl propose in [42] use cases as the means to communicate variability 

relevant to the customer and they also propose extensions to use case diagrams to represent 

variability relevant to the customer. Halmans and Pohl consider that generalizations between 

use cases are adequate to represent use cases’ variants. This is not the position expressed in 

this thesis. This thesis recommends using the «extend» relationship instead of the 
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generalization relationship. Although Halmans and Pohl consider that the «extend» 

relationship is suitable for modeling options to parts of the use cases to which those options 

refer, they do not recommend it because of not explicitly representing variation points 

(Halmans and Pohl consider that by not having the variation points explicitly represented in 

use case diagrams, it is not documented if the customer can or must select one or more 

variants or if all of them are already present in the system, which violates the principle of 

communicating variability). They consider that modeling mandatory and optional use cases 

with stereotypes in use cases is not adequate because the same use case can be mandatory for 

one use case and optional for another. Again this is not the position of this thesis. This thesis 

considers that a mandatory use case is not mandatory with regards to another use case, rather 

it is mandatory for all product line members. This thesis also considers that an optional use 

case is optional with regards to one or more product line members. Halmans and Pohl end up 

by introducing additional graphical elements to use case diagrams to represent variation 

points and variability cardinality explicitly in use case diagrams. The work reported in this 

thesis is not in agreement with this approach since it introduces more complexity to use case 

diagrams than modeling variability with stereotypes and use case relationships as well as it 

introduces a reasoning about variability that should be present in decision models (the 

selection of the variants to be present in the system and the system/product to which that 

selection applies according to the features). Pohl uses in [43] the graphical notation used by 

Halmans and himself in [42] to represent variability in use case diagrams. Salicki and Farcet 

talk about variation points and additionally in decision models in [44].     

Fowler suggests in his book “UML Distilled” [27] that the UML relationships 

between use cases besides the «include» shall be ignored and the focus shall be on the textual 

descriptions of use cases. This thesis is in complete agreement with Fowler on the textual 

descriptions but it is not in agreement with the rest. The «extend» relationship is needed in 

order to formalize at an early time (the use case modeling) where variation will occur when 

instantiating the product line. Bosch, et al. mention in [45] the need for describing variability 

within different modeling levels such as the requirements one. 

Bayer, et al. present in [30] the Consolidated Variability Metamodel. In that context 

they systematize different kinds of variability recurrently present in product line models. The 

work this thesis addresses is related to that systematization since it addresses some of those 

kinds of variability and realizes it in annotations to the UML, applicable to some model 

elements to which the selected variability kinds apply. Ziadi, et al. expose a UML profile for 
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software product lines in [46], however they do not talk about stereotypes to be applied to 

models of requirements. 

Regarding use case semantics and notation, the position of Simons [47] and of Heldal 

[48] on the topic was analyzed. Simons argues that the insertion semantics of the «extend» 

relationship is inadequate to model alternatives. That is not the position of this thesis (as it is 

explained later on) since the UML semantics supports this thesis’ notion of variability 

(alternative is one type of variability that the «extend» relationship supports). Heldal worked 

on the extraction of system operations (calls into the system or communication between 

actors and the system) by structuring use cases through the grouping of action steps (e.g. 

sentences with the structure subject+verb+object) from use cases into action blocks. These 

action blocks allow writing contracts for the system operations (contracts are system 

operations with pre and post conditions). Heldal refers to event-driven systems where system 

operations make more sense than use cases. For every action block a contract can be written. 

A use case has more than one action block. Input and output data shall be related to single 

action blocks and not to a single use case because a use case has more than one action block 

and a contract is written for a single action block. An incomplete use case contains only one 

action block. A complete use case has more than one action block and fulfills a goal for the 

actor(s). Heldal mentions that «include» and «extend» relationships do not refer to complete 

use cases on both ends of the relationship, therefore in his approach these use cases are 

contracts rather than a group of action blocks, which does not allow fulfilling  (a) goal(s) for 

(an) actor(s). That is not the position of this thesis. In the approach of this thesis, use cases 

involved in «include» and «extend» relationships are still use cases that fulfill (a) goal(s) for 

(an) actor(s), representing external functionality of the system that can be performed by the 

actors (a use case still represents observable value to an actor, despite being more or less 

detailed, despite decomposing another use case or despite being an extension to another use 

case). 

According to Gomaa [26], and John and Muthig [31, 32], use cases can be tagged 

with some stereotypes concerning variability. Table 1 shows the applicability of those 

stereotypes in the approach of this thesis. 
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Table 1 – Some use case stereotypes concerned with variability. 

Stereotype Applicability 

«kernel» Use cases 

«alternative» «extend» relationships 

«optional» Use cases 

«variant» Use cases 

  

2.2. Software Development Patterns 

Typically patterns are adopted at later stages of the software development process. 

The analysis and design stages of software development are disregarded. Most of the times 

analysis and design decisions are not documented and that originates missing knowledge on 

how the transition from previous stages to the implementation stage was performed. Knowing 

design decisions without design documentation as a helper of this activity is only possible if 

those decisions can be transmitted by the people who know them. When talking about 

patterns, design decisions have to be perfectly known so that an activity of pattern discovery 

can be applied to a software solution with the purpose of discovering the original pattern (the 

pattern in the catalogue) from the implementation. If the original pattern is successfully 

reengineered from the implementation, then it means that most likely the advantages of the 

original pattern are present in that software solution. It is pertinent to understand how patterns 

from catalogues, after being interpreted, adapted and applied, can be constrained in such a 

way that the advantages enclosed in the solution each of those patterns proposes cannot be 

observed. Buschmann, et al. [49] referred that patterns may be implemented in many 

different ways; still patterns are not vague in the solution structure they propose. The 

diversity in the instantiations of a pattern is due to the specificity of the concrete problems 

being addressed. What must be assured is the “spirit of the pattern’s message” as Buschmann, 

et al. called it. In the development of software it must be assured that not only the advantages 

of the original pattern are visible (directly or indirectly) in the software solution but also that 

patterns are adopted throughout all the process phases since patterns address all of them as it 

will be seen in chapter 4. Besides these two considerations it must be noted that the 

development of software is not performed exclusively based on patterns but it is a 

microprocess or nanoprocess when compared to the whole software development process as 

Buschmann, et al. stated. 
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Pattern classifications are useful for understanding pattern catalogues better and 

providing input for the discovery of new patterns that fit into the already existing pattern 

categories [50]. Patterns are classified into categories according to different classification 

criteria and are organized in pattern catalogues according to classification schemas that 

support the different classification criteria each particular schema contemplates. 

Classification schemas can be unidimensional or multidimensional depending on whether 

they obey to a single or more than one criterion. In this thesis the term pattern classification is 

used instead of the complete term pattern classification schema. 

The pattern classifications of [50-55] were not explicitly defined within a procedural 

referential, thus it is not possible to know beforehand which software pattern shall be used at 

what moment during the process of developing software in general as well as in the context 

of which Software Engineering professionals, technologies and methodologies. These 

procedural concerns include also the adoption of a modeling infrastructure to prevent 

subjective pattern application decisions, and situations of misinterpretation and corruption of 

patterns from catalogues while interpreting and adapting the patterns respectively. At last the 

classifications that will be presented next have not elaborated on the nature of the domain to 

which patterns are most adequately applicable. Considering that nowadays families of 

software products are commonly developed with domain-specific artifacts, taking the 

adequacy of patterns to particular domain natures into account is relevant in order to choose 

between the patterns that are most applicable to a domain-specific software product or family 

of products. 

The first pattern classification mentioned in this thesis is from the GoF (Gang of Four) 

[50]. They classified design patterns according to two criteria: purpose and scope. The 

purpose of a pattern states that pattern’s function. According to the purpose, patterns can be 

creational, structural or behavioral. Creational patterns are concerned with the creation of 

objects. Structural patterns are targeted at the composition of classes or objects. Behavioral 

patterns have to do with the interaction between classes or objects and their responsibility’s 

distribution. The scope of a pattern is its applicability either to classes or to objects. Class 

patterns are related to the relationships between classes. Object patterns are related to the 

relationships between objects. Despite the GoF’s classification considering more than one 

criterion, it is not multidimensional as the criteria were not combined to determine pattern 

categories. The GoF’s classification is concerned with the function of the pattern (what the 

pattern does) and its applicability to low level implementation elements (how the pattern will 
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be handled in the software construction). The classification does not refer to explicit 

procedural questions on the development of software with the use of patterns (when patterns 

shall be used, by whom, with what technologies and methodologies, and at which levels of 

abstraction) or to questions with the applicability of patterns to specific domain natures. The 

same is true for the classification about to be mentioned. 

A classification of patterns according to their relationships was proposed by Zimmer 

[55]. Zimmer classified the relationships into three categories: X uses Y in its solution (the 

solution of X contains the solution of Y), X is similar to Y (both patterns address a similar 

type of problem) and X can be combined with Y (both patterns can be combined, in spite of 

the solution of X not containing the solution of Y). This classification may give hints on the 

selection and composition of patterns, nevertheless it does not provide for directives on the 

nature of the domain the patterns are more adequate to, on the right moment to adopt the 

patterns, within which Software Engineering discipline’s context and on how to respect a 

modeling infrastructure when adopting the patterns.  

A classification of general-purpose design patterns (patterns traversal to all 

application domains) was proposed by Tichy in [53]. Tichy proposed nine categories to 

organize design patterns. The categories were determined based on the problems solved by 

the patterns. The proposed categories were decoupling (which has to do with the division of a 

software system into independent parts), variant management (which is associated with the 

management of commonalities among objects), state handling (which is the handling of 

objects’ states) and others. Again neither procedural concerns, nor concerns with the 

applicability of patterns to particular domain nature types were evidenced by this 

classification that relies on the types of problems patterns propose to solve. 

The Pree’s and the Beck’s classifications that are going to be exposed next do not also 

evidence hints on which moments of the software development process to adopt patterns, in 

the context of which Software Engineering discipline, respecting a modeling infrastructure 

and the applicability of patterns to domain natures in particular. 

Wolfgang Pree [54] categorized design patterns by distinguishing between the 

purpose of the design pattern approach and its notation. Notation can be informal textual 

notation (plain text description in a natural language), formal textual notation (like a 

programming language) or graphical notation (like class diagrams). Purpose expresses the 

goal a design pattern pursues. The Components category indicates that design patterns are 
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concerned with the design of components rather than frameworks. The Frameworks I 

category indicates that design patterns are concerned with describing how to use a 

framework. The Frameworks II category indicates that design patterns represent reusable 

framework designs. Pree’s classification scratches very superficially the question of modeling 

as it distinguishes between patterns represented with code (formal textual notation in the 

Pree’s classification) and those represented with models (graphical notation in the Pree’s 

classification) but it does not elaborate on how to work respecting different levels of 

abstraction throughout the process of developing software. 

Kent Beck’s [51] implementation patterns translate good Java programming practices 

whose adoption produces readable code. He claims these are patterns because they represent 

repeated decisions under repeated decision’s constraints. Kent Beck’s implementation 

patterns are divided into five categories: (1) class, with patterns describing how to create 

classes and how classes encode logic; (2) state, with patterns for storing and retrieving state;  

(3) behavior, with patterns for representing logic; (4) method, with patterns for writing methods 

(like method decomposition, method naming); and (5) collections, with patterns for using 

collections. Kent Beck claims his implementation patterns describe a style of programming. 

These implementation patterns address common problems of programming. For instance 

Kent Beck advises to use the pattern Value Object if the intention is to have an object that 

acts like a mathematical value, or the pattern Initialization for the proper initialization of 

variables, or the pattern Exception to appropriately express non-local exceptional flows, or 

the pattern Method Visibility to determine the visibility of methods while programming, or 

the pattern Array as the simplest and less flexible form of collection. Kent Beck uses Java in 

order to exemplify the pattern (as a different presentation of it) instead of a model or a 

structured text. Despite the programming practices having to be considered by the software 

development process, this classification does not care about the process of adopting patterns 

within the whole software development process. 

Not only design patterns and implementation patterns are used when developing 

software. The classification of Eriksson and Penker [52] addresses business-level patterns 

like those going to be mentioned just now. The Core-Representation pattern dictates how to 

model the core objects of a business (the business objects e.g. customer, product, order) and 

their representations (e.g. the representation of a business object within the information 

system may be a window or another graphical user interface element as the representation of 

a debt is an invoice and the representation of a country may be the country code). The 
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Document pattern shows how to model documents (e.g. how to handle different versions and 

copies of a document). The Geographic Location pattern illustrates how to model addresses 

(which is of interest to mail-order companies, post offices, shipping companies). The 

Organization and Party pattern demonstrates how to model organizational charts. The 

Product Data Management pattern indicates the way to model the structure of the 

relationship between documents and products (the structure varies from one business to 

another). The Thing Information pattern (used in e-business systems) models the thing 

(resource in the business model) and the information about the thing (the information in the 

information system about that resource). The Title-Item pattern (used by stores and retail 

outlets) is to model items (e.g. a loan item) and their titles (e.g. a book title). The Type-

Object-Value pattern (used by geographical systems) depicts how to model the relationship 

between a type (e.g. country), an object (e.g. Portugal) and a value (e.g. +351). Eriksson and 

Penker classified business-level patterns into three categories: resource and rule patterns, 

goal patterns and process patterns. The resource and rule patterns provide for guidelines on 

how to model the rules (used to define the structure of the resources and the relationships 

between them) and resources (people, material/information and products) from a business 

domain. The goal patterns are intimately related to goal modeling. The main idea is that the 

design and implementation of a system depends on the goals of the system (how it is used 

once built). At last the process patterns are related to process-oriented models (such as 

workflow diagrams). Process patterns prescribe ways to achieve specific goals for a set of 

resources, obeying to specific rules that express possible resource states. 

The classification mentioned next is elaborated on the software development phases. 

Siemens’ [8] two-dimensional pattern classification (from the book POSA (“Pattern-Oriented 

Software Architecture”), volume 1, or just POSA 1) was defined with two classification 

criteria (pattern categories and problem categories). Every pattern is classified according to 

both criteria. The pattern categories determined were architectural patterns, design patterns 

and idioms. They are related to phases and activities in the software development process. 

Architectural patterns are used at early stages of software design, particularly in the structure 

definition of software solutions. Design patterns are applicable to former stages of software 

design, particularly to the refinement or detailing of what Buschmann, et al. call the 

fundamental architecture of a software system. Idioms are adequate to implementation stages, 

during which software programs are written in specific languages. The problem categories 

determined were from mud to structure, distributed systems, interactive systems, adaptable 

systems, structural decomposition, organization of work, access control, management, 
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communication and resource handling. As an example Structural Decomposition patterns 

support the decomposition of subsystems into cooperating parts and Organization of Work 

patterns support the definition of collaborations for the purpose of providing complex 

services. These categories express typical problems that arise in the development of software. 

Placing some patterns in a specific category is a useful activity since it allows eliciting related 

problems in software development. However this pattern classification does not address the 

analysis phases (business modeling and requirements) of the software development process 

as the multilevel and multistage pattern classification does. 

POSA 1 and POSA5 [49] are the most general POSA references. POSA 2 [56] 

contains a pattern language for concurrent and networked software systems. POSA 3 [57] 

contains a pattern language for resource management. POSA 4 [58] contains a pattern 

language for distributed computing. As referred in POSA 5 by its authors, the classifications 

in POSAs 2, 3 and 4 are intention-based, which is why they were not included in the 

literature review of this thesis. Chapter 4 is targeted at software development patterns in 

general, not intention-based software development patterns. 

In POSA 5 Buschmann, et al. reflect on the terminology used in the pattern 

classification from POSA 1 and conclude that the pattern classification from POSA 1 has 

terminology problems. The terms used to distinguish disjoint categories (architectural 

patterns, design patterns and idioms) actually do not refer to pretty disjoint categories. These 

authors refer that architectural activities and the application of idioms can also be considered 

design activities. They also refer that since POSA 1 they have concluded that the term design 

pattern is to designate software development patterns in general and to distinguish them from 

patterns that have nothing to do with software. It does not mean that they have to do with 

design activities. For this reason they conclude that the term design pattern used in the 

pattern classification from POSA 1 should have been replaced with some other name to refer 

to the GoF patterns. Concerning the architectural patterns Buschmann, et al. conclude that 

all patterns are architectural in nature, so there cannot be a category called architectural 

patterns. To Buschmann, et al. design is the activity of making decisions on the structure or 

behavior of a software system and architecture is about the most significant design decisions 

for a system (and not all design decisions). Therefore although all patterns are intrinsically 

architectural, not all of them are applicable to architectural activities. Concerning the idioms, 

Buschmann, et al. conclude that the term idiom has some ambiguity since sometimes it refers 

to a solution for a problem specific to a given programming language and some other times it 
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refers to conventions for the use of a programming language. An idiom can even refer to both 

situations. Buschmann, et al. also conclude that idioms can refer to patterns used within the 

context of a specific domain, architectural partition or technology, thus they conclude that the 

term idiom should have been programming language idiom as a programming language is a 

specific solution domain. For instance the pattern Iterator is an idiom specific to C++ and 

Java, although it differs between these two specific languages. 

The matter with idioms that Buschmann, et al. mention in POSA 5 was solved by 

Kent Beck in [51]. Kent Beck’s implementation patterns express good programming practices 

(or the conventions for the use of programming languages). Kent Beck uses Java in order to 

exemplify his implementation patterns, which shall be applicable to other programming 

languages. Kent Beck’s implementation patterns are not Java or other language-specific 

patterns that are just a different representation of design patterns [59, 60]. 

Since all architecture is design [61], the consideration of Buschmann, et al. that there 

cannot be a pattern category for architectural patterns makes sense (they are patterns of 

design). However not all design is architecture [61], which means that a distinction between 

patterns that address architecture and patterns that address design has to be made. 

Architectures do not define implementations. They rather constrain downstream activities of 

design and implementation. The architecture defines the system structure. The architect is 

more interested on the system structure than on the design decisions about architectural 

elements, or the structure of the subsystems of the system being designed. The software 

architect shall leave the implementation details veiled, as well as he/she shall not delve into 

design decisions about the structure of a system’s subsystem. A good architect has to know 

when to stop making architectural decisions [61]. The approach of this thesis is 

contextualized within this distinction between architecture and design as the product line 

logical architecture originated from the execution of the 4SRS does not delve into structure or 

implementation details about the product line’s architectural components, as well as the 4SRS 

uses a pattern that addresses architecture: the MVC. Design patterns shall address details of 

implementation (like the GoF patterns do). 

2.3. Transformation of Requirements 

Kruchten [62] defines development architecture in his “4+1” View Model of Software 

Architecture. The software system is structured in subsystems that shall be developed by one 

or a small number of developers (a team). That structure of subsystems is the development
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architecture, which can be used to allocate work to teams. The development architecture is in 

fact a logical architecture. A logical software architecture can be faced as a view of a 

software system composed of a set of problem-specific abstractions from the system’s 

functional requirements and it is represented as objects or object classes. Kruchten also 

referred that logical architectures suite the purpose of identifying common design elements 

across the different parts of a system [62]. Another definition of logical software architecture 

is a module view representing the static structure of the software system (the system’s 

functional blocks, including traceability back to the use cases that express the system’s 

functional requirements) [61]. The logical software architecture represents the functional 

decomposition of the software system. In the context of this thesis, a logical software 

architecture (represented as a component diagram) is a design artifact representing a 

functionality-based structure of the system being designed 

As Sendall and Kozaczynski [63] state, transformations are “the heart and soul of 

model-driven software development”. They refer to model transformation as being the 

process of transforming one or more source models into one or more target models following 

a set of transformation rules. Activities like reverse engineering, application of patterns or 

refactoring use model transformations. Transformations can be classified in some ways. 

Metzger [64] classifies transformations into endogenous and exogenous. On one hand an 

endogenous transformation takes place if the language of both the source and the target 

models is the same. On the other hand an exogenous transformation occurs if the language of 

the source model is not the same as the language of the target model. Brown, et al. [65] 

classify transformations into three possible kinds: refactoring transformations (which 

correspond to the reorganization of model elements), model-to-model transformations (if 

both the source(s) and the target of the transformation are models) and model-to-code 

transformations (if the source(s) of the transformation is(are) a model(s) and the target is 

code). Transformations are useful when transforming views between different levels of 

abstraction, but they are useful as well when transforming models at the same level of 

abstraction [65]. In the process of mapping a model (or more than one model) into another 

model, a mapping function is involved [66]. This function specifies the mapping rules that 

allow the transformations between source model(s) and target model to occur. The main 

characteristics of model mappings are construction and synchronization [66]. Mappings are 

used to construct models from other models (model derivation). This way, synchronization 

between models is assured. Mapping functions represent repeated design decisions which 

conduct to the reuse of those functions in models of similar design. The transformation of an 
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analysis model (model at the problem domain level, like a use case diagram targeted at the 

execution of the 4SRS) into a design model (model at the solution domain level, like a 

component diagram targeted at the execution of the 4SRS) is made by means of mapping 

functions [66]. 

The 4SRS is a method that allows the iterative and incremental model-based 

transformation of user functional requirements in the shape of use case diagrams into logical 

architectures in the shape of component diagrams. The method supports the modeling of 

logical architectures with variability support by considering the notion of variability [29]. The 

method also supports the functional refinement of those architectures. There are other 

approaches to functional decomposition of software systems besides the 4SRS method, such 

as KobrA or RSEB (Reuse-Driven Software Engineering Business) [67, 68]. However neither 

KobrA nor RSEB clearly contemplate a method for handling use cases to get to the design of 

software systems or a technique for refining logical architectures. These are the main 

strengths of the 4SRS method: an instrument to get to the design of software systems from 

their analysis and to refine design artifacts. 

Smaragdakis and Batory [69] mention refinement in their work on collaboration-

based design of large-scale software applications, which is applicable to the design of logical 

architectures with variability support. In their approach refinement is achieved through 

collaborations. The approach of this thesis uses a method that considers user requirements in 

the first place, before dealing with artifacts that would reside in product line design posterior 

to the logical architecture definition and refinement (artifacts like collaborations). 

PuLSE comprises the refinement of already existing logical architectures with 

variability support [70], however the refinement is not conducted in a stepwise manner. The 

approach of PuLSE approach includes testing steps to assure that the architecture supports the 

requirements from which it was ellaborated. The approach of this thesis does not include such 

kind of steps, yet. Despite that, the approach of this thesis is stronger than the approach of 

PuLSE by allowing the refinement in a stepwise, thus guided mode. 

Englebert and Vermaut present in [71] an ADL (Architecture Description Language) 

or software architecture modeling language, capable of handling multiple levels of 

abstraction. The levels of abstraction they consider are based on Kruchten’s “4+1” View 

Model of Software Architecture [62] and are faced as the phases of an architecture refinement 

methodology. In [71] they propose transformations on the architecture to progressively fulfill 
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non-functional requirements (the refinement of a high-level architecture into a more concrete 

architecture). The methodology indicates how to transform requirements into design 

structures that consider those requirements. The approach of this thesis to the refinement of 

architectures is based on functional requirements. This thesis considers that non-functional 

ones shall be considered after designing the logical architecture and through pattern 

application. 

According to Kaindl [72], 4SRS can be classified as a transition method. Kaindl 

argued that it is difficult to move from the analysis to the design of software. From the 

perspective of object-oriented software development the main reason is that analysis objects 

and design objects represent different kinds of concepts. Analysis objects are from the 

problem domain and represent objects from the real world. Design objects are from a solution 

domain and shall indicate how the system shall be developed. Design objects are abstractions 

of code or the implementation details needed in order to build a system with a solution to a 

problem. Design objects are both an abstraction of concepts from the problem domain and an 

abstraction of the implementation of the system to be built. When analyzing or designing a 

software system the focus is on drawing models. An analysis model is targeted at helping 

requirements engineers understand the problem domain. Implementation decisions shall not 

be expressed in analysis models. A design model models the system with objects that shall l 

on during the programming of the system implement that system’s external behavior. The 

requirements modeled with the analysis objects express the system’s external behavior. An 

analysis model can become part of a design model by influencing architectural decisions. 

Alternatively a direct mapping between objects from the problem domain and objects from a 

solution domain can originate a design model from an analysis model. The only thing left to 

do is to add detail and make further design decisions with impact on the design model. An 

analysis model cannot be a design model the same way a problem specification that 

represents requirements cannot be a solution specification that represents software internals. 

The 4SRS is a method that allows moving from the analysis to the design of software. In the 

case of the 4SRS, the analysis model (a UML use case diagram) influences architectural 

decisions that originate a design model (a UML component diagram).  

The 4SRS is an instrument to get to the design artifacts of software systems from their 

analysis artifacts. As previously referred, Englebert and Vermaut present in [71] an ADL or 

software architecture modeling language that allows to transform requirements into design 

structures that consider those requirements. Both the 4SRS and the ADL of Englebert and 
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Vermaut can be considered as transition methods. In this thesis the 4SRS is used as the 

example. 

From the perspective of the SPEM a process can be considered to be at least a method 

content (or shortly method) positioned within a development lifecycle. In the context of 

software and systems development, processes also define how to get from one milestone to 

the next one by defining sequences of tasks (and steps) that are performed by some roles to 

produce some output (work products) for that milestone to be declared. A process can be 

represented with workflows or work breakdown structures. Workflows are models of process 

behavior whereas work breakdown structures represent process structure. This thesis adopted 

workflows to represent process behavior and UML class diagrams to represent process 

structure. Processes can be modeled with process modeling languages like the SPEM. A 

process modeling language can be defined as the instrument to express software development 

processes through process models [73].  

A short definition of process is the way activities are organized to reach a goal [74]. 

In the case of software development, a process (software process) can be defined as the set of 

activities (analysis, design, implementation, testing, among others) organized to deliver a 

software product (goal). A process model is an artifact that expresses a process to understand, 

communicate and automate that process. Process modeling is advantageous because it 

facilitates the transfer of know-how on the activities of an organization to newcomers, it 

facilitates the repeatability of those activities and is the basis for process improvement. A 

software process is targeted at the repeatability of software development activities. Those 

activities are performed on artifacts contextualized by the time frame of a software project. 

The repeatability of software development activities makes of these activities predictable, 

therefore modelable from the process modeling point of view. The goal of a metaprocess is to 

support software experts when changing a process model in order to adapt the process model 

to new methods and tools (process evolution) or to improve the process model (process 

improvement) or even to align the process model with the inconsistency found during the 

execution of that process (process instance evolution). 

The goal of processes is to assure the quality of products and the productivity in 

developing them [75]. Process comprehension and process communication may be negatively 

affected by the lack of a standard and unified terminology [76]. In such conditions process 

enactment is far away from process definition, thus the quality of products and the 
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productivity in developing them may be compromised, and the goal of processes may not be 

achieved. Process modeling using a standard and unified terminology suits some purposes 

like process comprehension, process design, process training, process simulation, process 

support [77]. Tools support the execution of processes to consistently reach the goal 

(delivering a software product). 

In 1995 Conradi and Liu [78] say that enactable process models are low-level process 

models in terms of abstraction. Process modeling languages suit the purpose of detailing 

process models to make them enactable. According to Henderson-Sellers [79] a process 

enactment is an instance of a process in a particular project with actual people playing roles, 

deadlines having real dates and so on. Different enactments have different people playing the 

same role and different dates for the same deadline. Bendraou, et al. [80] consider that 

process enactment shall contemplate support for automatic task assignments to roles, 

automatic routing of artifacts, automatic control on work product states, among others. In 

what process enactment is concerned, Feiler and Humphrey [81] define an enactable process 

as an instance of a process definition that shall have process inputs, assigned agents (people 

or machines that interpret the enactable process), an initial state, a final state and an initiation 

role. A process definition is a set of enactable process steps. Process definitions can be a 

composition of subprocess definitions as well as process steps can be a composition of 

process substeps. A process definition only fits for enactment when fully refined, which 

means that it cannot be more decomposed into subprocess definitions and into process 

substeps. The act of creating enactable processes from process definitions is defined by Feiler 

and Humphrey as process instantiation. They define process enactment as the execution of a 

process by a process agent following a process definition. Bendraou, et al. [80] consider that 

support for the execution of process models helps coordinating participants, routing artifacts, 

ensuring process constraints and process deadlines, simulating processes and testing 

processes. The use of machines in process enactment is called process automation and 

requires for a process definition to be embodied in a process program [81]. Gruhn [82] 

defines automatic activities as those executed without human interaction. He mentions that 

the automation of activities is one of the purposes of process modeling. Another purpose is to 

govern real processes on the basis of the underlying process models. 

A process’ capability can be assessed according to three criteria [83]: task 

customization, project customization and maturity customization. According to Henderson-

Sellers, et al. [83], SPEM allows for task customization and for project customization, but not 
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for maturity customization. SPEM allows for task customization because it allows for the 

selection of techniques for each task according to the organization and the expertise of the 

professionals in those techniques. For instance various techniques can be used to elaborate a 

requirements specification depending on the organization and the project: questionnaires, 

workshops, storyboards, prototypes and others. SPEM allows for project customization since 

it allows for the selection of activities, tasks and techniques according to the project. The 

tasks required to be performed and the products to be developed (models and documents) 

vary from one project to another. Project customization is a matter of selecting or omitting 

portions of a process. SPEM does not allow for the addition/removal of activities and tasks 

to/from a process, and consequently work products depending on the capability or maturity 

level of the organization. Furthermore Henderson-Sellers, et al. [83] refer that SPEM allows 

for the definition of discrete activities and steps, therefore allowing for process fragment 

selection. 

Software modeling can inspire the modeling of processes so as to communicate about 

those processes and help people to collaborate in the execution of those processes [75]. 

Different types of process models stand for different purposes. Different types of models 

concentrate on specific concerns and abstract away from other concerns that shall be 

responsibility of other types of models. The same way multiple software models need to be 

coordinated, so do multiple process models. In principle a process model is to represent a 

process that is considered to be effective in addressing certain process problems described in 

process requirements. Processes address both functional and nonfunctional requirements. 

Functional requirements are e.g. the software artifacts that shall be produced as the output of 

the process. 

In the context of this thesis a logical architecture is product-based. In a higher level of 

abstraction a logical architecture may be process-based (according to the designation of this 

thesis) or a process architecture (according to Kruchten’s designation [62]), consisting of a 

functionality-based structure of the process being designed. To this thesis’ concern a product-

based logical architecture or product architecture is an architecture that resides in a lower 

level of abstraction comparatively to a process-based or process architecture and consists of a 

functionality-based structure of the product being designed. Allocating work to teams 

developing subsystems (as the development architecture can be used to) presupposes that 

those subsystems can also represent process architecture components that consist of tasks 

(ultimately steps) that are performed by some roles to produce some output (work products). 
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In fact process architecture components are activities that compose a process structure. 

Activities are a (kind of) work breakdown element. It can be concluded that the 4SRS is not 

only a method dedicated at transitioning from analysis to design but can also be a method for 

defining a development architecture (or process architecture). This thesis focuses on the 

formalization of the 4SRS transition method as a small dedicated software development 

process that can be plugged into larger software development processes from the product 

development point of view (and not from the process architecture point of view). It also 

shows how to automate transition methods, particularly those modeled with the SPEM. The 

4SRS previously modeled with the SPEM is used as the example of a transition method 

modeled with the SPEM. It transforms analysis artifacts into design artifacts (in the case of 

the 4SRS, use cases into component diagrams). Automated transition methods modeled with 

the SPEM can be automatically executed as small dedicated software development processes. 

This thesis focuses on transition methods from the product development point of view and 

not from the process architecture point of view. 

A process modeling language may be part of an MDD infrastructure. An MDD 

infrastructure must provide for visual modeling and the means for defining visual modeling 

languages [11]. A visual language shall be composed of abstract syntax (metamodel), 

concrete syntax (notation), well-formedness rules (constraints on the abstract syntax) and 

semantics [11]. The SPEM is a process modeling language that in conjunction with the UML 

and the OCL (Object Constraint Language) [84] provides for the abstract syntax, the concrete 

syntax, well-formedness rules and semantics for visual modeling, and the means for defining 

visual modeling languages. An approach to extend UML is by using stereotypes, tagged 

values and constraints [85]. This thesis presents an extension to the SPEM for defining a 

visual language to model transition methods and formalizing small dedicated (at transitioning 

from analysis to design) software development processes (such as the 4SRS). Stereotypes are 

used as the extension mechanism along with the addition of elements to the metamodel 

through subclassing. 

The SPEM is a process modeling language to define or formalize software and 

systems development processes. Its focus is on the structure of software and systems 

development processes. For all this the SPEM can be considered as a broad contribution. 

However the literature shows that it has been used in a summarized way. The paper [76] 

presents a slice of the SPEM. A metamodel slice is a part of the metamodel that is extended 

to ultimately ellaborate a hierarchy of stereotypes applicable to the (meta)classes of that 
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metamodel. The tools that allow modeling instances of the SPEM (for example the tool EPF 

[86], which allowed modeling e.g. the OpenUP [87] process) use slices of the SPEM. The 

consequences of summarizing the SPEM in slices are the popularization of the SPEM, a strict 

use of the language/metamodel and the need for a work of reverse engineering in order to 

fully understand the slices. 

Software process modeling shall allow the comprehension [76, 77], communication, 

reuse, evolution and management [76] of processes. The goal of MDD is to raise the 

abstraction level at which software programs are written, which is achieved through the use 

of models in the development of those programs. One of the main characteristics of MDD is 

to make models accessible and useful (therefore understandable in the first place) by all 

stakeholders. This has to do with the easiness of understanding of models and is achieved 

through notation. Since a process modeling language is a visual language and may be part of 

an MDD infrastructure, it is relatively easy to understand and models drawn with that 

language are a good artifact to communicate with the stakeholders. Another main 

characteristic of MDD is the storage of models in formats that other tools can use, which is 

achieved through interoperability. This allows for the reuse of models (in this case, software 

process models) in different process modeling tools. Metamodeling techniques are used in 

this thesis to extend the SPEM for defining a visual language to model transition methods and 

formalizing small dedicated (at transitioning from analysis to design) software development 

processes (such as the 4SRS). The reuse is also achieved through metamodeling since several 

models can be derived from a single metamodel. 

Processes can be executed through tools. In [75] Osterweil considers coding software 

processes (as part of programming them). Process modeling is one of the parts of 

programming a software process with a model-driven approach. Software process code is in a 

lower abstraction level when compared to software process models and it can be executed by 

computers. Software process code specifications require that software process models define 

(for new software processes) or formalize (for existing software processes) how software 

artifacts shall be input to or output from software process tools and how those artifacts are to 

be handled by the right roles at the right time of the process. Software process models can be 

analyzed to identify process steps that may be automated. The number of processes being 

followed to develop software is high. Some key software development processes like 

software requirements specification and software design lack definition (if they’re new ones) 

or formalization (if they’re existing ones). Software design for instance is a process that can
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be modeled and coded. This thesis shows an approach to code a previously modeled software 

development process, which is the 4SRS transition method modeled with the SPEM as a 

small dedicated software development process. Software process models were analyzed to 

identify process steps that could be automated with the Moderne. 

2.4. Conclusions 

This chapter addressed the core concepts of this thesis’ contribution: functional 

refinement of requirements represented as use case diagrams and of logical architectures 

represented as component diagamas, variability modeling in use case diagrams, software 

development patterns and transformation of user functional requirements (use cases) into 

system functional requirements (component diagrams).   

Some authors produced previous contribution that differs from this thesis’ in some 

senses. Regarding functional refinement, the approach of this thesis is not formal and does 

not deal with artifacts that shall be dealt with before or after use cases. It also considers that 

refining means decomposing as well as adding detail to the use cases, that a refinement 

relationship shall connect different abstraction levels and that refinement is not the same as 

specialization. The refinement of use cases was previously represented with the Extend 

relationship, whereas this thesis uses the Refine relationship it proposes for that purpose. This 

thesis considers functional decomposition, which is an advantage when developing large 

software systems. It also adopts a top-down approach for product line modeling, which 

allows the support for as many products as possible within a given domain at the level os use 

cases (as opposite to the bottom-up approach). This thesis is not in agreement with the 

authors that do not recommend modeling variability in use case diagrams as they would not 

represent all possible products of a product line. This thesis also considers the Extend 

relationship adequate for modeling variability and needed in order to perform that activity, 

and both the Extend and the Include relationships inadequate for modeling optional use cases. 

It considers as well the alternative and specialization variability types some authors do not 

consider. In opposition to other authors, this thesis does not adopt the generalization 

relationship to model variability, it does not model optional use cases in relation to other use 

caes, as well as it does not represent variability cardinality from decision models in use case 

diagrams and does not abandon the representation of system external functionality that can be 

performed by actors. 
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Some authors organized patterns into pattern classifications not explicitly defined 

with procedural concerns. Those who classified patterns according to software development 

phases, did not address the analysis phases (business modeling and requirements) of the 

software development process as the pattern classification proposed by this thesis does. This 

thesis also considers a pattern that addresses architecture in the model transformation from 

user functional requirements to systems functional requirements the 4SRS habilitates in a 

stepwise way, which is a kind of pattern some authors do not consider to address architecture, 

rather design. 

When compared to other author’s approach, the approach of this thesis to the 

refinement of logical architectures with variability support is more advantageous as it is 

stepwise. It is not focused on non-functional requirements as the approach of other authors is. 
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Section 3.2 introduces the process of refining use cases. It defines the «refine» relationship, and discusses 

the difference between the «include» and the «refine» relationships. 

Section 3.3 elaborates on the different types of variability this thesis proposes. It provides for the analysis of 

the UML «extend» relationship in contexts of variability and also for the extension this thesis proposes to 

the UML metamodel. It also analyzes the process of handling variability in use cases in contexts of 

functional refinement.  

Section 3.4 elaborates on the refinement of logical architectures with variability support according to both 

the formalization of use case refinement and the systematization of use case variability modeling this thesis 

proposes.  

3. Transforming Use Case 

Models into Logical 

Architectures 

3.1. Introduction 

Use case diagrams are one of the modeling artifacts modelers have to deal with when 

developing software with a model-driven approach. This chapter envisions use cases 

according to the perspective of detail (which has to do with the abstraction level use cases 

may be situated at and implies refinement as it will be exposed). 

Use cases can be more or less detailed, which means that they can be refined. The 

refinement of a use case results in lower-abstraction-level use cases. The lowering of the 
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abstraction level shall be represented in the diagrams with a new kind of relationship that will 

be presented ahead in this chapter: the «refine» relationship. In this chapter, refinement is 

considered from the functional perspective. It is explained why the «include» relationship is 

considered not adequate to support the refinement in use case diagrams. It shall be noted that 

in the approach of this thesis, use cases are still use cases, representing external functionality 

of the system that can be performed by the actors (a use case still represents observable value 

to an actor, despite being more or less detailed). Refining use cases is important to 

incrementally introduce user requirements in the design of the software system. 

The «refine» relationship represents the refinement of use cases. The refinement of 

use cases is an approach to deal with the problem of complexity in the modeling activity. One 

of the chapter’s contribution is on the understanding of the use case modeling activity with 

support for refinement, providing specific directives on how to conduct such activity in a 

systematic way. The approach of this thesis is illustrated with the GoPhone case study [7]. 

This thesis considers use cases in different abstraction levels according to the «refine» 

relationship. It also proposes an extension to the UML metamodel [1] in order to support both 

the concrete and abstract syntaxes of the refinement of use cases. In this chapter the focus is 

on the refinement support as well as on the process point of view with regards to the use case 

modeling activity. 

A software product line can be faced as a family of software products developed with 

explicit concern about variability (and consequently commonality) during the development 

process. Use case diagrams are also one of the modeling artifacts modelers have to deal with 

when developing product lines with model-driven approaches. This chapter also envisions 

use cases according to the perspective of variability. The «extend» relationship plays a vital 

role in variability modeling in the context of use cases and allows for the use case modeling 

activity to be applicable to the product line software development approach. That is possible 

by determining the locations in use case diagrams where variation will occur when 

instantiating the product line. Another contribution of this chapter’s is on the formalization 

and understanding of the use case modeling activity with support for variability. The 

approach of this thesis is illustrated with the GoPhone case study, which presents a series of 

use cases for a part of a mobile phone product line particularly concerning the interaction 

between the user and the mobile phone software. This thesis proposes an extension to the 

UML metamodel in order to formally provide for both the concrete and abstract syntaxes to 

represent different types of variability in use case diagrams. This thesis considers use cases in 
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different abstraction levels to elaborate on the (functional) refinement of use cases with 

«extend» relationships between them. The focus of this chapter is on the variability support as 

well as on the process point of view with regards to the use case modeling activity.  

Another contribution of this chapter is on the formalization and understanding of the 

use case modeling activity with support for variability and functional refinement when 

variability is present. The approach of this thesis is again illustrated with the GoPhone case 

study. Throughout the chapter six different relationships are referred. Some are from the 

UML, which explicitly uses the terminology “relationship”: the UML «extend» relationship, 

the UML «include» relationship and the UML generalization relationship. Some are 

introduced by this thesis to the UML metamodel by extending it according to an extensive 

related work analysis: the (UML) «refine» relationship, the (UML) «alternative» relationship 

and the (UML) «specialization» relationship. 

Modeling variability in use case diagrams with the resources from the UML is a 

benefit of the approach in this thesis, since the UML is extensively used in the community 

(both academic and industrial) and a widely recognized standard. This thesis systematized 

variability modeling for use cases according to a model with explicit decisions modelers may 

follow to apply the approach (Figure 14 shows those decisions, which will be analyzed in 

section 3.3). This thesis considers the refinement of use cases connected through «extend» 

relationships, which is pertinent in the context of large-scale product lines. Both the 

variability modeling in use cases and the refinement of use cases are required at the time of 

requirements modeling to prepare the modeling artifacts for further handling in the product 

line development process. The complexity of a use case diagram with variability and 

refinement (an example of such use case diagram is in Figure 24, which will be analized in 

section 3.3) may be considered a limitation of the proposed approach but this thesis presents 

in section 3.3 some ways of decreasing that complexity. 

This thesis defines the functional decomposition of a use case as the decomposition of 

an initial use case diagram into smaller and more cohesive ones. Its goal is to decrease the 

complexity of the use case diagram and increase its cohesion. The advantage of functional 

decomposition of use cases from the process point of view when developing large software 

systems is allowing the delivery of less complex modeling artifacts to the teams 

implementing the software system. The advantage of functional decomposition of use cases 

from the process point of view when developing software systems with variability is the 
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possibility of modeling later on an alternative to a part of the decomposed use case or 

modeling a part of the decomposed use case that is an optional part. 

A lot of literature exists on variability modeling (some of it particularly related to 

requirements modeling). This thesis analyzed an extensive and significant set of references 

on the subject, and the need to systematize the modeling of variability according to the 

position of this thesis on the subject was found. A set of stereotypes are the solution 

concluded to be more adequate, efficient and effective for modeling variability in use case 

diagrams. This thesis also provides for comprehension on use case modeling with functional 

refinement when variability is present considering the variability modeling systematized with 

basis on that set of references and the position of this thesis on the subject (refer to the 

definition of functional decomposition in the paragraph above together with the notion of 

detailing the textual descriptions of use cases as the functional refinement of use cases). 

In the context of this thesis, a logical software architecture (represented as a 

component diagram) provides for variability support and is a design artifact representing a 

functionality-based structure that embraces both a software product line’s reusable 

components and its member-specific components. The non-functional requirements are out of 

the scope of this thesis, although they will have to be considered (most likely through the 

application of patterns) in moments following the logical architecture’s design. 

Logical software architectures with variability support can be obtained from 

functional requirements expressed in use cases with variability exposure [28, 29]. Since use 

cases can be more or less detailed, architectural components from logical software 

architectures can also be more or less detailed because in the approach of this thesis these 

components originate from use cases. Architectural components can be refined according to 

the detail level of the use cases they originate from. But the relation between use case and 

component is not one-to-one. A use case can originate more than one component. The 

refinement of architectural components is based on the stepwise refinement from old 

functional approaches like Cleanroom [88]. Cleanroom defines stepwise refinement as the 

expansion of the specification into the implementation via small steps (which includes the 

design of data and control constructs before implementing the details). Although this process’ 

activities are different from the 4SRS method’s, the principle of refinement is the same. 

The refinement of logical software architectures with variability support may be due 

to two reasons: (1) the definition of subprojects for the product line development; and (2) the
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partitioning of the product line into subsystems. The refinement is triggered by the identified 

need of detailing the architecture (although a subsystem is only confirmed as a subsystem that 

can be refined when the more detailed logical architecture generated from it is concluded to 

be cohesive). 

Currently the modeling approaches that support the design of logical software 

architectures with variability support do not take refinement into consideration at the user 

requirements level (the use cases level) and in a stepwise way. 

In order to motivate the product line modelers to the importance of refinement when 

modeling logical software architectures with variability support, this thesis argues that not 

considering refinement when modeling those architectures using a specific modeling method 

(in the case of this thesis, the 4SRS method) constitutes a problem of complexity in the 

modeling activity. The pertinence of refinement resides in large-scale contexts, even though 

the approach of this thesis to refinement is going to be demonstrated with the GoPhone [7], 

which is of small-scale. Nevertheless the GoPhone could end up as a subset of a bigger 

problem after refining that bigger problem. In order to circumvent the scale problem this 

thesis proposes to extend the 4SRS method to support the refinement of logical software 

architectures with variability support. The motivation for the extension of the 4SRS method is 

not restricted to addressing a limitation or weakness of the method, rather it is based on an 

unsolved problem or need in product line engineering as evidenced by the related work 

analysis presented earlier. This thesis will address the recursive character of the 4SRS method 

as the solution for refinement. 

3.2. Refining Use Cases with the Include Relationship 

Use Case Refinement 

Detail in the context of this approach is intimately related to the activity of use case 

refinement. In this sense use cases can be more detailed if they are refined. This thesis 

considers that refining means decomposing and simultaneously detailing use cases. By 

refining use cases the artifacts resulting from the refinement process (the refining use cases) 

are situated in lower abstraction levels comparatively to the refined use cases (the use cases 

submitted to the refinement process). In order to represent in the use case diagram this 

decrease in the abstraction level when refining use cases the «refine» relationship is used (as 

a sort of traceability between use cases at different levels of detail). The refinement process 

of use cases can be represented by a tree-like form that in terms of detail presents use cases 
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hierarchically, being the more abstract ones at the top and the more concrete ones at the 

bottom. 

Although use case diagrams are part of the UML (which follows the object-oriented 

paradigm) there is no restriction for the applicability of the approach of this thesis to the 

development of software according to other software development paradigms (e.g. the 

functional paradigm). For instance, data-flow diagrams can also be refined [89]. 

The «include» and the «refine» Relationships 

The «include» relationship involves two types of use cases: the including use case (the use 

case that includes other use cases) and the included use case (the use case that is included by 

other use cases). In the context of the «include» relationship the UML Superstructure states 

that the including use case depends on the addition of the included use cases to be complete. 

Nevertheless, according to the position of this thesis, the functionality of the included use 

cases shall be described in the including use case. Since this thesis relies on non-stepwise 

textual descriptions of use cases to determine the «include» relationships, the including use 

case has to contain the description of the included use cases so that the modeler is able to 

define the parts that compose the including use case in order to decompose that use case (e.g. 

as can be seen from Figure 23, which will be analyzed in section 3.3, the functionality of the 

Compose Message use case is described in the Send Message use case). The included use 

case represents functionality common to various (including) use cases. But the «include» 

relationship may be used to partition the including use case into two or more use cases at the 

same level of abstraction instead of being used to evidence functionality common to various 

use cases. In that case the «include» relationship is used to decompose the including use case 

without detailing it, so the sum of the functionality represented by the non-stepwise textual 

descriptions of the included use cases shall be equal to the functionality represented by the 

non-stepwise textual description of the including use case (excluding glue logic), which 

implies having two or more included use cases for a single including use case.  

Refinement can be defined by decomposition according to criterion A or by 

decomposition according to criterion B. Refining a use case by decomposition according to 

criterion A produces lower-abstraction-level use cases by detailing the use case and splitting 

it according to the parts that compose the object of that use case. In the example shown in 

Figure 1 the object (chair) is the whole and the objects top, back and legs are the parts of that
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Figure 1 – Refinement by decomposition according to criterion A and by decomposition 

according to criterion B. 

whole, therefore refining the use case build chair equaled splitting it into the use cases build 

top, build back and build legs. Refining a use case by decomposition according to criterion B 

equals splitting the use case into activities, which also results in lower-abstraction-level use 

cases by detailing the use case and splitting it according to the activities that compose the use 

case being split. Figure 1 illustrates the refinement of the use case build chair by 

decomposition according to criterion B by splitting it into the use cases saw chair, glue chair, 

preach chair, polish chair, varnish chair and cushion chair as the activity of building 

includes the activities of sawing, gluing, preaching, polishing, varnishing and cushioning. 

Although the use case under refinement is split into two or more use cases, resembling the 

decomposition of use cases through the «include» relationship (or even the 

(dis)aggregation/(de)composition of use cases; the generalization of use cases can also 

resemble refinement), the abstraction level decreases as the use cases that refine the use case 

under refinement are more detailed than it is. This is the distinction between the «include» 

relationship (and also the aggregation/composition association and the generalization 

relationship) and the refinement relationship («refine») that will be presented ahead in this 

section. The «refine» relationship implies that the result of executing the more detailed use 

cases together shall be equal to the result of executing the less detailed use case. 

In the context of classes some stereotypes (which are part of the standard UML 

stereotypes [1]) deal with refinement. The stereotype «refine» (which is applicable to the 

Abstraction dependency) represents a unidirectional or bidirectional relationship between 
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diagram elements at different levels of abstraction (e.g. analysis and design levels). The 

Abstraction dependency represents a relationship that relates two elements representing the 

same concept at different levels of abstraction or from different viewpoints. It also represents 

a dependency in which there is a mapping between the supplier and the client. A class at the 

analysis level may map to more than one class at the design level, which means that a single 

supplier element can have a set of client elements. This thesis does not recommend using the 

Abstraction dependency to represent refinement of use cases because it can be bidirectional 

(and refinement is unidirectional).  

In the UML Superstucture [1] (in the context of use cases, particularly in the 

description of the semantics) the «include» relationship is stated to be used for the purpose of 

extracting the common part of the functionality of two or more use cases to a separate use 

case to be included (or reused) by those two or more use cases. It may be the case that the 

modeler wants to replace (in a lower abstraction level) a use case by two or more detailed use 

cases. Figure 1 depicts such situation (1a is less detailed than 1b1 and than 1b2). In this case, 

the result will be two use case diagrams, the later more detailed than the previous one. For 

this argument this thesis considers that the use of the system represented by the use case in 

Figure 1a represents the uses of the system that the use cases in Figure 1b1 and that those in 

Figure 1b2 represent as well. The difference is that the use case in Figure 1a is less detailed 

than the use cases in Figure 1b1 together and the use cases in Figure 1b2 together as well. 

This thesis does not recommend using the «include» relationship to represent the lowering of 

use cases’ abstraction level since it is not according to its semantics in the UML metamodel. 

This thesis proposes an extension to the UML metamodel to make available a UML 

relationship to be used in the context of use cases for representing their refinement. Figure 2 

illustrates a new UML metaclass (the Refine metaclass) created to satisfy the need for 

extension of the UML metamodel this thesis identified. As far as the unidirectional 

association is concerned, the end named detail references the more detailed use case (the 

refining use case) and the association means that one or more Refine relationships refer to one 

(more detailed) use case. Regarding the aggregation, the end named refine references the 

Refine relationships owned by the use case and the end named refinedCase references the use 

case that was detailed (the refined use case) and owns the Refine relationship. The metamodel 

shows that two or more Refine relationships are owned by one (refined) use case, and one 

(refined) use case may be detailed and own two or more Refine relationships. Summarily a 

refined use case shall be refined by more than one refining use case and a refining use case
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Figure 2 – The proposed extension to the UML metamodel for representing the refinement of 

use cases. 

context UseCase inv: 

let refines : Set(Refine) = self.incomingRefine in 

 if refines->size() >= 2 

 then let includes : Integer = refines->iterate(nextElement : Refine; accumulator : 

Integer = 0 | accumulator->nextElement.refinedCase.include->size()) in 

  refines->size() – 1 = includes 

 endif 

Figure 3 – The multiple refines constraint. 

context UseCase inv: 

if UseCase.include->size() >= 1 

  and UseCase.refine->size() >= 1 

then UseCase.include->excludesAll(UseCase.refine) 

endif 

Figure 4 – The coexistence constraint. 

shall refine one or more refined use cases (more than one refined use case if the refined use 

cases are connected through «include» relationships; see Figure 3 for an OCL constraint on 

this). An OCL constraint (in Figure 4) was written for expressing the impossibility of having 

two use cases connected by both an «include» relationship and a «refine» relationship since 

the first does not imply increasing the detail level and the second does. 

Figure 1 exemplifies the notation of the «refine» relationship. It is evident by the 

figure that two use cases connected through a «refine» relationship are situated at different 

levels of abstraction. For instance the use cases build top, build back and build legs (situated 

at the detail level 1) are more detailed than the use case build chair (situated at the detail level 

0). A «refine» relationship is represented the same way the «include» relationship is and from 

the less detailed use case to the more detailed use case in order to evidence the lowering of 

the abstraction level. The only difference is that the arrow is labeled with the keyword 

«refine».
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Figure 5 – The refinement process. 

The Refinement Process 

Figure 5 illustrates how the modeler shall go from the initial use case diagram (5a) to 

the detailed use case diagrams (5c and 5d). It is possible to consider more than three detail 

levels despite this thesis is exemplifying with three of them. The initial use case diagram (the 

more abstract one or less detailed one) must be analyzed independently for each of its use 

cases for simplicity reasons. Figure 5b shows how the partial use case diagram is elaborated 

from the use case 1 of the use case diagram in Figure 5a. Two «include» relationships were 

defined for that use case, which resulted in the use cases 4 and 5. The use cases 6 and 7 are a 

refinement of the use case 5. That is why the use case 5 is connected to the use cases 6 and 7 

through a «refine» relationship. The use case 4 may be refined by use cases situated at the 

same level of abstraction as those in the use case diagram in Figure 5c but in a distinct 

diagram. The «refine» relationship is established between elements from two use case 
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Figure 6 – Possibilities for the refinement of both an including use case and an included use 

case. 

diagrams at different levels of detail (the partial use case diagram, the more abstract one, and 

the 5c use case diagram, the more detailed one). At this point it can be concluded that the 

«refine» relationship implies lowering the abstraction level (or increasing the detail level) as 

well as when the abstraction level decreases a new use case diagram has to be ellaborated. 

The refinement of the use case 7 (which gave origin to the use case diagram in Figure 5d) is 

used to show that not only included use cases or use cases that do not own any «include» 

relationship can be refined as exemplified in Figure 5. Including use cases can also be 

refined. When refining an including use case the included use cases are likely to be refined as 

well since their functionality is represented by the including use case as already explained in 

this chapter. Figure 5 is also to depict the impossibility of having two use cases connected by 

both an «include» relationship and a «refine» relationship. 

Figure 6 depicts two possible cases for the refinement of both an including use case 

and an included use case connected through an «include» relationship. The most adequate 

modeling is the one in Figure 6a where the use case 3 refines two use cases (1 and 2) and is 

not repeated as it is in Figure 6b. That is possible because the refined use cases are connected 

through an «include» relationship, which implies that a complete use case is repeated in two 

use case diagrams at the same level of abstraction (the use case diagram that refines the 

including use case and the use case diagram that refines the included use case). 
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Use case name: Send Message 
Use case description: The mobile user writes the message in a text editor. The mobile user sends some different kinds of 
messages through the GoPhone. When writing the message, the mobile user activates letter combination (T9). The mobile user 
inserts objects into a message. The mobile user attaches objects to a message. The GoPhone connects to the network to send the 
message. In order for the GoPhone to show an acknowledgement to the mobile user (stating that the message was successfully 
sent), it receives an acknowledgement from the network. Upon request from the GoPhone, the mobile user chooses to save the 

message into the sent messages folder. 

Figure 7 – Non-stepwise textual description of the use case Send Message. 

Use case name: Compose Message 
Use case description: The mobile user writes the message in a text editor. The mobile user sends some different kinds of 
messages through the GoPhone. When writing the message, the mobile user activates letter combination (T9). The mobile user 

inserts objects into a message. The mobile user attaches objects to a message. 

Figure 8 – Non-stepwise textual description of the use case Compose Message. 

Use case name: Insert Object 
Use case description: The mobile user inserts objects into a message. The mobile user may receive notifications on the violation 

of validation rules over the objects to be inserted into a message. 

Figure 9 – Non-detailed non-stepwise textual description of the use case Insert Object. 

Use case name: Insert Object 
Use case description: The mobile user selects the objects from a repository of objects (eventually with folders), which he can 
browse. Upon selection of the objects from the repository, they are displayed to the mobile user in the message area of the 
message editor. The mobile user may receive notifications on the violation of validation rules over the objects to be inserted into 

a message. The violation of those rules prevents the display of the invalid objects to the mobile user. 

Figure 10 – Detailed non-stepwise textual description of the use case Insert Object. 

Use case name: Browse Repository 
Use case description: The mobile user selects the objects from a repository of objects (eventually with folders), which he can 

browse. 

Figure 11 – Non-stepwise textual description of the use case Browse Directory. 

Use case name: Display Object in Message Area 
Use case description: Upon selection of the objects from the repository, they are displayed to the mobile user in the message 
area of the message editor. The mobile user may receive notifications on the violation of validation rules over the objects to be 

inserted into a message. The violation of those rules prevents the display of the invalid objects to the mobile user. 

Figure 12 – Non-stepwise textual description of the use case Display Object in Message 

Area. 

The GoPhone Case Study 

The non-stepwise textual descriptions in figures 7 through 12 were elaborated based 

on the functional requirements from the GoPhone. As previously stated in this chapter the 

«include» relationships are defined based on the non-stepwise textual descriptions of use 

cases. Figure 13 shows the graphical representation of the use cases textually described in 

figures 7 through 12. It can be seen that the textual descriptions of the included use cases are 

contained by the textual descriptions of the including use cases (e.g. the textual description of 

the Compose Message use case is contained by the textual description of the Send Message 

use case and the non-detailed textual description of the Insert Object use case is contained by 

the textual description of the Compose Message use case). This is an evidence of how 

«include» relationships imply decomposition but no detailing (of the including use cases’ 

textual descriptions). The «refine» relationships imply that the textual descriptions of the 

refining use cases are more detailed than the textual descriptions of the refined use cases and 
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Figure 13 – The use case diagrams of the Send Message functionality from the GoPhone. 

also that for a single refined use case there is more than one refining use case (which means 

that «refine» relationships imply decomposition besides detailing). For instance the textual 

description of the Browse Directory use case is contained by the detailed textual description 

of the Insert Object use case (note that this detailed textual description is not the description 

corresponding to the Insert Object use case in the use case diagram, rather the non-detailed 

textual description of the Insert Object use case is; the more detailed textual description was 

only used as an intermediary/auxiliary means to get to the descriptions of the refining use 

cases Browse Directory and Display Object in Message Area). This is evidence that the use 

cases at the detail level 1 in the figure are more detailed than the use cases at the detail level 0 

in the figure. 

The sum of the functionality represented by the non-stepwise textual descriptions of 

the included use cases shall be equal to the functionality represented by the non-stepwise 

textual description of the including use case. In the use case diagram at the detail level 0 in 

Figure 13 although the sum of the functionality represented by the non-stepwise textual 

descriptions of the use cases included by the Send Message use case is equal to the 

functionality represented by the non-stepwise textual description of the Send Message use 

case, the actor Mobile User was not associated with the Send Message use case but it could 

have been. This thesis did not associate the Mobile User with the Send Message use case
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Figure 14 – The use case variability types. 

because the purpose was to explicitly evidence the actor of each one of the included use cases 

in particular since there are two actors involved in the Send Message use case (the Mobile 

User and the Network). That is not what happens with the Compose Message use case as 

there is only one actor involved in the use case. 

Regarding the use case diagram at the detail level 1 in Figure 13 the refining use cases 

are associated with an actor, which means that refining use cases have to be utilizations of the 

system by themselves (all use cases shall have an association with the exterior of the system 

they belong to whether they are including, included, refined or refining use cases, otherwise 

this thesis would not be talking about use cases). 

3.3. Modeling Variability with the Extend Relationship 

Variability in Use Case Modeling 

Figure 14 illustrates the variability types this thesis considers and proposes to be 

applicable in the context of use cases. Use cases can be non-option or option. Non-option use 

cases are present in all product line members. Option use cases can be present in one product 

of the product line and not in another. It is not mandatory that option use cases are present in 

all products of the product line. Non-variant use cases are use cases that are present in all 

product line members but do not support variability. Variant use cases are use cases that are 

present in all product line members as well as they are use cases that support variability. This 

means that different products will support different alternatives for performing the same 

functionality or that different products will support different specializations of the same 

functionality. Later on during the modeling activity variant use cases are realized into
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alternatives or specializations respectively. Alternative use cases represent alternatives for 

performing the same system’s use in mutually exclusive products or sets of products from the 

product line. Specialization use cases represent a special kind of alternatives. A specialization 

use case is a use case that represents the specialization of another use case. Specialization use 

cases that specialize the same use case represent alternatives for performing the same 

system’s use in mutually exclusive products or sets of products from the product line. 

Specialization use cases that specialize the same use case indeed represent alternatives to 

each other but they specialize a use case, which is not the case of alternative use cases. 

Option, alternative and specialization use cases are the representation of the three variability 

types that will be translated into stereotypes to be applicable to use cases. The use cases that 

do not represent options and are not variant (neither later alternatives nor specializations) are 

non-option and non-variant, and shall not be marked with any stereotype. Non-option and 

option use cases are mutually exclusive as well as non-variant and variant use cases. Figure 

14 represents the activity of classifying use cases with variability types: either non-option and 

non-variant or option and non-variant or non-option and variant or option and variant. These 

last two variability types can be realized into the alternative or the specialization variability 

types (as already explained). The activity of classifying use cases with the variability types is 

important for applying the corresponding stereotypes to the use cases (except for the non-

option and non-variant use cases, which shall not be marked with any stereotype). The 

conditions of the decision nodes express the semantics of each one of the variability types. 

This thesis would like to give emphasis to a particular variability type: the option and variant 

variability type. This variability type is applicable to a use case that is not present in all 

product line members but the different members in which it is present support different 

alternatives for performing that use case’s functionality or different specializations of that use 

case’s functionality. Option and non-variant use cases shall be marked as option use cases; 

non-option and variant as variant use cases; and option and variant use cases as both option 

and variant use cases. 

Figure 15 depicts the use case diagram elaborated from the GoPhone concerning the 

messaging domain and the highest abstraction level (these use cases are the less detailed this 

chapter is presenting). 

This thesis proposes an extension to the UML metamodel in order to formally provide 

for both the concrete and abstract syntaxes to represent the three variability types that are to 

be translated into stereotypes to be applicable to use cases. From now on this thesis either
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Figure 15 – Use case diagram from the GoPhone case study (highest abstraction level).

uses the «extend» relationship without stereotypes or with one of the two stereotypes 

applicable to this relationship from the proposed extension to the UML metamodel 

(depending on whether this thesis is modeling alternatives or specializations). Using no 

stereotypes on the «extend» relationship means that no variability is being modeled, 

otherwise the stereotypes applicable to the «extend» relationship from the proposed extension 

to the UML metamodel shall be used. 

The «extend» Relationship 

In order for use cases to be appropriate for product line modeling, they have to be 

equipped with variability mechanisms. These variability mechanisms must allow determining 

the locations in diagrams (in this case, use case diagrams) where variation will occur when 

instantiating the product line. 

The «extend» relationship allows modeling alternative and specialization use cases in 

use case diagrams. Consider that an extending use case is a use case that extends another use 

case and that an extended use case is a use case that is extended by other use cases. As any 

other use case, an extending use case represents a given use of the system by a given actor or 

actors. 
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In the UML metamodel the extending use cases are considered to represent 

supplementary behavioral increments that have to be inserted into the appropriate insertion 

points between the extended use case’s fragments. These fragments refer to parts of the 

textual descriptions of use cases. The position of this thesis is that both extending and 

extended use cases represent supplementary behavioral increments since in the context of 

product lines they represent functionality that is only essential for developing product lines 

(both represent alternatives). In principle the functionality represented by the extended use 

cases will be available for more advanced products in terms of functionality.  

In the context of alternatives both extending and extended use cases represent 

supplementary functionality (or supplementary behavioral increments) since both represent 

alternatives, which are not essential for a product without variability to function. It shall be 

noted that alternatives are no longer supplementary when product line members are 

instantiated from the product line. Alternatives can be modeled with the generalization 

relationship in use case diagrams, but this thesis recommends to model alternatives with the 

«extend» relationship in order to evidence their supplementary character according to the 

UML semantics (when supplementary is mentioned in this thesis, supplementary behavioral 

increments from the UML semantics associated with the «extend» relationship are referred). 

Therefore the concept of alternative is semantically supported by the «extend» relationship. 

The «extend» relationship implies that alternatives are represented as binary and 

unidirectional dependencies. The alternative relationship is binary and unidirectional because 

the extending use case (just one or one from many) is an alternative to the extended use case. 

The extended use case is modeled as the extended one in order to evidence that it shall be 

present in products less robust in terms of functionality as opposite to all the others. A 

situation in which there is more than one alternative to a specific use case shall be represented 

with that specific use case as the extended use case and the other use cases as the extending 

ones relatively to that specific use case (the «extend» relationships shall be marked with the 

stereotype «alternative»). Situations with a high number of alternatives shall be modeled with 

different diagrams that shall have the extended use case in common. 

If the intention is to use differential specification, specializations shall be modeled 

with the «extend» relationship in order to evidence their supplementary character according 

to the UML semantics, otherwise they shall be modeled with the generalization relationship. 

Differential specification of specializations means that specialization use cases represent 

supplementary functionality regarding the use case they specialize, therefore a product 
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without variability does not require the specialization use cases to function. Not requiring the 

specialization use cases implies the respective use case that is specialized is not required for a 

product without variability to function as well. Besides that, a specialization use case is an 

extending use case and the respective use case that is specialized is an extended use case, 

which according to the position of this thesis means both represent supplementary 

functionality as previously explained. It can be concluded that differential specification is 

related to supplementary functionality from the UML «extend» relationship’s semantics. In 

the approach of this thesis, differential specification is used, therefore a specialization is 

represented as a relationship through a stereotype applicable to the «extend» relationship. A 

«specialization» relationship is an «extend» relationship marked with the stereotype 

«specialization». 

Options represent functionality that is only essential for a product with variability to 

function (when developing product lines), therefore options represent supplementary 

behavioral increments. However this thesis does not recommend modeling options with the 

«extend» relationship because if the stereotype was on the relationship, the relationship itself 

would be optional and that is not the case (the use case is not optional with regards to any 

other use case, rather it is optional by itself). 

Options shall be modeled with a stereotype in use cases. The involvement of an 

option use case (classified with the option and variant variability type) in either «extend» or 

«include» relationships, or even in none of those does not imply the presence of that use case 

in all product line members (which makes of it optional). 

In principle an extending use case is a use case that extends another use case both in 

the case of alternatives and in the case of specializations. In the case of specializations, this 

thesis considers that there is no multiple inheritance, therefore it is impossible for an 

extending use case to extend more than one use case. If there is more than one alternative use 

case for the same functionality, one of those use cases shall be the alternative to all the others 

and extended by them. That use case is the one to be present in the products less robust in 

terms of functionality. The extended use case is not aware of the functionality described in 

the extending use case. 

As previously mentioned if the intention is not to use differential specification, 

generalization relationships shall be used because specializations are complementary under 

those circumstances. However it may be argued in a different way that the generalization
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Figure 16 – The specialization of the 

variant use case Borrow Book with a 

single actor. 

 

Figure 17 – The specialization of the use 

case Borrow Book with two different 

actors.

 

Figure 18 – The specialization of the 

variant use case Borrow Book with two 

different actors. 

 

Figure 19 – The specialization of the 

variant use case Borrow Object. 

relationship shall not be used to represent specializations in contexts of variability. Consider 

the examples depicted in figures 16 through 19. The examples are an exception in terms of 

the (GoPhone) case study that is used in this chapter. The figure shows that the use case 

Borrow Book can be specialized into Borrow Book to Student and Borrow Book to Teacher. If 

the actor is the same (the Librarian, who registers the borrowing), then the use cases that 

specialize the Borrow Book use case are alternatives to borrowing a book as both can be 

performed by the same actor. If the actor is not the same (the Student, in the case of the 

Borrow Book to Student, and the Teacher, in the case of the Borrow Book to Teacher), then 

the use cases that specialize the Borrow Book use case are not alternatives to borrowing a 

book as both cannot be performed by the same actor (the same actor does not have an 

alternative way of borrowing a book). Although the use case Borrow Book is connected to no 

actor, it is a use case that is in fact connected to the actors of the use cases that specialize it 

(Student and Teacher). If both of these actors were connected to the use case Borrow Book, it 

would not be explicit which part of the use case they would perform (either the one related to 

the book borrowing to student or the other related to the book borrowing to teacher). In this 

case, in order for the generalization to be considered as variability, the actor of Borrow Book 

has to be the Library User (connected to Borrow Book) specialized into the Student 

(connected to Borrow Book to Student) and into the Teacher (connected to Borrow Book to 

Teacher). Following the semantics of generalization in what actors in use case diagrams are
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Figure 20 – The proposed extension to the UML metamodel (figure 16.2 from [1]) for 

modeling variability in use case diagrams. 

concerned, being Student and Teacher subtypes of Library User, they both interact with the 

specific subuse case they are associated with as well as with the superuse case they are 

associated with via the superactor. Contrarily to the case of Figure 17, in Figure 18 it is 

explicitly known which part of the superuse case Borrow Book they perform (the Student 

performs the one related to the book borrowing to student and the Teacher performs the other 

related to the book borrowing to teacher). Another example: the use case Borrow Object can 

be specialized into Borrow Book and Borrow CD. In this case, the actor can be the same for 

all the use cases (the Student OR the Teacher). In order to support all the actors at the same 

time (the Student AND the Teacher), the Library User has to be specialized into them (the 

Student and the Teacher) and connected to the Borrow Object use case. This way the same 

actor (the Library User) can borrow an object (a Book) or alternatively another (a CD). 

Figure 20 depicts the extension this thesis proposes to the UML metamodel 

concerning the «extend» relationship and use cases. This thesis adds the stereotypes 

«alternative», «specialization» and «option» to the standard UML stereotypes in order to 

distinguish the three variability types that were to be translated into stereotypes to be 

applicable to use cases. This thesis has also added the stereotype «variant» to the standard 

UML stereotypes in order to mark use cases at higher levels of abstraction before they are 

realized into alternatives or specializations. A use case can include some use cases that are 

not marked with «variant» since they are alternatives (involved in «alternative» 

relationships), they are involved in «specialization» relationships or they are non-option and 

non-variant (if not marked with any stereotype and not involved in «alternative» or 

«specialization» relationships). For instance Send Message (Figure 15) is at the highest detail 

level and it is marked with «variant». Some of the use cases it includes are not marked with 

«variant» since they were realized as alternatives (involved in «alternative» relationships), or 
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they are non-option and non-variant (if not marked with any stereotype and not involved in 

«alternative» relationships). Use cases could have been marked with «variant» in the 

approach of this thesis and related to variation points. Usually a variation point is associated 

with one or more variants (from [42]). This thesis did not adopt variation points to avoid 

additional graphical elements in use case diagrams, to avoid more complexity in use case 

diagrams and to avoid reasoning about variability that shall be present in decision models. 

This thesis proposes the stereotype «option» to be applicable to use cases that represent 

options. «option» is for marking use cases that are not mandatory for all product line 

members. It also proposes the stereotypes «alternative» and «specialization» to be applicable 

to the «extend» relationship for modeling alternatives and specializations respectively. 

Extending use cases involved in «alternative» relationships do not need to be marked with 

the stereotype «alternative» to evidence them as alternatives since they do not make sense 

without being involved in that kind of relationships (an alternative use case is always 

alternative to another use case). The same happens with the stereotype «specialization» (a use 

case involved in a specialization relationship always specializes another use case).  

Regarding Figure 20 and the Extend metamodel element, as far as the unidirectional 

association is concerned, the end named extendedCase references the use case that is being 

extended (the extended use case) and the association means that many (zero or more) 

«extend» relationships refer to one extended use case. Regarding the aggregation, the end 

named extend references the «extend» relationships owned by the use case, and the end 

named extension references the use case that represents the extension (the extending use case) 

and owns the «extend» relationship. The metamodel means that one «extend» relationship is 

owned by one extending use case. Summarily a use case can be extended by many use cases 

and a use case can extend another use case. There can be zero or more alternatives 

(«alternative» relationships) to a use case. There can also be zero or more specializations 

(«specialization» relationships) for a use case. Although it can be argued that specializations 

are only worth the effort when there are two or more specialization use cases, this thesis does 

not want to take freedom away from the modeler. 

It is important to distinguish alternatives from specializations in contexts of 

variability. In the case of alternatives, the extending use case is an alternative to the extended 

use case. In the case of specializations, the extending use cases are alternatives to each other. 

Figure 21 shows the specialization of two alternative use cases from Figure 15: Insert Picture 
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Figure 21 – The specialization of Insert Picture and Insert Picture or Draft Text.

and Insert Picture or Draft Text. It is possible to transform alternatives into specializations 

and the other way around. Again this thesis is not restrictive on this since it does not want to 

take freedom away from the modeler. Insert Picture or Draft Text is an alternative to Insert 

Picture because it extends the functionality represented by Insert Picture (which means that 

in this case and in the context of product lines, it is an alternative to Insert Picture). 

Variability in Use Case Modeling with Refinement 

Use cases can be decomposed with or without detailing their non-stepwise textual 

descriptions. Without detailing those descriptions this thesis proposes to represent the 

decomposition of use cases in use case diagrams with the «include» relationship (e.g. the 

decomposition of the Send Message use case from Figure 15). This decomposition suits the 

purpose of e.g. (1) modeling later on an alternative to a part of the decomposed use case;  

or (2) modeling a part of the decomposed use case that is an optional part (e.g. in Figure 15 

Insert Picture is a part of Compose Message and has an alternative, which is Insert Picture or 

Draft Text; in Figure 15 Activate Letter Combination is a part of Compose Message and 

represents an option). 

Figure 22 depicts use cases according to the perspectives of detail*variability to 

illustrate in abstract terms the approach of this thesis to use case modeling with support for 

variability. The detail perspective is intimately related to the activity of use case refinement. 

In this sense use cases can be more detailed if they are refined. The variability perspective is 

associated with the modeling of variability for product line support. The two perspectives 

(detail and variability) were converted into axes of the illustrated space: y=detail and 

z=variability. Each level of the z axis corresponds to a (parallel) plan, which means that this 

thesis positions use cases in variability plans. Thus variability plans are plans that contain use  
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Figure 22 – Use cases positioned according to the perspectives of detail*variability. 

cases representing variability in the three different types translated into stereotypes to be 

applicable to use cases. The plan z=0 contains none of these use cases that represent 

variability. 

The figure clarifies that the «refine» relationships imply increasing the detail level, 

whereas the «extend» relationships do not imply increasing the detail level but rather 

changing from one variability plan (z plan) to another. Extending use cases represent 

alternative or specialization use cases, therefore they must be situated at the same level of 

detail but in different variability plans (z plans). Variabilities do not imply adding detail to 

the non-stepwise textual descriptions of the use cases like refinements do. 

The figure shows the general case of the refinement of two use cases connected 

through an «extend» relationship. The refinement of a use case stereotyped as «option» is not 

relevant here, since it is not the case of an «extend» relationship connecting two use cases. 

The figure evidences that the refinement of two use cases connected through an «extend» 

relationship originates more detailed use cases organized in two packages that have also an 

«extend» relationship connecting them. That is not always the case. It is possible to have two 

use cases connected through a «specialization» relationship, which produces «specialization» 

relationships connecting more detailed individual use cases (and not packages) in different 

variability plans (an example of such case is in the next subsection). 

The GoPhone Case Study 

The non-stepwise textual descriptions in Figure 23 were elaborated based on the 

functional requirements for the GoPhone. This thesis relies on non-stepwise textual 

descriptions of use cases (the opposite of stepwise textual descriptions of use cases) to model
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Use case name: {U 0.1} Send Message 
Use case description: The mobile user writes the message in a text editor. The GoPhone connects to the network to send the 
message. In order for the GoPhone to show an acknowledgement to the mobile user (stating that the message was successfully 
sent), it receives an acknowledgement from the network. Upon request from the GoPhone, the mobile user chooses to save the 
message into the sent messages folder. 
Alternatives:  

The mobile user chooses the recipient’s contact. [Use cases’ name: {U 0.1.1e1} Choose Recipient’s Phone 
Number / {U 0.1.1e2} Choose Recipient’s Phone Number or E-mail Address] 

The mobile user sends some different kinds of messages through the GoPhone. [Use cases’ name: {U 0.1.2.1e1} 
Select Basic or Extended Kind of Message / {U 0.1.2.1e2} Select Basic, Extended or E-mail Kind of 
Message] 

The mobile user inserts objects into a message. [Use cases’ name: {U 0.1.2.3e1} Insert Picture / {U 0.1.2.3e2} 
Insert Picture or Draft Text] 

The mobile user attaches objects to a message. [Use cases’ name: {U 0.1.2.4e1} Attach Business Card or 
Calendar Entry / {U 0.1.2.4e2} Attach File, Business Card, Calendar Entry or Sound] 

The message is saved into the sent messages folder. [Use cases’ name: {U 0.1.4e1} Archive Message by Request 
/ {U 0.1.4e2} Automatically Archive Message] 

Specializations: - 
Options: When writing the message, the mobile user activates letter combination (T9). [Use case’s name: {U 0.1.2.2e1} Activate 
Letter Combination] 

Use case name: {U 0.1.2} Compose Message 
Use case description: The mobile user writes the message in a text editor.  
Alternatives:   

The mobile user sends some different kinds of messages through the GoPhone. [Use cases’ name: {U 0.1.2.1e1} 
Select Basic or Extended Kind of Message / {U 0.1.2.1e2} Select Basic, Extended or E-mail Kind of 
Message]    

The mobile user inserts objects into a message. [Use cases’ name: {U 0.1.2.3e1} Insert Picture / {U 0.1.2.3e2} 
Insert Picture or Draft Text]   

The mobile user attaches objects to a message. [Use cases’ name: {U 0.1.2.4e1} Attach Business Card or 
Calendar Entry / {U 0.1.2.4e2} Attach File, Business Card, Calendar Entry or Sound] 

Specializations: - 
Options: When writing the message, the mobile user activates letter combination (T9). [Use case’s name: {U 0.1.2.2e1} Activate 
Letter Combination] 

Use case name: {U 0.1.4e1} Archive Message by Request 
Use case description: Upon request from the GoPhone, the mobile user chooses to save the message into the sent messages 
folder.  
Alternatives: The GoPhone automatically archives the message [Use cases’ name: {U 0.1.4e2} Automatically Archive Message] 
Specializations: - 

Options: -    

Use case name: {U 0.1.4e2} Automatically Archive Message 
Use case description: The GoPhone saves the message into the sent messages folder and notifies the mobile user on the 
successful message saving into that folder.  
Alternatives: -  
Specializations: - 

Options: -    

Use case name: {U 0.1.2.3e1} Insert Picture 
Use case description: The mobile user inserts pictures into the message. The mobile user may receive notifications on the 
violation of validation rules over the pictures to be inserted into the message. 
Alternatives: The mobile user inserts pictures or draft texts into the message. [Use cases’ name: {U 0.1.2.3e2} Insert Picture or 
Draft Text] 
Specializations: - 

Options: -  

Use case name: {U 0.1.2.3e2} Insert Picture or Draft Text 
Use case description: The mobile user inserts pictures and/or draft texts into the message. The mobile user may receive 
notifications on the violation of validation rules over the pictures and/or the draft texts to be inserted into the message. 
Alternatives: - 
Specializations: - 

Options: -  

Figure 23 – Non-stepwise textual descriptions from the GoPhone use case Send Message and 

some of its related use cases. 

variability in use case diagrams. Stepwise textual descriptions are structured textual 

descriptions in natural language that provide for a stepwise view of the use case as a sequence 

of steps, alert for the decisions that have to be made by the user and evidence the notion of 

use case actions temporarily dependent on each other. Stepwise descriptions shall be treated 

after modeling the use cases. (Cockburn presents in [22] different forms of writing textual 

descriptions for use cases.) 

In the context of the «extend» relationship the UML Superstructure states that an 

extending use case consists of one or more behavior fragment descriptions to be inserted into 
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the appropriate spots of the extended use case. This means that the functionality of the 

extending use case is not described in the extended use case. The extended use case is not 

aware of the functionality described in the extending use case (e.g. as can be seen from 

Figure 23 the functionality of the Automatically Archive Message use case is not described in 

the Archive Message by Request use case, as well as the functionality of Insert Picture or 

Draft Text is not described in Insert Picture, although they are very similar). This thesis 

would like to note that the statement of the UML Superstructure mentioning that the 

execution of an extended use case and its extending use cases is only one is not valid in the 

context of product lines, particularly for alternatives. As Figure 24 depicts, the use case 

Automatically Archive Message is an alternative to the use case Archive Message by Request 

(they are connected through a kind of «extend» relationship, tagged with the stereotype 

«alternative» in order to evidence that the use case Automatically Archive Message is an 

alternative to the use case Archive Message by Request). It must be noticed that Archive 

Message by Request is an (included) use case included by the including use case Send 

Message, which means that the functionality of the use case Archive Message by Request is 

described in the Send Message use case. For this reason this thesis could have extended the 

Send Message use case with the use case Automatically Archive Message, but then it would 

not be evidencing to which part of the functionality of the Send Message use case the use 

case Automatically Archive Message is an alternative to. Figure 24 also depicts that the 

Browse Directory of Pictures use case is a specialization of the use case Browse Repository 

(they are connected through another kind of «extend» relationship, tagged with the stereotype 

«specialization» in order to evidence that the use case Browse Directory of Pictures is a 

specialization of the use case Browse Repository). Option use cases shall be marked with the 

stereotype «option» (e.g. as Figure 24 evidences for the Activate Letter Combination use 

case). 

Figure 24 shows some examples of variability modeled in use cases. The use cases in 

grey are those that do not represent variability. No borders containing use cases in the 

variability plans with z>0 were drawn because those borders are going to be needed during 

product derivation (or the generation of product models from the product line model, which is 

out of the scope of this thesis). All the use cases in the diagrams in this section have the 

values they take for both the perspectives of variability (z) and detail (y). These are not 

tagged values, rather just a help for the reader to visualize the use cases in the right place. 

Figure 24 seems complex but it ought to be noticed that the figure contains two diagrams and 

that the extensions to the use cases in the diagrams could have been modeled in different 
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Figure 24 – Use case diagram from the GoPhone case study (two detail levels). 
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Figure 25 – An example of refinement of the specialization type of variability from the 

GoPhone. 

artifacts. By stating this this thesis states that the diagram in Figure 24 could have been 

separated in some diagrams. Nevertheless this thesis cannot escape variability in its different 

types for the reasons already explained. 

Figure 25 shows the refinement of the specialization type of variability. The figure 

shows that both the use case that is specialized (the Browse Repository use case) and the 

specialization use cases (the Browse Directory and Browse List use cases) were refined. 

Some use cases that refine the specialization use cases are specializations of the use cases that 

refine the use case that is specialized (e.g. the View Picture use case is a specialization of the 

View Object use case). The use case Open Folder represents functionality that is not common 

to both specialization use cases since it is only applicable to one of the objects the 

specialization use cases refer to (the Directory of Pictures). Having in mind that 

specializations are a special kind of alternatives, specialization use cases are alternatives to 

each other. Figure 25 illustrates that the use cases that refine the specialization use cases are 

alternatives to each other as packages. 

Figure 26 depicts that the use cases that refine two use cases connected through an 

«alternative» relationship are alternatives to each other as packages. 
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Figure 26 – An example of refinement of alternative variability from the GoPhone. 

3.4. The 4SRS Method with Variability Support 

Synopsis of the 4SRS Method 

The 4SRS is a UML modeling method for obtaining system functional requirements from 

user functional requirements. Use cases model user functional requirements and logical 

architectures model system functional requirements. Use cases are problem-related, 

technology-independent and dealt with during the analysis of software. Logical architectures 

are solution-related, technology-independent and dealt with in the beginning of the design of 

software. The 4SRS is a transition method according to previous statements in this thesis. 

Shortly the 4SRS method is composed of the following steps: (1) Component Creation, 

to create three kinds of components for each use case, based on the MVC (an interface 

component, a control component and a data component; other kinds of components could be 

created, so this is not a limitation of the method, rather an architectural decision);  

(2) Component Elimination, to remove redundant requirements and to find missing 

requirements (this step is vital in order to validate the components blindly created in the 

previous step and it includes eliminating the components whose requirements are already 

represented by other components; the finding of missing requirements means that 

components were inadequately eliminated or use cases are missing); (3) Component 

Packaging and Aggregation, to semantically group components in packages;  

and (4) Component Association, to define associations of components with each other in the 

component diagram. 



3.4. The 4SRS Method with Variability Support 

61 

In the past the 4SRS method was extended to support tabular transformations in the 

execution of its steps as well as some filtering and collapsing techniques to enable the 

refinement of logical architectures. After that the method was extended to support the 

modeling of logical architectures with variability support, which added the notion of 

variability to it [29]. The work in this section is both the conjunction and the prosecution of 

these previous works since it formalizes the filtering and collapsing as an intermediate step as 

well as it formalizes the transformation from components to use cases in order to finish 

preparing the recursive execution of the 4SRS method. The work of this thesis also 

contemplates the formalization of use case refinement and the systematization of use case 

variability modeling undertaken in this thesis. The formalization of use case refinement is 

relevant for the preparation of the recursive execution of the 4SRS method. The 

systematization of use case variability modeling is relevant for modeling use cases with 

variability support, for determining the use cases that will be the input for the method’s 

execution (recursive or not) and has implications when executing the method itself. 

The scale problem mentioned in section 2.1 is the reason for the 4SRS method to have 

included a technique to refine logical architectures. Handling a high number of use cases with 

the method implies a high number of resulting components and a consequent high number of 

possibilities for partitioning functionality into logical clusters. A high number of components 

in the component diagram that comes out of executing the 4SRS method imposes a greater 

amount of effort into some of method’s steps. Step 2 involves eliminating the semantical 

redundancy of components. The more components, the more the probability of having 

components representing the same functionality as others, which complicates the task of 

comparing one to another. Step 4 becomes complex when there is a high number of 

components to compare with each other in order to guarantee that they can or cannot be 

connected since the possibility of associations to be established between components 

increases. The high number of possibilities to partition functionality implies a greater amount 

of effort into the execution of step 3. Comparing components to form packages of 

components becomes hard. 

The modeling of logical architectures with variability support (see [62] for an 

example of a logical architecture’s representation through models) may be conducted with 

specific instruments tailored to explicitly expose the variability of the product line like the 

4SRS method with its extension to variability support. Architectural refinement is the 

approach the 4SRS method takes to increment a primary logical architecture with detail (by
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Figure 27 – Schematic representation of the recursive execution of the 4SRS method. 

primary it is meant the architecture that is going to be detailed). In the context of this thesis, 

recursion is the ability of the modeling method to be executed over parts of the output artifact 

of a preceding execution after transformed into the input artifact for the current execution. 

As depicted in Figure 27 the 4SRS method may be applied recursively, in several executions. 

In the context of each one of those executions various iterations can be performed. Although 

there is no stopping rule for iterating over the same use case diagram, it shall be performed 

until the results obtained generate a logical architecture that does not benefit from additional 

iterations in terms of the elimination of redundant requirements, the finding of missing 

requirements and the increasing of the logical architecture’s cohesion. There cannot be 

components isolated from the rest of the architecture when the global architecture is 

composed from the various logical architectures generated by the different executions. In the 

case of refinement (by recursion), when one of the executions is considered to be finished by 

the modeler, the output of that execution’s last iteration (a component diagram) is going to 

originate the input of a subsequent execution’s first iteration (a use case diagram). The task 

flow of the new execution is exactly the same as the task flow of the preceding one. Again, in 

the case of refinement (by recursion), the logical architectures produced by the various 

executions are situated in lower levels of abstraction and cover less functionality than the 

logical architectures they refined. 

Considering architectural refinement, the sequence of steps for the 4SRS method is 

the following: (1) Component Creation; (2) Component Elimination; (3) Component Packaging 

and Nesting; (4) Component Association; (4+1) Filtering and Collapsing; and (4+2) From 
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Components to Use Cases. The first four steps are the original steps and the other ones are 

what this thesis calls the intermediate steps, which are performed in between executions of 

the 4SRS method. 

Step 2 is composed of seven microsteps. Microstep 2.i (Use Case Classification) is 

about determining the kinds of components that will originate from each use case according 

to the eight possible combinations. According to this classification, microstep 2.ii (Local 

Elimination) is about eliminating the components blindly created in step 1 by analyzing the 

textual description of the use cases and deciding on whether those components make sense in 

the problem domain. Microstep 2.iii (Component Naming) is about naming the components 

that were not eliminated in the previous microstep. Microstep 2.iv (Component Description) 

is about textually describing the components named in the previous microstep, based on the 

textual descriptions of the use cases they originated from, on nonfunctional requirements and 

on design decisions. Microstep 2.v (Component Representation) is about determining 

whether some components represent both their own system requirements and others’. 

Microstep 2.vi (Global Elimination) is about eliminating the components whose requirements 

are already represented by other components (elimination of functional redundancy). Finally, 

microstep 2.vii (Component Renaming) is about renaming the components that were not 

eliminated in the previous microstep and that represent additional components. 

Generation of Logical Architectures with Variability Support 

As already mentioned in this chapter, this thesis formalizes the techniques of filtering 

and collapsing as well as the transformation from components to use cases as intermediate 

steps of the 4SRS method to support the refinement of logical architectures. The following is 

the new sequence of steps for the 4SRS method: (1) Component Creation; (2) Component 

Elimination; (3) Component Packaging and Aggregation; (4) Component Association;  

(4+1) Filtering and Collapsing; and (4+2) From Components to Use Cases. The first four steps 

are the original steps and the other ones are what this thesis calls the intermediate steps, 

which are performed in between executions of the 4SRS method. 

As also already mentioned in this chapter, the systematization of use case variability 

modeling is relevant for modeling use cases with variability support, for determining the use 

cases that will be the input for the method’s execution and has implications when executing 

the method itself. The remainder of this section discusses these three topics. 
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Modeling use cases with variability support implies some considerations related to the 

variability types and the extension to the UML metamodel proposed in section 3.3. As any 

other use case, use cases involved in alternative relationships, in specialization relationships 

and those that stand for options represent a given use of the system by a given actor or actors. 

Next the particularities of modeling alternative relationships, specialization relationships and 

use cases that stand for options are going to be discussed. Since this thesis considers that the 

«extend» relationship is adequate for modeling alternatives and specializations, and a 

stereotype applicable to use cases for modeling options, it is important to discuss the 

«extend» relationship thoroughly. 

In the case of alternatives, a use case can extend another use case that is included by 

two other use cases. It could be argued that the extending use case is an alternative to those 

two other use cases but this is not the most accurate argument since the extending use case is 

only alternative to a part of those two other use cases (a part that they share).  

Consider that an extending use case is a use case that extends another use case and 

that an extended use case is a use case that is extended by other use cases. In the context of 

the «extend» relationship, extending use cases and extended use cases represent 

supplementary functionality. In the context of product lines this means that they represent 

functionality that is only essential for developing product lines. 

Specializations can be modeled with the generalization relationship in use case 

diagrams but as specialization use cases represent a special kind of alternatives, this thesis 

recommends to model specializations with the «extend» relationship.  

The relationship is optional if the use case is optional and not optional if the use case 

is not optional (the relationship shall not exist for the products in which the use case shall not 

exist as well). Furthermore the use case is not optional with regards to any other use case. 

Rather it is optional by itself. Options shall be modeled with a stereotype in the use cases. 

The stereotype is applicable to use cases independently of their involvement in either 

«extend» or «include» relationships. As previously stated in this chapter, a use case classified 

with the option and variant variability type (which corresponds to marking that use case with 

the stereotypes «option» and «variant», or just «option» if the use case is an alternative use 

case or a specialization use case) is not present in all product line members but the different 

members in which it is present support different alternatives for performing that use case’s 

functionality or different specializations of that use case’s functionality. 
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Consider that a use case is shared by two use cases that include it. One of those two 

use cases is non-option and the other one is option. The use case that is included is non-

option or option? The answer is non-option. The use case is going to be present in the product 

line members in which the non-option use case is going to be present and is also going to be 

present in the product line members in which the option use case is going to be present. This 

means that the use case is going to be present in all product line members. If the stereotype 

«option» is on use cases rather than on relationships, both the situation just described is 

solved as well as the situation of a use case that is not included by any other use case. 

This thesis approached option use cases from the perspective of the product line but it 

could have approached them from the perspective of the members of the product line. This 

thesis considers that variability no longer exists when moving from compile-time (during 

which the work is around a product line) to runtime (during which the work is around 

products from that product line). This thesis considers that after a build the work is around 

binaries that are products from the product line that can only be changed during setup or post-

setup (runtime). Therefore at this point in time a use case is in a product and not in another if 

it is in the binary of a product and not in the binary of another. However this thesis 

acknowledges that variability exists at the level of product line members if use cases are 

present in product line members after instantiation from the product line but during setup or 

post-setup the use case is no longer available for the respective actor(s). 

Determining the use cases that will be the input for the execution of the 4SRS method 

depends on the support for variability in use case modeling. The 4SRS method shall only 

consider leaf use cases as input. Figure 15 has the leaf use cases for the first execution of the 

4SRS method highlighted in grey (in what concerns the messaging domain of the GoPhone 

case study). Without variability support leaf use cases are the more detailed ones. With 

variability support things change. This thesis proposes the following rules to be applied to the 

determination of leaf use cases when variability is supported. Alternative use cases are leaf 

use cases (they are involved in «alternative» relationships). Specialization use cases are leaf 

use cases as well as the use case they are a specialization of (specialization use cases are 

specializations of another use case). Option use cases are leaf use cases. This thesis has 

discarded the possibility of using the «include» relationship to turn only a part of the 

including use case public to be included by other use cases because that would not guarantee 

the coherence of the use case diagram to generate logical architectures. Including use cases 

are not leaf use cases (with or without variability support). If this thesis allowed including use 
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cases to include only one use case, then the included use cases (in this case, only one) would 

not represent the totality of the functionality of the including use case and consequently the 

logical architecture would not be coherent with the user requirements (some would be 

missing in the architecture). 

The execution of the 4SRS method has some implications when use cases are 

modeled with variability support. This thesis proposes to extend step 2 of the 4SRS method 

with a rule for the representation of alternatives and specializations. It is required that 

interface components originated from alternative and specialization use cases (together with 

the interface components originated from the use cases they specialize) are not represented by 

any other component, otherwise the essence of a logical architecture with variability support 

would be lost: the representation of commonalities (shared, reusable components) and 

variabilities (instance-specific components) among the product members [70]. This thesis 

also proposes to extend step 4 of the 4SRS method with a rule for the association of 

components originated from specialization use cases and the use cases they specialize. The 

components originated from specialization use cases shall be associated with those originated 

from the use cases they specialize. 

The presence of alternatives and specializations in use case diagrams has some 

impacts on the execution of the 4SRS method. Due to the proposed extension of step 2 with a 

rule for the representation of alternatives and specializations, the presence of alternatives and 

specializations has impacts on that step regarding the global elimination of components. The 

global elimination is about eliminating the components whose system requirements are 

already represented by other components. It is required that interface components originated 

from alternative and specialization use cases (together with the interface components 

originated from the use cases they specialize) are not represented by any other component, 

which implies they cannot be globally eliminated. Interface components originated from 

option use cases cannot be represented by any other component. 

Finally by executing the 4SRS method over the leaf use cases from Figure 15, the 

component diagram in Figure 28 was obtained (apart from the crosses and the grey area, 

which will be explained in the next subsection). The associations between actors and 

components are usually defined based on the descriptions of components elaborated during 

the execution of the 4SRS method (this thesis always tries to mention the actors in the 

description of interface components). But this is not mandatory. The traceability between use 
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Figure 28 – Component diagram that resulted from the first execution of the 4SRS method 

over the use cases from the messaging domain of the GoPhone case study, while being 

filtered. 

cases and components allows establishing those associations if they are not evident in the 

descriptions of the components. 

Refinement of Logical Architectures with Variability Support 

The refinement of logical architectures (with variability support or not) in the context 

of the 4SRS method requires its recursive execution. In order to prepare the recursive 

execution of the 4SRS method, the formalization of use case refinement plays a relevant role. 

This subsection first elaborates on the techniques of filtering and collapsing that have to be 

conducted before the recursive execution of the 4SRS method (which this thesis has 

formalized as an intermediate step of this method). Then the transformation from components 

to use cases (which this thesis has also formalized as an intermediate step of the 4SRS 

method) is discussed. In this last discussion this thesis talks about the difference between 
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decomposing use cases with and without detailing them, and it uses the «include» UML 

relationship to model the decomposition of use cases without detailing them and a UML 

relationship (the «refine» relationship) to model the decomposition of use cases with their 

detailing. 

Filtering and Collapsing 

This thesis uses techniques of filtering and collapsing in between executions of the 

4SRS method. The filtering consists of considering some components as the subsystem for 

refinement and discarding those that are not associated with them. The collapsing consists of 

hiding the details of the subsystem whose components are going to be refined. Later on those 

components are replaced inside the limits of the subsystem’s border by others of lower 

abstraction level. 

This thesis has formalized the filtering and collapsing as an intermediate step of the 

4SRS method: 4+1 (Filtering and Collapsing). This step produces three artifacts: (a) a 

component diagram while being filtered; (b) a filtered component diagram; and (c) a filtered 

and collapsed component diagram. 

Figure 28 is the component diagram while being filtered (concerning the GoPhone’s 

messaging domain). The components with a cross are those that are not associated with the 

components from the subsystem to refine, which are the ones from the grey area in the 

diagram. There is only one component left ({C 0.1.2.5.c} message text management) and that 

is the only one associated with the subsystem besides the Mobile User actor. 

Figure 29 is the filtered component diagram (concerning the object insertion and 

object attaching functionalities from the GoPhone’s messaging domain). It only contains the 

components from the subsystem to refine, the only component that is associated with them 

and the only actor that is also associated with them.  

Figure 30 is the filtered and collapsed component diagram (concerning the object 

insertion and object attaching functionalities from the GoPhone’s messaging domain). It is an 

evolution of the filtered component diagram. It presents a subsystem in place of the 

components that will be replaced by refined ones. The associations between the component 

{C 0.1.2.5.c} message text management and those components were removed and replaced by 

four interfaces, one for each of those associations. The components that will be placed inside
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Figure 29 – Filtered component diagram with regards to the object insertion and object 

attaching functionalities of the Send Message use case from the GoPhone case study. 

 

Figure 30 – Filtered and collapsed diagram for object insertion and attaching functionalities 

from the GoPhone’s messaging domain.

the borders of the subsystem (the more detailed components that will be obtained from the 

recursive execution of the 4SRS method) will have to comply with those interfaces. 

Deriving Use Cases from Components 

The intermediate step 4+2 (From Components to Use Cases) of the 4SRS method is 

composed of two intermediate substeps: (4+2.i) Deriving Use Cases from Components and 

(4+2.ii) Detailing Use Cases. The goal of intermediate substep 4+2.i (Deriving Use Cases from 

Components) is to derive the use cases to hand out as input for the succeeding recursive 

execution of the 4SRS method from the components to refine. The goal of intermediate 

substep 4+2.ii (Detailing Use Cases) is to refine those use cases. The use case diagram at the 

detail level (y) 0 in Figure 31 depicts the use cases based on the descriptions of the 

components that will be refined. Those descriptions were elaborated during the execution of 
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Figure 31 – Use case diagram for the first recursive execution of the 4SRS method over the 

GoPhone’s messaging domain.
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Component name: {C 0.1.2.3e1.i} picture insertion 
Component description: This component provides for a user interface to allow the mobile user to insert pictures into a message. 
The mobile user shall be able to use this interface to insert multiple pictures. This component is responsible for notifying the 
mobile user on the violation of validation rules over the pictures. This component receives requests for picture insertion from the 

message writing functionality. 

Component name: {C 0.1.2.3e1.c} picture insertion management 
Component description: This component is actually responsible for inserting pictures into a message. It provides for the 
validation of the pictures to be inserted into a message. It is also responsible for retrieving pictures from the picture repository. 

Component name: {C 0.1.2.3e1.d} object repository 
Component description: This component provides for a repository of pictures. 

Figure 32 – Some descriptions of components that will be refined with the first recursive 

execution of the 4SRS method over the GoPhone’s messaging domain. 

the prior step 2 from the 4SRS method and some examples are depicted in Figure 32. The 

component which was associated with the subsystem in the filtered and collapsed diagram of 

Figure 30 becomes an actor in the use case diagram at the detail level (y) 0 in Figure 31 

together with the Mobile User actor. Although use case diagrams model user requirements 

and component diagrams model system requirements, the use cases from the use case 

diagram at the detail level (y) 0 in Figure 31 represent the system requirements from the 

components to refine. This is because from the perspective of the actors in Figure 31 those 

system requirements represent user requirements. 

Detailing Use Cases 

In the context of product lines the non-stepwise textual descriptions of included use 

cases simultaneously alternative or option cannot be considered more detailed than the non-

stepwise textual descriptions of their corresponding including use cases because including 

use cases only contain pointers to those alternative or option use cases (e.g. in Figure 23 

Compose Message has a pointer to Insert Picture that says “The mobile user inserts objects into 

a message”). The description of the including use cases would get chaotic with all the 

descriptions of all the alternatives for performing the same functionality. The other reason is 

that alternatives and options represent variability with regards to the including use cases and 

it may be the case to build a system with no variability (that system shall include neither 

alternatives nor options). 

Consider the including use case as the use case that includes other use cases and the 

included use case as the use case that is included by other use cases (the UML Superstructure 

states that an included use case can be included by many other use cases and that an including 

use case can include many other use cases). As already stated in the previous subsection, this 

thesis has discarded the possibility of using the «include» relationship to turn only a part of 

the including use case public to be included by other use cases because that would not 

guarantee the coherence of the use case diagram to generate logical architectures. Therefore 

the sum of the functionality represented by the included use cases shall be equal to the
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Use case name: {U 0.1e1} Insert Picture 
Use case description: The mobile user inserts pictures into a message. The mobile user may receive notifications on the 
violation of validation rules over the pictures to be inserted into a message. 
Alternatives: The mobile user inserts pictures or draft texts into a message. [Use cases’ name: {U 0.1.2.3e2} Insert Picture or 
Draft Text] 
Specializations: - 

Options: -  

Use case name: {U 0.2e1} Attach Business Card or Calendar Entry 
Use case description: The mobile user attaches business cards and/or calendar entries to the message. 
Alternatives: The mobile user attaches files and/or business cards and/or calendar entries and/or sounds to the message. [Use 
cases’ name: {U 0.1.2.4e2} Attach File, Business Card, Calendar Entry or Sound] 
Specializations: - 

Options: -  

Figure 33 – Non-stepwise textual descriptions of the use cases Insert Picture and Attach 

Business Card or Calendar Entry for the first recursive execution of the 4SRS method over the 

GoPhone’s messaging domain. 

Use case name: {U 0.1e1} Insert Picture 
Use case description: The mobile user selects the pictures from a directory of pictures (eventually with folders), which he can 
browse. Upon selection of the pictures from the directory, they are displayed to the mobile user in the message area of the 
message editor. The mobile user may receive notifications on the violation of validation rules over the pictures to be inserted 
into a message. The violation of those rules prevents the display of the invalid pictures to the mobile user. 
Alternatives: The mobile user inserts pictures or draft texts into a message. [Use cases’ name: {U 0.1e2} Insert Picture or Draft 
Text] 
Specializations: - 

Options: -  

Use case name: {U 0.2e1} Attach Business Card or Calendar Entry 
Use case description: The mobile user selects the business cards or the calendar entries respectively from the list of business 
cards or from the calendar, which he can both browse. Upon selection of the business cards or the calendar entries respectively 
from the list of business cards or from the calendar, the business cards or the calendar entries are respectively added to the 
attachments list in the message editor. 
Alternatives: The mobile user attaches files and/or business cards and/or calendar entries and/or sounds to the message. [Use 
cases’ name: {U 0.2e2} Attach File, Business Card, Calendar Entry or Sound] 
Specializations: - 

Options: -  

Figure 34 – Detailed non-stepwise textual descriptions of the use cases Insert Picture and 

Attach Business Card or Calendar Entry for the first recursive execution of the 4SRS method 

over the GoPhone’s messaging domain. 

functionality represent by the including use case (apart from glue logic). This means that this 

thesis forces the decomposition of use cases when using the «include» relationship. 

Nevertheless an included use case can be shared by two or more use cases. 

In the context of the «include» relationship, the UML Superstructure states that the 

including use case depends on the addition of the included use cases to be complete.  

The goal of intermediate substep 4+2.ii (Detailing Use Cases) is to refine the use 

cases from the use case diagram at the detail level (y) 0 in Figure 31. The refinement of those 

use cases begins with elaborating non-stepwise textual descriptions for them based on the 

descriptions of the components to be refined. Figure 33 shows those non-stepwise textual 

descriptions of two of those use cases. Figure 34 shows other non-stepwise textual 

descriptions of the same two use cases but these descriptions are auxiliary, more detailed 

descriptions to get to the use cases at the detail level (y) 1 in Figure 31. These last more 

detailed use cases are the input for the recursive execution of the 4SRS method. They are all 

leaf use cases as they are the most detailed ones from the use cases in the figure. Although in 
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Figure 31 only two detail levels were considered, that is not a rule (this thesis could have 

considered more detail levels if more detailing was concluded to be needed). 

The Recursive Execution of the 4SRS Method 

The goal of the recursive execution of the 4SRS method is to apply the method after 

one or more of its executions have occurred beforehand. This process is about applying the 

tabular transformations the 4SRS method is composed of to the target use cases (as already 

explained in [6]). The result will be a list of components that shall be associated with each 

other. The associations of components with each other are determined during the execution of 

the 4SRS method. The definition of these associations is not necessarily based on the 

descriptions of the components. This thesis tries always mentioning the interaction of 

components with each other in their descriptions. 

The resulting artifact from the recursive execution of the 4SRS method to a subsystem 

of the GoPhone case study (concerning the object insertion and attaching functionalities from 

the messaging domain) is the component diagram in Figure 35. This diagram has then to be 

integrated into the logical architecture the preceding execution of the 4SRS method 

originated to provide for a global logical architecture. 

The integration is possible because the components in Figure 35 provide for the 

interfaces required by the component from Figure 30. 

3.5. Conclusions 

This chapter elaborated on how the UML does not support refinement of use cases at 

the moment and how it can be extended in order to support that formally. As a result this 

thesis proposed to extend the UML metamodel with a new kind of relationship in the context 

of use cases (the «refine» relationship). The support of use case refinement is pertinent in 

large software systems development in order to deliver less complex modeling artifacts to the 

teams implementing those systems. Use cases shall be delivered to the different teams with 

responsibility for further designing and implementing the different sets of functionalities (a 

single team is not expected to develop the whole system). According to what was clarified in 

this chapter, the «include» relationship is not appropriate to model the refinement of use 

cases since the refinement activity implies lowering the abstraction level of use cases 

(particularly of their non-stepwise textual descriptions). Despite this, the «include» 

relationship shall not be discarded and shall live along with the «refine» relationship as this
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Figure 35 – Component diagram resulting from the first recursive execution of the 4SRS 

method over the GoPhone’s messaging domain. 

chapter elucidated.  

This chapter has elaborated on the representation of variability in use case diagrams 

and the implications of functionally refining use cases when variability is represented in this 

kind of diagrams. It began by providing an in depth analysis of the state-of-the-art concerned 

with both of these topics. Based on the position of this thesis towards the related work, an 

extension to the UML metamodel to represent the three types of variability that were 

synthesized was proposed: alternatives, specializations and options. This thesis concluded 

that alternatives and specializations shall be adequately modeled with the «extend» 

relationship, and that options shall be adequately modeled with a stereotype on use cases. 

This conclusion was based on the UML metamodel’s semantics associated with the 

relationships for connecting use cases in use case diagrams: alternatives, specializations and 

options represent supplementary functionality. This thesis has also introduced the functional 
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refinement of use cases connected through «extend» relationships due to its pertinence in 

large-scale product line contexts. 

This chapter presented the capabilities of the 4SRS method for refining logical 

software architectures with variability support. This approach to the functional decomposition 

of families of software systems is an important instrument for moving from the analysis to 

the design of software in a guided way. The stepwise transformation of use cases into logical 

software architectures provides for that guidance. 

The model-based transformation of user functional requirements in the shape of use 

cases (from the analysis of software) into system functional requirements in the shape of 

component diagrams (logical software architectures, which are from the design of software) 

is the most valuable contribution of the 4SRS method. This method is an instrument to get to 

the design of families of software systems from their analysis, which shall be the most 

important value for Software Engineering to bring into the software development process. 

The second most valuable contribution of the 4SRS method is its ability to refine 

design artifacts (logical software architectures). The refinement of logical software 

architectures is relevant for defining subprojects for the software systems development and 

for partitioning software systems into subsystems. Hence the 4SRS method is appropriate for 

multiproject and/or multiteam contexts. The refinement of logical software architectures is 

also relevant for reducing the complexity in the modeling activity of large-scale software 

systems. The notion of variability allows for the method to be applicable for the modeling of 

software product lines. 

Another important contribution of the 4SRS method to Software Engineering is the 

ability to demand for the removal of redundant requirements and the finding of missing 

requirements (this last one both at the level of logical architectural components and also at 

the level of use cases). 

The 4SRS method was not automated with a tool for that purpose prior to this thesis. 

Some steps can be perfectly automated with tool-support. Some other steps rely on the 

Software Engineer to be executed. This means that some subjectiveness is in the process of 

modeling logical software architectures with the 4SRS method but it does not mean that the 

steps that rely on the Software Engineer to be executed cannot be executed with tool-support 
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in order to prevent unnecessary subjectiveness. Although the 4SRS method is subjective to 

some extent, that can be reduced with tool-support.  

The 4SRS method considered refinement in past works, yet so far there was not any 

formalization of use case refinement, which is relevant for the preparation of the recursive 

method’s execution. Besides that formalization this thesis has systematized use case 

variability modeling, which is relevant for modeling use cases with variability support, for 

determining the use cases that will be the input for the method’s execution (recursive or not) 

and has implications when executing the method itself. The relevance of the exercise this 

thesis presented in this chapter resides on the demonstration that a modeling method is 

capable of dealing with the refinement of logical architectures with variability support, which 

gains acute significance in the context of a high number of user functional requirements. The 

GoPhone case study and its message sending functionality were used to demonstrate the 

approach of this thesis. The extension of the 4SRS method this thesis proposes in this chapter 

includes the formalization of filtering and collapsing techniques applicable to the artifacts 

delivered by the method’s execution (recursive or not) and the formalization of the 

transformation from components to use cases in order to prepare the recursive execution of 

the method. Taking refinement into account in stepwise methods for the modeling of logical 

architectures has a noteworthy impact on the execution effort of some of their steps. 

Chapter 4 will address the classification of patterns that supports the use of the MVC 

by the 4SRS. Chapter 5 will present the work undertaken to automate the model 

transformation the 4SRS allows modelers to conduct. 
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Section 4.2 is devoted to exhibiting the proposed pattern classification in abstract terms before formalizing 

categories and positioning patterns at those categories. 

Section 4.3 is targeted at demonstrating the feasibility of the proposed solution to the systematic use of 

software development patterns by using some concrete examples of patterns positioned at distinct categories 

of the proposed classification to illustrate the different types of patterns formalized, including the pattern 

used by the 4SRS in the transformation it guides. 

4. Pattern Classification 

for Model Transformation 

4.1. Introduction 

In the context of software development, patterns are provided as reusable solutions to 

recurrent problems. In other words, software patterns are reusable solutions to problems that 

occur often throughout the software development process. Pattern classifications emerged as 

a way to organize the many patterns that have been synthesized. Pattern classification is the 

activity of organizing patterns into groups of patterns that share a common set of 

characteristics. The simple fact of organizing patterns into classifications is a way of building 

a stronger knowledge on patterns, which allows understanding their purpose, the relations 

between them and the best moments for their adoption [50]. 

Despite their use within the software development process, the use of patterns may 

not be systematic. In the context of this chapter, the systematic use of software development
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Figure 36 – The OMG modeling infrastructure or Four-Layer Architecture.   

patterns means that decisions on the application of patterns are less subjective and more 

objective. Besides that, a lot of pattern classifications were ellaborated until the present day, 

yet none of them formally stated which sort of patterns shall be used in which particular 

moment of the software development process. This chapter will provide for specific 

directives on how to systematically adopt patterns within a multilevel and multistage software 

development process. A multilevel and multistage classification of patterns will be the 

foundation of such systematic use of patterns. It will also justify the pattern used by the 4SRS 

to transform analysis artifacts into design artifacts. 

A multistage software development process can be defined as a software development process 

composed of some stages organized in a consecutive temporal order. Each stage is separated from the 

contiguous ones by well defined borders. Moreover each particular stage is composed of a flow of 

well defined activities. Each stage’s activities are conducted by specific professionals, using specific 

technologies (frameworks, languages, tools), under the directives of specific methodologies 

(processes, notations and methods) to achieve specific goals. Borders are well defined if the shift in 

the professionals, technologies, methodologies and goals that takes place when moving from one 

stage to another is identified in terms of the development process. A multilevel software development 

process can be defined as a software development process concerned with the levels of abstraction in 

which the different artifacts involved in the development of software are handled. In the context of 

this chapter, those levels are the levels of the OMG (Object Management Group) [90] modeling 

infrastructure or Four-Layer Architecture [11], depicted in Figure 36. The OMG modeling 

infrastructure comprises a hierarchy of model levels just in compliance with the foundations 

of MDD [11]. Each model in the Four-Layer Architecture (except for the one at the highest 

level) is an instance of the one at the higher level. The first level (user data) refers to the data 

manipulated by software. Models of user data are called user concepts models and are one 
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level above the user data level. Models of user concepts models are language concepts 

models. These are models of models and so are called metamodels. A metamodel is a model 

of a modeling language. It is also a model whose elements are types in another model. An 

example of a metamodel is the UML metamodel. It describes the structure of the different 

models that are part of it, the elements that are part of those models and their respective 

properties. The language concepts metamodels are at the highest level of the modeling 

infrastructure. The objects at the user concepts level are the model elements that represent 

objects residing at the user data level. At the user data level, data objects may be the 

representation of real-world items. 

Patterns are provided by pattern catalogues such as [8, 50-52, 54, 91-94]. Pattern 

languages are more than pattern catalogues (collections of patterns). A pattern language is 

composed of patterns for a particular (small and well-known) domain. Those patterns must 

cover the development of software systems down to their implementation. A pattern language 

must also determine the relationships between the patterns the language is composed of. The 

language’s patterns are its vocabulary, and the rules for their implementation and 

combination are its grammar [8]. 

The adoption of a pattern (pattern adoption) is composed by the set of activities that 

consist of using the pattern somehow when producing software artifacts. Namely those 

activities are: (1) pattern interpretation; (2) pattern adaptation; and (3) pattern application. 

Patterns have to be interpreted in order to be applied. For the reason that usually patterns are 

not documented by those who apply them, they have to be interpreted prior to their 

application. The interpretation of a pattern is the activity that consists of reading the pattern 

from the pattern catalogue and reasoning about the solution the pattern is proposing for that 

problem in that given context. Following the interpretation activity, the adoption process may 

require the patterns to be adapted somehow [51, 95]. The adaptation of a pattern is the 

activity of modifying the pattern from the catalogue without corrupting it (corrupting the 

pattern includes corrupting the pattern’s semantics and the pattern’s abstract syntax). Finally 

the application of a pattern is its actual use in the development of software, whether to 

develop software products or families of software products, or to inspire the ellaboration of 

design artifacts since some patterns are not identifiable in the source code as they are not 

meant to give origin to code directly [96]. 
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Habitually pattern catalogues represent patterns at the M1-level of the OMG modeling 

infrastructure or Four-Layer Architecture. This thesis considers that leveraging patterns to the 

M2-level is a way of turning the decisions on their application more objective as well as of 

reducing the misinterpretation of patterns from catalogues and the corruption of patterns 

during the pattern adaptation process. Misinterpretation and corruption of patterns can lead to 

the irremediable loss of the advantages of adopting those patterns. Considering the OMG 

modeling infrastructure as a multilevel architecture, multilevel instantiation (or the 

instantiation of M2-level patterns at the M1-level) shall occur during the adoption of patterns. 

This chapter is an original contribution to the improvement of the software products’ 

quality given that it provides for some directives on how to adopt software patterns in such a 

way that the original advantages of the adopted pattern are preserved. The originality of the 

contribution is due to the novelty character of the pattern classification, which relies on the 

fact that it is based on the software development process. The classification this thesis 

proposes represents a benefit in terms of the process of developing software as it allows 

knowing (by classifying the patterns according to it) in which moment of the software 

development process to use the patterns and in the context of which Software Engineering 

professionals, technologies and methodologies. This chapter contributes for MDD since it 

addresses the OMG modeling infrastructure through the multilevel character of the proposed 

classification. The classification considers that patterns can be represented at different levels 

of the OMG modeling infrastructure, which influences their interpretation. The usefulness of 

a multilevel and multistage pattern classification resides in avoiding that the patterns from a 

specific category are handled by the inadequate professionals, technologies and 

methodologies. By classifying the patterns (in this case, the software development patterns) 

this thesis assures that the professionals with the right skills (who use the technologies and 

methodologies adequate to their profile) use the right pattern categories. For instance it would 

be inadequate for a product manager to use a pattern from the GoF book. That would not 

produce the desired effects of using such kind of pattern. 

Atkinson and Kühne discuss the foundations of MDD in [11]. The goal of MDD is to 

raise the abstraction level at which software programs are written by reducing the software 

development effort needed to produce a software product or set of software products. That 

effort is reduced by allowing modeling artifacts to actually deliver more to the software 

product or set of software products under development than they do when used just for 

documentation purposes. Automated code generation from visual models is one of the main 
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characteristics of MDD and the ultimate goal of the model transformation cycle. The other 

main characteristic of MDD is the reduction of models’ sensitivity to change by (1) making 

them accessible and useful (therefore understandable in the first place) by all stakeholders;  

(2) changing models while the systems that rely on them are running; (3) storing the models in 

formats that other tools can use; and (4) automating the process of translating  

platform-independent models to platform-specific models and the former to code. Point 1 is 

achieved through notation, point 2 through dynamic language extension (through the runtime 

extension of the set of types available for modeling, which are the language concepts 

previously mentioned in this chapter), point 3 through interoperability and point 4 through 

user-definable mappings. An MDD infrastructure must provide for visual modeling and the 

means for defining visual modeling languages, which are abstract syntax, concrete syntax, 

well-formedness rules (constraints on the abstract syntax) and semantics. Such infrastructure 

must also provide for the use of OO (Object-Oriented) languages that allow extending the set 

of types available by those languages’ APIs (Application Programming Interfaces) despite in 

a static way (not at runtime as MDD actually requires). Describing the previously mentioned 

concepts from the language concepts metamodel level, the concepts from the language 

concepts level and the also previously mentioned user concepts in a metalevel way (e.g. with 

the OMG modeling infrastructure) allows adding new language concepts dynamically at 

runtime. Finally an MDD infrastructure must provide for the means to define model 

transformations by the user in order to translate models ultimately into code of a specific 

implementation platform. A means to define model transformations is to use the model 

transformation languages QVT (Query/View/Transformation) [97] or ATL (ATLAS 

Transformation Language) [98]. 

MDD relies on models that can be used as input to automated transformations [99]. In 

[100] it is stated that the transformation of models into code can be facilitated by using 

software development patterns. The means to obtain that is to pack patterns as reusable assets 

with encapsulated implementation. This thesis considers that a packed pattern can contain 

either the (pattern’s) model and the code or just the model since not all patterns are to be 

directly converted into programming code. Depending on the type of pattern, it can be 

translated into code that can be directly included in the software solution under development 

in the programming environment for further manipulation or it can be imported in the 

modeling environment to be used in the modeling of the software solution by customizing the 

pattern’s model elements and relating them with the remaining model elements. If the packed 

pattern contains the model and the code, then both the inclusion of the code in the software 
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solution in the programming environment and the import of the model in the modeling 

environment can be performed. These ways patterns can be involved in the visual modeling 

of software systems and/or the automated code generation from visual models used in the 

development of those software systems just like MDD requires. According to [2] a code 

template can be attached to the pattern to generate code from the model to which the pattern 

was applied. Finally this thesis considers that there is no point in using implementation 

patterns as packed patterns that can be imported in the programming environment as most of 

the times they depend on modeled elements parameters to be instantiated. In fact some of 

those patterns are already available in the programming environment through context menus 

of source code elements generated from models. 

The models used to develop a software product or family of products evolve along the 

software development lifecycle and according to MDD end up in code. Pattern classifications 

help the actors involved in MDD software development processes to choose the most 

convenient patterns (in the form of models) to be incorporated into the models that are later 

transformed into code. By dividing patterns into categories all pattern classifications 

contribute to the use of patterns to develop software according to the MDD directives as the 

effort to select patterns without them would be higher, which would not contribute to the goal 

of MDD (raising the abstraction level at which software programs are written by reducing the 

software development effort). Patterns in the form of models also help raising the abstraction 

level at which software programs are written. Those that are not represented as models 

because they are to be only in code contribute to MDD by being considered in the process of 

automating code generation from visual models, during which the structure of code is 

thoroughly defined for the code that is generated from the visual models. For instance if the 

model from which to generate code incorporates the Getter/Setter pattern, the implementation 

patterns like those in [51] applicable to the target platform have to be considered in order to 

generate source code for the getters/setters (operations) [99]. 

Especially the pattern classifications that reveal some kind of software development 

procedural notion contribute to MDD given that it is more likely that the most adequate 

patterns are selected. That is because those classifications avoid the wrong patterns to be 

handled by the wrong professionals, technologies and methodologies that make more sense in 

the context of a specific process’ phase(s). Specific professionals, technologies and 

methodologies are more skilled to handle specific kinds of models that address specific kinds 

of problems in specific moments of MDD software development processes. This means that
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specific professionals, technologies and methodologies are more skilled to handle specific 

kinds of patterns (in the form of models) to be applied to the specific kinds of models they 

handle as input to the automatic generation of code. Those patterns address specific kinds of 

problems, which can be better understood by those professionals due to their skills and 

profile. The pattern classification this thesis proposes in this chapter is particularly based on a 

software development process, which is the RUP. The proposed pattern classification is also 

related to the OMG modeling infrastructure in the sense that it demands for the patterns to be 

classified according to the abstraction level at which they are represented (the OMG 

modeling infrastructure’s levels M2, M1 or M0) for the reasons this thesis will expose later 

on in this chapter. 

4.2. Multilevel and Multistage Classification 

The multilevel and multistage pattern classification in this thesis has three 

dimensions: the level (from the OMG modeling infrastructure), the Software Engineering 

discipline (based on the RUP) and the stage of the software development process (also based 

on the RUP). The classification includes an attribute, besides the three dimensions: the nature 

of the domain. 

The Classification Explained 

Domains can be of horizontal nature or of vertical nature. The vertical domains 

represent particular business domains and correspond to activity sectors (e.g. banking, 

insurance, trading, industry). The horizontal domains are traversal to the vertical domains, 

which means that they represent areas of knowledge common to every business domain (e.g. 

accounting, human resources, stock, project management). This does not mean that business 

applications (banking applications for example) shall contemplate all horizontal domains but 

it means that horizontal applications (for instance accounting applications) shall be usable by 

all the businesses possible, although there is a part of each horizontal domain that is only 

applicable to each business domain (e.g. there are accounting rules specific to the banking 

sector). 

The multilevel character of the classification in this chapter lies on the different levels 

of the OMG modeling infrastructure, which provides for a multilevel, four-layer modeling 

architecture. The classification’s RUP-based Software Engineering discipline dimension 

provides for clear hints on the professionals who shall handle specific types of patterns, with 

particular technologies and methodologies. At last the classification’s multistage character is 
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given by the dimension associated with the RUP-based phases of the software development 

process. The hypothesis of this thesis is that the development of software can take more 

advantage of patterns and their proposed solutions if their adoption occurs at the right 

moment of the process of developing a software solution and within the context of the right 

Software Engineering professionals, technologies and methodologies, respecting the levels 

patterns shall follow throughout the adoption process, which involves dealing with models at 

different levels of abstraction as well. This thesis considers that the positioning of patterns at 

the wrong category of any process-based classification leads to a misinterpretation of those 

same patterns, resulting in an unsuccessful adoption. By unsuccessful adoption it is meant a 

constriction of the original patterns’ advantages. Although the effort of this thesis is towards 

minimizing the effects of pattern misinterpretation, pattern adaptation can still and will most 

likely occur over the pattern models going to be exposed in this chapter. The classification in 

this thesis (especially due to its multilevel character) reduces the chances of pattern 

misinterpretation since it reaches the metamodeling level (M2-level from the OMG modeling 

infrastructure). Unsuccessful pattern adoptions can lead to software solutions where the 

adopted patterns are unrecognizable. 

Patterns vary in their abstraction level. Actually the same pattern may be positioned at 

different abstraction levels according to its representation. Normally the interpretation of a 

pattern is performed directly from the catalogue to the particular context of the product or the 

family of products. This way both the representation of the pattern in the catalogue and the 

interpretation of that same pattern are situated at the M1-level, which may not be adequate if 

the goal is to systematically use patterns and reduce the unsuccessful pattern adoptions during 

software production. Thinking about software families the matter with software product lines 

and software patterns may lie on the instantiation of M2 artifacts at the M1 layer, which again 

indicates the relevance of the abstraction level concerning the adoption of software patterns. 

This thesis adopted the geometrical terminology to represent the pattern classification. 

Patterns can be positioned at the pattern positioning geometrical space placed in the first 

octant of the orthonormal referential like Figure 37 (on the left) shows. Actually that space 

may be partitioned into cubes. As patterns can be classified with three possible values 

according to two of the three axes of the referential and with four possible values according 

to the other axis, the pattern positioning geometrical space can be divided into 3×3×4 cubes 

as can also be seen from Figure 37 (on the left). The fourth criterion is the domain nature and, 

in the case of the pattern positioned at the pattern positioning geometrical space in the figure,
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Figure 37 – Orthonormal referential with the dimensions of the multilevel and multistage 

classification on the axes plus the pattern categorization three-dimensional space (on the left). The 

projections of a pattern’s positioning in a two-dimensional area (on the right). 

it takes the value vertical (V). That is why the grey cube representing the pattern is tagged 

with a V (the domain nature is not a dimension, it is an attribute so it does not correspond to 

an axis). Figure 37 (on the right) presents the projections of the pattern’s positioning 

represented in a three-dimensional space on the left of the figure, this time in a two-

dimensional area. The possible values of each dimension are attached to the axes. They will 

be detailed later on in this section of the chapter. 

As this thesis already argued, leveraging patterns to the M2-level is a way of turning 

the decisions on the application of patterns more objective as well as of reducing the 

misinterpretation of patterns at the M1-level with all the disadvantages that subjective 

decisions and misinterpretation bring into the software development process and the quality 

of the software product itself. Multilevel instantiation shall occur during the adoption of 

patterns in order to systematize their use. Patterns are positioned at the pattern positioning 

geometrical space (according to the axes representing the Software Engineering disciplines 

and the OMG modeling infrastructure levels) with regards to their representations: the M2 

model (pattern M2), the M1 model (pattern M1) and the M1 code. As it will be seen later on 

in this chapter, the pattern in the M1 representation is an instance of the pattern in the M2 

representation, whereas the code is a transformation of the pattern’s M1 model into a specific 
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programming language code. The abstraction level decreases when moving from models at 

the M2-level to the code. Pattern catalogues represent patterns with M1 models and M1 code 

(source code). They do not propose patterns using their M2 representation (or metamodels). 

That is not the approach of this thesis as it will be detailed in the next section of this chapter. 

The course of the artifacts inside the pattern positioning geometrical space as well as the 

course’s projection on the discipline×level plan indicates that a small process within the 

whole software development process must occur when systematically dealing with patterns, 

which includes multilevel instantiation and transformation of models into code. 

The reason for representing patterns in catalogues in their M1 representation is due to 

the willing of not compromising the applicability of patterns to a broader domain coverage. 

This is the risk of rising the abstraction level from M1 to M2. Naturally every risk has some 

potential for success and the risk of rising the abstraction level carries with it the advantage of 

turning the pattern adoptable by more domains. In order to adapt a pattern from a catalogue to 

a different domain than the one considered for representing the pattern in the catalogue it is 

necessary to know in which areas to change it and for that the pattern’s structure has to be 

known as well. To know the structure of the pattern, the pattern has to be represented at the 

M2-level. 

Although the pattern may assume various representations according to the level it is 

positioned at, it is the same pattern since the diverse representations of the pattern answer to 

the same problem, within the same context, with the same solution, driven by the same 

recurrent and predictable forces [50, 51, 101]. Having various representations for the same 

pattern implies that the M2 representation of a pattern covers more functionality, therefore 

reaching higher levels of functional completeness than the M1 representation. 

The Dimensions and the Attribute of the Classification 

Next each criterion (the dimensions and the attribute) of the multilevel and multistage 

classification are described. As already stated, the multilevel and multistage classification 

considers the moment of the software development process during which specific kinds of 

patterns, what this thesis calls pattern types (see section 4.3 for more information on the 

multilevel and multistage pattern types), shall be used. The Discipline dimension represents 

these different moments in the process of developing software. The multilevel and multistage 

classification considers as well the context in which patterns shall be used in terms of 

Software Engineering professionals, technologies and methodologies. Stages of software 
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development are defined by different profiles of Software Engineering professionals who 

work with different kinds of technologies and methodologies tailored to their profiles. The 

Stage dimension represents these different stage-related professionals, technologies and 

methodologies in the process of developing software. The classification in this thesis also 

considers a modeling infrastructure that was adopted to avoid subjective decisions on the 

application of patterns, and situations of misinterpretation and corruption of patterns from 

catalogues while interpreting and adapting them respectively. The modeling infrastructure 

considered is the OMG modeling infrastructure. The Level dimension represents the different 

levels of the OMG modeling infrastructure. Finally the multilevel and multistage 

classification takes into account that domain-specific artifacts for the development of families 

of software products are common these days, which means that the applicability of patterns to 

particular domain natures allows to choose between the patterns that are most adequate to a 

domain of a software product or family of products. The Domain Nature attribute represents 

the different (both) domain natures to which patterns are most applicable (or the applicability 

of patterns to both domain natures). 

As the subtitles indicate, the Discipline dimension can take the values {business 

modeling, requirements, analysis & design, implementation} and the Stage dimension can 

take the values {inception, elaboration, construction}. The Level dimension corresponds to 

the levels of the OMG modeling infrastructure {M1, M2}. For now M3 is not being 

considered. M3 is not being represented in the figures because M3 can be represented with 

(UML) models and the classification in this chapter was not yet worked at that level. Despite 

that, M0 is represented in the figures to remember that after M1 code (compile-time code) 

there is M0 code (runtime code) but runtime code is not relevant to the classification in this 

chapter. The Domain Nature attribute which was already explained earlier in this section of 

the chapter can take the values {vertical, horizontal, agnostic}. 

In order to use this classification do the following: (1) analyze the pattern you want to 

classify according to the dimensions Discipline and Stage, and give a value to each of those 

dimensions for that pattern you are classifying; (2) conclude on the pattern type (see section 

4.3 for more information on the multilevel and multistage pattern types and how the 

dimensions Discipline and Stage determine the pattern type); (3) determine the pattern’s level, 

which corresponds to giving a value to the Level dimension; (4) if the pattern is not 

represented in its M2 representation, draw an M2 model of the pattern; (5) by looking at the 

M2 representation of the pattern describe its semantics in textual form; and finally (6) by 
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looking at the pattern’s M2-level textual description and at the pattern’s description in the 

catalogue classify the pattern in what its domain nature is concerned, which is equivalent to 

tagging the pattern with one of the three possible values for the Domain Nature attribute.  

The assignment of patterns to particular chunks of the classification is dependent on 

the pattern type, therefore on the RUP’s textual descriptions of its disciplines and phases (to 

conduct step 1). In order to determine the pattern’s level the classifier (the subject who 

classifies) must be familiarized with the Four-Layer Architecture since he has to understand 

if the concepts the pattern presents are situated at the M2 or at the M1 levels. The classifier 

has to know the notion of multilevel instantiation. The classification process is dependent on 

the subject who conducts the process. Determining the pattern type is subjective as it implies 

looking at the textual descriptions of the RUP’s disciplines and phases. Analyzing textual 

descriptions is subjective (at least in this approach). Determining the pattern’s level is also 

subjective (at least in this approach) because it depends on the classifier’s knowledge. 

The Discipline Dimension 

The RUP’s Business Modeling Software Engineering Discipline 

The RUP’s Business Modeling discipline shall comprise activities of derivation of the 

software requirements the system to be developed must support in order to be adequate to the 

target organization and of analyzing how that system fits into the organization. The goal of 

the Business Modeling discipline is to model an organizational context for the system. 

The RUP’s Requirements Software Engineering Discipline 

The RUP’s Requirements discipline shall comprise activities of stakeholder request 

elicitation and of transformation of those requests into requirements on the system to be 

developed. Those requirements shall span the complete scope of the system. The 

requirements on what the system shall do have to be agreed with the stakeholders (customer 

and others). The goal of the Requirements discipline is to provide developers with a better 

understanding of the requirements the system must fulfill based on the customer’s (or other 

stakeholder’s) requests. It is also the goal of this discipline to delimit the boundaries of the 

system to be developed. 

The RUP’s Analysis & Design Software Engineering Discipline 

The RUP’s Analysis & Design discipline shall comprise activities of transformation of 

the requirements elicited with the stakeholders into a design of the system to be deployed. 
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The design of the system shall contemplate an architecture for the system. The goal of this 

discipline is to specify the design of the system to be developed. 

The RUP’s Implementation Software Engineering Discipline 

The RUP’s Implementation discipline shall comprise activities of development, unit 

testing of the developed components and integration of the software components that will 

allow the system requested by the stakeholders to be deployed based on the design 

specifications elaborated in the context of the Analysis & Design discipline. When 

developing the system, the organization of the code shall be defined according to the layers of 

the subsystems to implement. Developing the system through components implies that all the 

components produced by different teams are integrated into an executable system. The goal 

of this discipline is to translate the design elements that came up in the context of the 

Analysis & Design discipline into implementation elements (source files, binaries, executable 

programs and others). 

The Stage Dimension 

The RUP’s Inception Software Development Stage 

The RUP’s Inception stage shall comprise activities of discrimination of the critical 

use cases of the system and the primary operation scenarios vital to the design tradeoffs that 

will have to be made later on during the process. At least one candidate architecture shall be 

exhibited (and maybe demonstrated) and shall support the primary scenarios (or at least some 

of them) in order for the stakeholders to agree upon the fulfillment of the requests they 

exposed to the Software Engineers responsible for the requirements elicitation. The goal of 

this stage is to ensure that the software development project is both worth doing and possible 

to execute. 

The RUP’s Elaboration Software Development Stage 

The RUP’s Elaboration stage shall comprise activities of architecture handling like 

ellaborating a baseline architecture of the system, thus providing a stable basis for further 

design and implementation work which will take place during the Construction stage. This 

architecture shall contemplate and reflect the most significant requirements for the 

architecture of the system. Architectural prototypes shall be used to evaluate the stability of 

the architecture. The goal of this stage is to elaborate an architectural foundation for the 

upcoming detailed design and implementation efforts. 
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The RUP’s Construction Software Development Stage 

The RUP’s Construction stage shall comprise activities of development of deployable 

software products from the baseline architecture of the system elaborated during the prior 

stage. The design, development and testing of all the requested functionality for the system 

shall be completed during this stage. The construction of the software system shall be 

conducted in an iterative and incremental way. It is during the construction of that software 

system that remaining use cases and other requirements are described, others are further 

detailed, the design built during the previous stage is enlivened and the implemented software 

is tested. The goal of this stage is to develop a complete software product ready to transition 

to the users. 

The Level Dimension 

The Level dimension of the classification corresponds to the abstraction levels of the 

Four-Layer Architecture. Each model in the Four-Layer Architecture except for the one at the 

highest level is an instance of the one at the higher level. The M0-level refers to the data 

manipulated by software. The M1-level refers to models of user concepts. The M2-level 

refers to UML concepts models. These are models of models and so are called metamodels. 

A metamodel is a model whose elements are types in another model (an example of a 

metamodel is the UML metamodel). It describes the structure of the models, the elements that 

are part of those models and their properties. The meta-metamodels are at the highest level of 

the modeling infrastructure, the MOF (Meta-Object Facility) [102] or M3-level. 

The Domain Nature Attribute 

The Domain Nature attribute indicates whether the pattern is more adequate to 

vertical domains (industry, commerce, services and others) or to horizontal domains 

(accounting, stock, project management and others). Some patterns as it will be evidenced 

later in this chapter are domain nature agnostic, which means that they are applicable both to 

vertical and to horizontal domains. 

4.3. Pattern Classification Types 

Following are the pattern types from the multilevel and multistage classification. A 

pattern type represents a kind of pattern that is classified with the same Discipline 

dimension’s value and the same Stage dimension’s value. A description is provided for each 

of the pattern types as well as the classification according to the Discipline and Stage 

dimensions. The classification of pattern types according to the Level dimension does not
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make sense as it depends on the representation of the pattern and has no influence on the 

definition of the pattern types themselves. The pattern types are: business patterns, analysis 

patterns, enterprise patterns, architectural patterns, design patterns and implementation 

patterns. These names were chosen because they are the most common pattern names in the 

literature and make the most sense in this thesis’ definitions of the pattern types. 

This section will expose some examples of patterns that were classified with different 

pattern types. The patterns in this section suit the purpose of demonstrating how this thesis 

has applied the multilevel and multistage classification of patterns. This thesis provides for a 

representation of the patterns as M2-level (meta)models and as M1-level models (when 

applicable). 

Be aware that some of the patterns that are going to be analyzed in this section were 

not classified with the same pattern type name they were classified with using the 

classification in this chapter. For instance the Posting pattern was classified as a business 

pattern by Pavel Hruby in [103] but this thesis classifies it as an analysis pattern. 

Business Patterns 

The term business pattern is inspired on IBM’s definition of business pattern [92].  

Business patterns are more pertinent in the context of vertical domains. They make 

the most sense to be handled during the Inception stage by professionals, technologies and 

methodologies from the Business Modeling and Requirements disciplines. 

Business patterns are used to describe a solution to accomplishing a business 

objective. They shall address the users of the solution, the organization’s software systems 

the users interact with (or the organization itself) and the organization’s information 

(available through those systems or the organization itself). Business patterns may refer to e-

business solutions that convey an organizational framing, validity and conformance of the 

solution to the business problem the solution is trying to solve. Software solutions shall be 

sustained by the business and this is achieved with the adoption of business patterns. 

Examples of business patterns can be seen in [92] and also in [52]. 

Figure 38 (on the left) illustrates the positioning of business patterns according to the 

Stage and the Discipline dimensions. 
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Figure 38 – The business patterns’ positioning according to the Stage and the Discipline dimensions 

(on the left). The Domain Model pattern modeled at both the M2 and the M1 levels of the OMG 

modeling infrastructure (on the right). 

The Domain Model Pattern 

The Domain Model pattern’s goal is to produce an object model of the domain or 

business area. A domain model must distinguish between the data the business involves and 

the business rules (or the rules used by the business). The behavior expressed by these 

business rules shall be placed in the business object that really needs it. Figure 38 (on the 

right) shows a model with an example of the Domain Model pattern in the M1 representation 

as well as the M2 representation of the pattern. The Domain Model pattern is composed of 

two types of concepts: business objects (or domain objects) and business rules. This is 

evidenced by the Domain Model M2 model in Figure 38 (on the right). 

The Domain Model pattern suits the modeling of every business domain possible as 

every business domain has business objects and business rules on those objects. Even though 

the pattern is applicable to all business domains it is not appropriate to the modeling of a 

horizontal domain or to the modeling of structural business domain commonalities, which 

makes of it applicable to domains of vertical nature. 

The Domain Model pattern does not show how to model objects or rules for a specific 

business domain but the types of concepts the pattern handles are business-related and shall 

be instantiated in order to model business domains. Besides and more important than that, the 

Domain Model pattern allows to model objects and rules that shall be handled by the solution 

to the business problem the solution is trying to solve. The Domain Model pattern is a very 

atomic pattern as it does not address the users of the solution or the organization’s software 
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systems the users interact with (or the organization itself); nonetheless it is adequate to reach 

the business domain model from the candidate architecture that shall be exhibited to the 

stakeholders. For all of these reasons this thesis considers that the Domain Model pattern 

shall be classified as a business pattern. 

By looking at the RUP’s textual descriptions of its disciplines and phases, this thesis 

concluded that the Domain Model pattern shall be used during the Inception software 

development stage and in the context of the Business Modeling and Requirements Software 

Engineering disciplines as seen in the previous section of this chapter. During the Inception 

stage a domain model must be built from a candidate architecture that translates the critical 

use cases and the primary operation scenarios. That domain model may be achieved with the 

application of the Domain Model pattern. The pattern shall help translating the requirements 

elicited with the stakeholders. Those requirements have to be adequate to the target 

organization, which is a concern of the Requirements discipline. 

Analysis Patterns 

The term analysis pattern is inspired on Fowler’s definition of analysis pattern [94]. 

Analysis patterns are more applicable to horizontal domains. They shall be used 

during the Inception stage by professionals, technologies and methodologies from the 

Business Modeling and Requirements disciplines. In spite of being called analysis patterns it 

does not make sense to use them in the context of the Analysis & Design discipline. They 

were called so because analysis pattern is a terminology spread out the literature and also 

because Fowler’s definition of analysis pattern inspired the definition of analysis pattern in 

this thesis. In an older informal terminology, the development of software is composed of 

three phases: analysis, design and implementation. With RUP formalizing the dimension of 

business modeling in the process of software development, analysis was divided into business 

modeling and requirements. The former design discipline corresponds to RUP’s Analysis & 

Design. 

Analysis patterns are solutions to recurrent problems in many (business) domains. 

They are composed of concepts that represent structural commonalities when modeling many 

different business domains. 

Examples of analysis patterns can be seen in [94]. 
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Figure 39 – The analysis patterns’ positioning according to the Stage and the Discipline dimensions 

(on the left). The Posting pattern modeled at both the M2 and the M1 levels of the OMG modeling 

infrastructure (on the right). 

Figure 39 (on the left) shows the positioning of analysis patterns according to the 

Stage and the Discipline dimensions. 

Business patterns and analysis patterns are dual patterns since they coexist in the 

context of the Inception stage and of both the Business Modeling and the Requirements 

disciplines. Business patterns are not necessarily about software but they have to give input 

on how the software requirements of a business domain are adequate to an organization. 

Analysis patterns have to consider its adequacy to the target organization. They both have to 

be used during the earliest period of the software solution’s development, when requirements 

are elicited and agreed with the stakeholders. 

The Posting Pattern 

Previously in [103] the Posting pattern was classified as a business pattern by Pavel 

Hruby. According to the multilevel and multistage classification the Posting pattern is 

classified as an analysis pattern. It is applicable to horizontal domains. 

The point of the Posting pattern is to keep the history of economic events 

(commitments, contracts or claims) or in other words the history of interactions between 

economic agents for the exchange of economic resources like the purchase of products, the 

sale of services, invoices and corresponding payments, among others. Some examples of 

posting types are inventory posting, finance posting, man-hours posting and distance posting. 

Figure 39 (on the right) exposes a model with an example of the Posting pattern in the M1 

representation as well as the M2 representation of the pattern. The Posting pattern 
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contemplates two types of concepts: dimensions and entries. A posting dimension is either an 

economic agent or an economic resource. The purpose of the dimension is to provide 

additional information about the economic event or in other words provide descriptive 

information about the posting entries. A posting entry is an entry of a commitment, a contract 

or a claim. The purpose of the entry is to keep track of the history of economic events. In 

Figure 39 (on the right) it can be seen that Customer and Check are two posting 

dimensions of the posting entry Receipt. Most probably the Customer class represents 

the economic agent involved in the economic event represented by the entry class Receipt 

whereas the Check class represents the economic resource. 

The Posting pattern is constituted by concepts belonging to a horizontal domain (the 

accounting domain). Nevertheless the Posting pattern has only the concept of posting entry in 

common with the Accounting pattern (in the Accounting pattern the concept of posting entry 

corresponds to the concept of agreement). 

The arguments for classifying the Posting pattern as an analysis pattern as well as for 

its adequacy to the Inception software development stage, and the Business Modeling and 

Requirements Software Engineering disciplines are the same described beforehand for the 

Accounting pattern. 

Enterprise Patterns 

The term enterprise pattern is inspired on Fowler’s considerations about enterprise 

patterns and enterprise software in [104]. 

Enterprise patterns are most adequate to vertical domains. They are more relevant in 

the context of the Elaboration stage by professionals, technologies and methodologies from 

the Analysis & Design discipline. 

Enterprise patterns are used in the development of software systems on which various 

businesses rely on and run (the so called enterprise software systems). Normally the 

architecture of such systems is a layered architecture. Ellaboration decisions on layered 

architectures are design decisions that have to be taken inside a logical layer or between 

different logical layers. Often single enterprise applications need to interact so enterprise 

patterns have also to propose solutions to the integration of enterprise applications problem. 

Validations, calculations and business rules on the data an information system manipulates 
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vary according to the domain and change as the business conditions change. Enterprise 

applications must respond to ever changing business requirements. 

Enterprise patterns address architectural concerns as well as the architecture patterns 

this thesis will be talking next but whereas enterprise patterns are mainly concerned with 

topological architecture, architectural patterns are mainly concerned with logical architecture. 

This chapter does not consider the notion of enterprise as the RUP does not consider 

it. The RUP is a Software Engineering process framework. IBM has delivered a RUP plug-in 

called RUP SE (RUP for Systems Engineering) [105]. The RUP SE has enlarged the RUP 

with the consideration that the development of large-scale systems must be concerned with 

software, hardware, workers and information. The RUP SE considers different perspectives 

on the system (logical, physical, informational, and others). The RUP SE is shortly a 

framework for addressing the overall system’s issues. The RUP SE addresses behavioral 

requirements (the way the system shall behave in order to fulfill its role in the enterprise). 

The RUP does not express such concern with the enterprise in which the system will play its 

role. In fact this kind of concern is more from the field of Systems Engineering than from the 

field of Software Engineering. System requirements in the context of Software Engineering 

are specifically software system requirements. The system requirements are derived from an 

understanding of the enterprise, its services and the role that the system (software-based or 

not) plays in the enterprise. For instance the RUP SE suggests that the enterprise shall be 

partitioned into the system and its actors in order to derive the system requirements. In the 

RUP SE an enterprise is faced as a set of collaborating systems that collaborate to realize 

enterprise services, mission and others. The system attributes are obtained from an analysis of 

the enterprise needs. As this chapter talks about software system development patterns in the 

context of RUP (not RUP SE), this chapter is related to Software Engineering, not to Systems 

Engineering, which means that this chapter’s enterprise patterns have nothing to do with the 

concept of enterprise from the Systems Engineering field. The term enterprise pattern comes 

from the term enterprise application architectural pattern from Folwer’s book “Patterns of 

Enterprise Application Architecture” [91]. 

Examples of enterprise patterns can be seen in [91]. 

Figure 40 (on the left) depicts the positioning of enterprise patterns according to the 

Stage and the Discipline dimensions. 
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Figure 40 – The enterprise patterns’ positioning according to the Stage and the Discipline 

dimensions (on the left). The Service Layer pattern modeled at both the M2 and the M1 levels of the 

OMG modeling infrastructure (on the right). 

The Service Layer Pattern 

In [91] Fowler classified the Service Layer pattern as an enterprise application 

architectural pattern. According to the multilevel and multistage classification the Service 

Layer pattern is classified as an enterprise pattern. 

The purpose of the Service Layer pattern is to provide for operations to access the 

enterprise application’s stored data and business logic. The Service Layer pattern can be 

implemented with a set of facades over a domain model. The classes implementing the 

facades do not implement any business logic, which is implemented by the business object’s 

rules from the domain model. The facades gather the operations the application has available 

for interaction with client layers. The Service Layer can also be implemented with classes 

directly implementing the application logic and delegating on business object classes for 

domain logic processing. Application logic is grouped into classes of related application 

logic. These classes are application service classes. Figure 40 (on the right) depicts an 

example of this second strategy for implementing the Service Layer pattern at the modeling 

level. The figure shows a model with an example of the Service Layer pattern in the M1 

representation as well as the M2 representation of the pattern. As it may be concluded from 
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the figure, the Service Layer pattern is composed of two types of concepts: application 

services and domain services. Business objects are also represented in the models as the 

domain services rely on them for business logic. The domain services act as intermediates 

between the application services and the business objects since they provide for calls to 

application logic in application services and for calls to business logic residing on business 

objects. These last calls are made inside the service operations the domain services provide 

for, which correspond to the use cases the actors want to perform with the application. 

As the main focus of the Service Layer is the domain service acting as a bridge 

between the application logic and the business logic, and not implementing any business 

domain logic (just accessing it) this thesis has tagged this particular enterprise pattern as 

domain nature agnostic. 

The Service Layer pattern is classified in this chapter as an enterprise pattern because 

it is used to develop enterprise software systems for specific business domains. When 

developing enterprise applications, logical layers are essential and the concern of the Service 

Layer pattern (to separate application logic from business logic) proves that it is an enterprise 

pattern.  

By looking at the RUP’s textual descriptions of its disciplines and phases this thesis 

concluded that the Service Layer pattern shall be used during the Elaboration software 

development stage and in the context of the Analysis & Design Software Engineering 

discipline. Since splitting application logic from business logic is an architectural decision 

with impacts at the level of the baseline software system architecture it makes sense to adopt 

the Service Layer pattern during the Elaboration stage and by the professionals, technologies 

and methodologies responsible for the software design. 

Architectural Patterns 

The term architectural pattern is inspired on Buschmann, et al. and Zdun [8, 106]. 

Architectural patterns are more appropriate to horizontal domains. They shall be 

picked up from catalogues for usage during the Elaboration stage by professionals, 

technologies and methodologies from the Analysis & Design discipline. 

Architectural patterns are used in the definition of the structure of software solutions. 

The architecture of a system is the design artifact that represents the functionality-based
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Figure 41 – The architectural patterns’ positioning according to the Stage and the Discipline 

dimensions (on the left). The MVC pattern modeled at both the M2 and the M1 levels of the OMG 

modeling infrastructure (on the right). 

structure of that system and shall address quality or non-functional attributes wished-for the 

system. Architectural patterns shall help improving both the functional and the quality 

attributes of software systems. 

Examples of architectural patterns can be seen in [8]. 

Figure 41 (on the left) shows the positioning of architectural patterns according to the 

Stage and the Discipline dimensions. 

Enterprise patterns and architectural patterns are dual patterns since they coexist in 

the context of the Elaboration stage and of the Analysis & Design discipline. 

The Model-View-Controller Pattern 

Originally in [8] the MVC pattern was classified by Buschmann, et al. as an 

architectural pattern. According to the multilevel and multistage classification the MVC 

pattern is classified as an architectural pattern. It is adequate to both horizontal and vertical 

domains, so it is agnostic relatively to the domain nature.  

The purpose of the MVC pattern is to ensure the consistency between the user 

interface and the business information of a software system. The separation of the user 

interface from the business information of a software system provides for user interface 

flexibility. Figure 41 (on the right) depicts an example of a model of the MVC pattern in the 

M1-level and also the MVC pattern represented in the M2-level. The MVC pattern is 
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composed of three types of classes: a model, a view and a controller. The model contains the 

business information that is to be presented to the user. The view obtains the information 

from the model and displays it to the user. The controller is responsible for requesting the 

business information updating on the model upon user action (event) on the graphical 

interface (view). It takes the business information from the view and requests for the model’s 

updating with that information. 

Although the model component contains business information the MVC pattern is 

adequate to both horizontal and vertical domains, which makes of it agnostic in what its 

domain nature is concerned. The pattern can either be adopted if the business information is 

relative to horizontal business objects or to vertical business objects. 

The MVC pattern is classified as an architectural pattern according to the multilevel 

and multistage classification since it is used to define the structure of the software system, 

namely the structure of the client-side of the system. The pattern allows for the software 

system to be flexible concerning its user interface, which is a quality attribute wished-for that 

system. Mainly the MVC pattern is responsible for the structure of the client-side of the 

software system in order for it to be able to update business information upon events 

triggered by the user on the user interface (which allows the system to provide for the update 

functionality to the user). 

By looking at the RUP’s textual descriptions of its disciplines and phases this thesis 

concluded that the MVC pattern shall be used during the Elaboration software development 

stage and in the context of the Analysis & Design Software Engineering discipline. As the 

MVC pattern is used to define the structure of the client-side of the system, addressing both 

the update functionality and the user interface flexibility (non-functional requirement), it shall 

be part of the system’s architecture, which shall be part of the system’s design specification. 

The system’s baseline architecture shall contemplate the most significant architectural 

requirements, and the MVC pattern addresses the consistency between the user interface and 

the business information of the software system (which is a requirement vital to interactive 

software systems).  

Design Patterns 

The term design pattern is inspired on the GoF’s patterns. 
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Design patterns are domain nature agnostic, which means that they are both 

applicable to vertical and to horizontal domains. They shall be manipulated during the 

Construction stage by professionals, technologies and methodologies from the Analysis & 

Design discipline. 

Although the GoF described design patterns as OO software patterns, this thesis 

considers design patterns as those that are applicable to the refinement or detailing of the 

software system architecture. For instance Larman’s GRAS (General Responsibility 

Assignment Software) [93] patterns are design patterns since they have to do with behavioral 

aspects that only come up during a mechanistic design of the software solution’s 

development (by mechanistic it is meant structural or behavioral mechanisms more refined 

than components from logical architectures) [93]. 

The presence of code in design patterns is only to give examples. Design patterns are 

independent of the language, as can be seen from the GoF catalogue (they only talk about OO 

concepts, not language features). The sample code section provides for code to illustrate the 

example given in the motivation section, where the reader is given a scenario to illustrate a 

design problem in order for him to better understand the more abstract description of the 

pattern that follows the motivation section. Again the code is an illustration of the pattern’s 

applicability. 

Figure 42 (on the top left) depicts the positioning of design patterns according to the 

Stage and the Discipline dimensions. 

Figure 42 (on the bottom left) illustrates the difference between the definition of 

design pattern in this thesis and GoF’s. The lighter grey area corresponds to the pattern 

positioning space of the GoF catalogue. The darker grey area corresponds to the pattern 

categorization area of the classification in this chapter where the design patterns of this 

classification are positioned. These areas were drawn taking only the Discipline and the Stage 

dimensions into consideration as the Level dimension does not allow demonstrating the 

difference between both definitions. This thesis considers that design patterns shall only be 

used during the Construction stage of the software development process as the Software 

Engineering professionals, technologies and methodologies of the Analysis & Design are the 

most adequate to handle these patterns due to their professional profile and adequacy to the 

Construction stage’s activities and goals. It also considers that if design patterns are handled 

throughout the whole software development stages and by the people and tools (technologies
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Figure 42 – The positioning of design patterns according to the Stage and the Discipline dimensions 

(on the top left). The difference between the design patterns of the classification this thesis presents 

and the GoF’s according to the Stage and the Discipline dimensions (on the bottom left). The Adapter 

pattern modeled at both the M2 and the M1 levels of the OMG modeling infrastructure (on the right). 

and methodologies) of every Software Engineering discipline, the advantages predicted in 

pattern catalogues of the adopted design patterns are not going to be preserved and that the 

design patterns in the catalogues are not going to be used in their full potential by the people 

most skilled to handle them. 

The Adapter Pattern 

In the past in [50] the Adapter pattern was classified as a design pattern by the GoF 

but in the sense of OO software pattern. According to the multilevel and multistage 

classification the Adapter pattern is classified as a design pattern. It is applicable to both 

horizontal and vertical domains, which makes of it a domain nature agnostic pattern.  

The Adapter pattern (also known as Wrapper) has to do with a class converting the 

interface of one class to be what another class expects. Figure 42 (on the right) shows a 

model exemplifying the Adapter pattern in its M1 representation as well as the M2 

representation of the pattern. This is what the Adapter’s implementation described at the M2-

level should look like: “The Adapter must have an input parameter of the Adapted’s type 

in its constructor and extend the Required and call the Adapted’s appropriate operation 
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inside the operation required by the Receptacle”. The Adapter’s description at the M2-

level in terms of semantics is the following: “The Receptacle requires the Adapted to 

be adapted to the Required through the Adapter (the process is called adaptation). The 

goal is for the Receptacle to be able to call the Required’s operation from an instance 

of the Adapted”. 

The Adapter pattern is independent from any domain (or domain nature agnostic) 

because the adapter, the adapted, the required and the receptacle objects can belong to every 

domain possible. As long as the semantics or business logic (at the M1-level) specific of a 

certain domain complies to the M2 semantics described in the previous paragraph, the 

Adapter pattern is applicable to that domain no matter what the business is. 

The Adapter pattern deals with classes and their operations that implement the 

interface operations those classes are expected to implement. Essentially the contents of those 

operations that are of relevance to the Adapter pattern are calls to other operations. As can be 

seen, this thesis is not arguing about business logic implemented by the class’ operations, 

rather about the structure of the classes targeted by the adaptation, which means this thesis is 

discussing structural aspects rather than behavioral. Nevertheless and once again, the Adapter 

pattern shall be applied during the mechanistic design of the system’s development when 

classes shall be derived from architectural components. The Adapter pattern in its semantics 

shall be used to detail the baseline software system architecture and be part of a design 

specification containing the interface design of the classes involved in the adaptation process. 

For all these reasons this thesis classified the Adapter pattern as a design pattern. 

By looking at the RUP’s textual descriptions of its disciplines and phases this thesis 

concluded that the Adapter pattern shall be used during the Construction software 

development stage and in the context of the Analysis & Design Software Engineering 

discipline as already argued in this chapter. The adequacy of such stage and discipline to the 

Adapter pattern is intimately related to the reasons that were just exposed for classifying the 

Adapter pattern as a design pattern. 

Implementation Patterns 

The term implementation pattern is inspired on Beck’s definition of implementation 

pattern [51]. 
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Figure 43 – The implementation patterns’ positioning according to the stage and the discipline 

dimensions. 

Implementation patterns are domain nature agnostic. They shall be considered during 

the Construction stage by professionals, technologies and methodologies from the 

Implementation discipline. 

Implementation patterns are in fact the patterns in Kent Beck’s catalogue [51] for 

instance and not Java or other language-specific patterns. The difference between design 

patterns and implementation patterns is that as Kent Beck claimed [51] design patterns are 

applicable a few times in the day of a programmer whereas his implementation patterns are 

applicable every few seconds in the day of a programmer. He also claimed that his 

implementation patterns teach readers how to use certain OO language constructs regardless 

of the language (despite him using a trivial subset of Java to exemplify the patterns). Java 

patterns or other language-specific patterns are just a different representation of design 

patterns [59, 60] (e.g. in [60] Java is applied to the GoF patterns and other patterns). A 

different representation changes the pattern’s level in the classification (e.g. in the case of the 

patterns from [60], they had to be situated at the M1 (code) level in order for them to be 

called Java patterns). Kent Beck refers his patterns are applicable when all domain-specific 

questions are solved and developers are left with solely technical issues. 

Figure 43 illustrates the positioning of implementation patterns according to the stage 

and the discipline dimensions. 
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The Value Object Pattern 

In [51] the Value Object pattern was classified as a class pattern. In the context of the 

multilevel and multistage classification the Value Object pattern is classified as an 

implementation pattern. It is adequate to both horizontal and vertical domains, which means 

that it is domain nature agnostic. 

The purpose of the Value Object pattern is to create objects that once created cannot 

have the values of the variables they handle changed. The solution is to set the value of those 

variables when the object is created through its constructor. No other assignments shall be 

made to those variables elsewhere in the object’s class. Operations on the object shall always 

return new objects that shall be stored by the requester of the operation. Shortly value objects 

are objects representing mathematical values, which are values that do not change over time 

(have no state). For instance a transaction (value object) shall not change over time, rather an 

account changes over time (a transaction implies a change of state in the account). It does not 

make sense to model implementation patterns as they are only to exist in code, not in models, 

which implies that they are always represented at the M1-level (compile-time code). 

The Value Object pattern shall be involved in the coding of both horizontal and 

vertical domain software systems since it is about the construction of objects that shall not 

change over time, the assignment of values to those objects’ variables and the operations on 

those (value) objects. 

The Value Object pattern is classified as an implementation pattern because it is about 

the technical details of using classes (an OO language construct), to create objects that shall 

have no state (whose variables’ values shall not change over time), in this case.  

By looking at the RUP’s textual descriptions of its disciplines and phases this thesis 

concluded that the Value Object pattern shall be used during the Implementation software 

development stage and in the context of the Construction Software Engineering discipline as 

previously mentioned in this chapter. The Value Object is related to the development of 

software systems, particularly to the development of implementation elements (source code). 

4.4. Conclusions 

Some lessons were learned on the application of the multilevel and multistage pattern 

classification to some patterns from the literature. After looking at the RUP’s textual 

descriptions of its disciplines and phases, some patterns were not classified with the expected 
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pattern type. This means that a procedural referential such as the RUP is important to classify 

patterns, mainly because it gives the classification a notion of software development process. 

It also means that the awareness of the adequacy of a pattern in a catalogue to a specific 

discipline and stage changed after the multilevel and multistage pattern classification was 

elaborated. Initially before an in depth analysis of the RUP’s textual descriptions and the 

definitions of the various pattern types it was expected that (1) analysis patterns did not make 

sense in the context of the RUP’s Business Modeling discipline; (2) design patterns made 

sense in the context of both the RUP’s disciplines of Analysis & Design and Implementation, 

and of both the RUP’s Elaboration and Construction stages; and (3) patterns that could be 

contextualized in the RUP’s Implementation discipline and in the RUP’s Construction phase 

were language-specific patterns. After analyzing RUP’s textual descriptions and the pattern 

type definitions, this thesis concluded that (1) analysis patterns do make sense in the context of 

the RUP’s Business Modeling discipline; (2) design patterns make only sense in the context of 

the RUP’s Analysis & Design discipline and the RUP’s Construction stage;  

and (3) language-specific patterns are a translation of design patterns into some language, not 

implementation patterns.  

One of the reasons in the genesis of the multilevel and multistage classification’s 

creation was to provide for some guidance on the adoption of software development patterns 

in order to avoid loosing the original advantages of the pattern throughout the adoption 

process. For this reason this thesis considered the pattern classification had to rely on the 

software development process. The benefits of such an approach to pattern classification are: 

(1) the knowledge of the moment from the software development process in which to use 

specific kinds of patterns; and (2) the knowledge of who the Software Engineering 

professionals most skilled to handle those specific kinds of patterns in each stage of the 

software development process are, considering their instruments (technologies and 

methodologies). 

The systematic character of the multilevel and multistage classification is based on the 

objectiveness of the decisions on the application of software development patterns, which 

may be assured with the adoption of a modeling infrastructure. A systematic use of software 

development patterns is likely to also prevent the misinterpretation and corruption of patterns 

from catalogues when interpreting and adapting them, respectively. 
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Besides being concerned with the stages and the Software Engineering professional’s 

skills and the instruments they handle to conduct Software Engineering activities, and besides 

translating concerns with the systematic use of software development patterns the multilevel 

and multistage classification is also concerned with the nature of the domain, which is one of 

the criteria that composes the classification. Therefore the multilevel and multistage 

classification is focused on domain-based software development. The classification also 

focuses on model-driven software development since it incorporates (through its multilevel 

character) the OMG modeling infrastructure by considering that patterns can be represented 

at different levels of that infrastructure, which influences their interpretation. 

The multilevel and multistage pattern classification is innovative in some ways 

relatively to the existing literature. Most pattern classifications do not classify patterns based 

on the software development process. The only classification that does, disregarded the 

analysis phases (business modeling and requirements) of the software development process. 

The multilevel and multistage classification, though, addresses business modeling and 

requirements. 

The architectural patterns (like the MVC pattern the 4SRS uses to transform user 

functional requirements dealt with during the analysis of software into systems functional 

requirements dealt with in the beginning of software design) were concluded to be adequate 

for the Elaboration software development stage and in the context of the Analysis & Design 

Software Engineering discipline. The incorporation of the MVC in the structure of the logical 

architectures the 4SRS generates is supported by this conclusion. The formulation of the 

method to refine logical architectures with variability support yield by chapter 3 is also 

supported by the pattern classification presented in this chapter. 
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Section 5.2 shows the extension of the SPEM this thesis proposes for defining a visual language to model 

transition (from the analysis to the design of software) methods and formalize small dedicated software 

development processes like the 4SRS.  

Section 5.3 shows the preparation necessary for the automation of transition methods modeled with the 

SPEM, particularly the work undertaken to prepare the automation of the 4SRS.  

Section 5.4 provides for an insight over the impact of automating transitions methods (like the 4SRS) in 

contexts of variability. 

5. Automating Model 

Transformations 

5.1. Introduction 

A method can be defined as a general description of how to develop software and 

systems. Method modeling is also essential when it comes to process modeling. The same 

method can be used by many different processes and more than once in the same process. 

The definition of a software process may be time-consuming and labor-intensive, 

which means that defining a new process for each software development project may be 

unfeasible. In order to promote software processes and the reuse of methods, various PMLs 

(Process Modeling Languages) such as the SPEM have been proposed. PMLs shall be used to 

convey better comprehension [76, 77], communication, reuse, evolution and management 
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[76] of processes, besides used to define or formalize methods and processes, and reuse those 

definitions or formalizations in several and different process enactments. 

The SPEM (2.0) is a standard metamodel based on the MOF that reuses some 

concepts from the UML (2.x) Infrastructure (e.g. Classifier and Package). The SPEM is a 

modeling language that contains the minimal elements to define or formalize software and 

systems development processes. The SPEM is not aimed at being a generic process modeling 

language, rather a software and systems development process modeling language. 

The 4SRS method allows the iterative and incremental model-based transition from 

user functional requirements (represented as use case diagrams) to system functional 

requirements (or logical architectures represented as component diagrams). In other words 

the transformation of use cases (dealt with during the analysis of software) into logical 

architectures (dealt with in the beginning of the design of software) is conducted with a 

method specifically elaborated for the purpose. The main concerns of the method are:  

(1) guaranteeing that no user requirement is lost when moving from analysis to design;  

and (2) assuring that no user requirement that was not elicited with the customer is considered. 

The 4SRS method was not formalized with process positioning concerns prior to this 

thesis. In order to plug the 4SRS method into larger software development processes it had to 

be formalized as a small dedicated software development process. In this sense the method 

had to be formalized with a PML. The SPEM is a PML that uses the UML (an OMG standard 

with worldwide impact, therefore handled by professionals worldwide to design their 

applications and communicate their design decisions), however it does not possess concepts 

that sharply express the needs of the 4SRS method with regards to process positioning 

concerns. The challenge was to maintain the interoperability the SPEM offers for being a 

standard that tools support and simultaneously express the 4SRS transition method in order to 

automate it. 

Consider a methodology as a composition of methods (composed of techniques), 

process and notation. Within an effort to turn the 4SRS a methodology, this chapter shows 

how this thesis uses a PML (the SPEM) to model a method (the 4SRS) as a process. UML is 

the notation used in the 4SRS method to represent the necessary diagrams. The 4SRS is a 

transition method that can be defined as a method that generally describes how to transform 

analysis artifacts into design artifacts to develop software (in the case of the 4SRS, use cases 

into component diagrams). Therefore this chapter shows how to model transition methods (in 



5.1. Introduction 

111 

this case, the 4SRS) as processes with a process modeling language (the SPEM). Some other 

transition methods may for instance describe how to transform design artifacts into 

implementation artifacts, or how to generate test artifacts, or how to transform business 

modeling artifacts. Since the 4SRS is a method, it can be the basis for formalizing a small 

dedicated (at transitioning from analysis to design) software development process that can be 

plugged into larger software development processes. One of the goals of this chapter is to 

show the extensions that had to be performed to the SPEM in order to habilitate it for the 

expression of the 4SRS method’s characteristics. 

The general description of how to develop software and systems (a method) shall be 

the basis for defining or formalizing software and systems development processes. Software 

and systems development processes can be described as sequences of phases and milestones. 

The sequence of phases and milestones represents the development lifecycle of the product, 

so processes may represent product development lifecycles. In this sense, methods are only 

contextualized in a development lifecycle when positioned within a process. 

The automation of software processes may be facilitated by process modeling. The 

problem this chapter addresses is the automation of transition methods, particularly those 

modeled with the SPEM. The 4SRS was modeled with the SPEM in order to formalize it as a 

software process. It had to be automated so that it could be enlivened by means of a tool. The 

SPEM was chosen because it is standard, in order to benefit from the advantages of using a 

standard that is available to every professional of process modeling. Assuming that 

disciplines are sets of tasks that can be grouped according to their particular relevance in (a) 

specific phase(s) from large software development processes into which small dedicated 

software development processes can be plugged, transition methods are methods that describe 

how to transform artifacts from one discipline of a large software development process into 

artifacts from another discipline of such a process. Transition methods have particularities 

regarding other methods. They realize a change in the perspective on the system, 

consequently in the artifacts that represent the system from different perspectives, as well as 

they mark a change in the discipline of the large software development process. In this 

chapter, the 4SRS is used as the example of a transition method modeled with the SPEM to 

illustrate the automation of transition methods modeled with the SPEM (in this case, a 

transition method that transforms analysis artifacts into design artifacts). The goal of the 

automation of transition methods modeled with the SPEM (in this case, the 4SRS) is the 

automatic execution of those methods as small dedicated software development processes. 
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The intent is to decrease the cost of introducing the method into large software development 

processes, facilitating its use. The (semi)automatic execution of the 4SRS transition method 

is based on the Moderne. The Moderne is a model-driven tool for process modeling and 

execution. The Moderne tool allows the execution of the 4SRS in a model-driven approach, 

which implies generating logical architectures through model transformations using a model-

to-model transformation language [65, 98]. 

Previously this thesis addressed contribution on the representation of variability in use 

case diagrams. That contribution is relevant for providing variability support to the 4SRS 

transition method. This thesis also addressed contribution on the formalization of the use case 

modeling activity with support for variability since it proposed an extension to the UML 

metamodel in order to formally provide for both the concrete and abstract syntaxes to 

represent the three different types of variability in use case diagrams it has synthesized. 

Transformation rules shall be considered as part of process automation tools that 

involve model transformations. This chapter presents transformation rules specified with the 

ATL model-to-model transformation language [98]. These transformation rules are part of a 

process automation tool adapted to perform the model transformations of the 4SRS transition 

method: the Moderne [14]. 

5.2. Extending the SPEM Metamodel 

Synopsis of the SPEM 

The explicit purpose of the SPEM is to be as simple as to contain the minimal 

elements to define or formalize software and systems development processes. Thus it shall 

not be considered a generic process modeling language. The SPEM focuses on the structure 

of development processes for software and systems. The behavior of those processes is 

modeled with UML 2.0 activity diagrams, so the SPEM does not provide elements for 

behavior modeling. 

The SPEM distinguishes between the concept of process and the concept of method 

content. It considers that the concept of process can be divided into process structure and 

process behavior. A process structure is a composition of activities. An activity is a (kind of) 

work breakdown element. It represents a list of tasks and/or roles and/or work products in use 

by a process, and/or even other activities. The breakdown elements that activities may 

contain (tasks and/or roles and/or work products in use by the process) can be nested and
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logically grouped. Activities represent work that can be assigned to roles that intervene on the 

process, and require inputs and/or outputs (work products) to be performed. The process 

structure is the representation of the process as a static composition of activities that have 

temporal dependencies between them. Although temporal dependency is a behavioral 

concept, structural diagrams drawn with the icons or stereotypes of the SPEM UML profile 

[12] can have tagged values indicating temporal dependency of activities on each other. 

Activities are relevant for modeling phases of a development lifecycle (waterfall, iterative 

and incremental are three types of development lifecycles). The same role can be used in an 

early phase of a development lifecycle and in a later phase of the same development lifecycle, 

which may mean that e.g. that role handles different work products in those two different 

phases. The process behavior is not the focus of the SPEM, rather of the UML for instance. 

A method content can be considered as the set of concepts (tasks, roles and work 

products) that allows representing software and systems development methods and 

techniques independently of their positioning within a specific software and systems 

development lifecycle (consider that a method is composed of many techniques and that a 

development lifecycle can be composed of a sequence of phases and milestones for example). 

Processes shall use method content elements and organize them into sequences. Ad-hoc 

development processes that are not based on reusable methods or techniques can be 

formalized with elements from the Process Structure package of the SPEM. Development 

processes that are based on reusable methods or techniques shall be formalized with elements 

from the Process with Methods package of the SPEM. The same method or technique may 

need to be performed in different ways according to the point in the process where it is 

positioned. For instance requirements management methods shall be performed differently 

depending on whether they are performed early in the development lifecycle or later (e.g. 

requirements elicitation in early phases of the development lifecycle requires different 

concerns with respect to the management of requirements when compared with requirements 

updated in later phases of the development lifecycle). Requirements management methods 

may also be performed differently depending on whether the software or system to be 

developed is new or an existing one that needs to be maintained, depending on whether it is a 

single co-localized team or a global software or systems development process. Hence method 

contents are independent from the development lifecycle. In fact method contents are 

stepwise definitions of tasks that shall be performed by roles to originate work products. 

They may consume work products as well. A task from a method content may have its steps, 
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inputs or outputs (work products) changed depending on the development lifecycle they are 

positioned. 

The main difference between a method content and a process is that a method content 

defines methods and techniques for software and systems development processes, whereas a 

process defines the positioning of those methods and techniques within a development 

lifecycle composed of e.g. a sequence of phases and milestones. When a specific composition 

of tasks, roles and work products (a specific method content) is positioned within a 

development lifecycle, it means that the method content is applied to that part of the process 

where it is positioned. It also means that the method content is used by that process. A 

method content use defines which parts of the method or technique will be performed in that 

point of the process. Shortly a method content definition (a composition of tasks, roles and 

work products) is different from the application of a method content to a software and 

systems development process. For instance the difference between a Task Definition (element 

from the Method Content package of the SPEM) and a Task Use (element from the Process 

with Methods package of the SPEM) is that the first one can be reused in many processes and 

the second one allows that reuse. In a task use a task can be customized (e.g. steps can be 

selected, inputs can be added, outputs can be added, roles can be related). 

Earlier in this section, this thesis discussed activities in the context of process 

structure. These activities (which will from now on be referred to as SPEM activities) are not 

the activities from the UML. Whereas the UML activities are adequate for modeling behavior 

as a sequence of actions that may require decisions to be taken and are temporarily dependent 

on each other, the SPEM activities are adequately modeled with UML class diagrams (using 

the SPEM UML profile, eventually with its own icons, otherwise with its class-applicable 

stereotypes) and tagged values for temporal dependency representation. The SPEM activities 

model process structure as well as UML class diagrams model structure. If a process is 

represented with a workflow diagram (UML activity diagram with actions and object nodes), 

the notion of roles associated to tasks (actions in UML activity diagrams) shall be represented 

with swimlanes. A workflow diagram that models a process also represents the notion of 

work products (object nodes in UML activity diagrams) associated to tasks. As the SPEM 

activities modeled with UML class diagrams suggest, the notion of roles associated to tasks 

shall also be represented in diagrams that model structure (such as UML class diagrams). The 

process diagrams that model the process structure (the SPEM activities modeled with UML 

class diagrams) may also include the association between work products and tasks. In 
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workflow diagrams work products are represented as inputs and outputs for actions. Process 

diagrams contain instances of method content elements and those instances represent the use 

of tasks, roles and work products within the development lifecycle. As mentioned before in 

this chapter, this thesis adopted workflows since UML class diagrams were adopted to 

represent the process structure (instead of work breakdown structures, which are not 

appropriate for representing process behavior). 

Metamodeling Transition Methods 

If the goal is to represent software development processes with models drawn with a 

process modeling language, those software development processes will have to be 

metamodeled. Metamodelling is an approach to model complex systems by using abstraction 

as a means that facilitates that task [107]. Metamodels are models of models. A metamodel is 

a model of a modeling language. It is also a model whose elements are types in another 

model. An example of a metamodel is the UML metamodel. It describes the structure of the 

different models that are part of it, the elements that are part of those models and their 

respective properties. 

As already stated in this chapter, this thesis extended the SPEM for defining a visual 

language to model transition methods and formalize small dedicated (at transitioning from 

analysis to design) software development processes (such as the 4SRS) that can be plugged 

into larger software development processes. According to the SPEM, the 4SRS method 

(which is a transition method) can be the basis for formalizing a small dedicated software 

development process that can be plugged into larger software development processes. This is 

possible by formalizing the 4SRS method as a method content with the SPEM. 

Regarding language definition Atkinson and Kühne [11] divided the concept in four 

associated concepts: abstract syntax, concrete syntax, well-formedness and semantics. 

Abstract syntax is equivalent to metamodels. Concrete syntax is equivalent to UML notation. 

Well-formedness is equivalent to constraints on the abstract syntax (in OCL for instance). 

Finally semantics is the description of the meaning of a model in natural language. The 

abstract syntax of the visual language this thesis defined by extending the SPEM consists of 

the SPEM metamodel with some subclassing and profiling. The language’s concrete syntax is 

the SPEM’s notation. This thesis subclasses the SPEM because it did not support the 

semantics of transition methods both from the method content and from the process point of 

view.
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Figure 44 – Metamodel that defines the visual language for modeling transition methods and 

formalizing them as microprocesses. 

This chapter has already defined a transition method as a method that generally 

describes how to transform analysis artifacts into design artifacts to develop software (in the 

case of the 4SRS, use cases into component diagrams). However it was not yet defined what 

a small dedicated software development process is. It was already stated in this chapter that it 

can be plugged into larger software development processes. This kind of process is what this 

thesis calls a microprocess. The 4SRS modeled as a method content can be formalized as a 

microprocess, or a process from the SPEM’s perspective. The execution of a macroprocess 

may call the execution of microprocesses as much times as needed and in the context of the 

necessary phases of that macroprocess. For example the 4SRS microprocess can be executed 

in the phases of Inception, Elaboration and Construction of the RUP macroprocess, although 

with distinct weight in different phases. This distinct weight of the execution of the 4SRS 

microprocess in different RUP phases is due to the weight of the execution of the activities or 

tasks from the RUP disciplines involved in the transition the 4SRS allows (Requirements and 

Analysis & Design) in the context of each one of those phases. 

Figure 44 depicts the metamodel that defines the visual language for modeling 

transition methods and formalize them as microprocesses. The 4SRS is the example of the 
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method in the source of both this definition and formalization. Although some particularities 

of the 4SRS method are metamodeled in the process package called 4SRSProcessMetamodel 

(which contains the process structure metamodel for the 4SRS microprocess), in general the 

metamodel allows for the modeling of transition methods with the elements from the method 

content package (which contains the method content metamodel for transition methods) 

called 4SRSMethodContentMetamodel. 

The elements in dark grey represent the extension this thesis proposes to the SPEM. 

The elements in bright grey represent elements this thesis added to the SPEM that are a 

simplification of the SPEM itself. The elements MethodContent and Process are needed for 

the automation of the 4SRS microprocess and are represented here to emphasize that the 

elements from the 4SRSMethodContentMetamodel define a visual language for modeling 

methods and the elements from the 4SRSProcessMetamodel define a visual language for 

modeling processes. Those elements are tasks (TaskDefinition; and steps, represented by the 

metaclass Step), roles (RoleDefinition) and work products (WorkProductDefinition).  

It must be noticed that this thesis simplified the SPEM metamodel, including the 

relations between the elements in white background. This thesis eliminated the elements in 

between those elements, the navigability, the compositions and aggregations, and explicitly 

specified the multiplicity of each association end. This thesis considers that the metamodel 

shall be flexible with regards to the multiplicities, therefore the multiplicities shall be 0..*, 

0..1 or 0..x, x=ø. The metamodel shall be complemented with OCL constraints in order for 

the multiplicities to become more specific. A zero (0) in a multiplicity indicates optionallity. 

Also the multiplicity * is equivalent to 0..* [27]. 

Regarding the 4SRSMethodContentMetamodel the element Discipline is a 

simplification of the SPEM metamodel. This thesis added a subtype of Discipline 

(DisciplineFromMacroprocess) to the metamodel in order to distinguish between 

microprocess and macroprocess. By doing so it is expected that Discipline is from the 

microprocess (although this thesis did not model it as DisciplineFromMicroprocess). The 

MethodContent shall contain the Discipline from the microprocess since this thesis extends 

the SPEM to model transition methods like the 4SRS that allows transitioning from analysis 

to design in the context of disciplines from a macroprocess such as the RUP as already 

elaborated in this section. In the case of transition methods, the disciplines from the 
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microprocess shall be the disciplines from the macroprocess involved in the transition the 

method allows. 

The 4SRSMethodContentMetamodel also shows that this thesis subclasses 

TaskDefinition, Step and WorkProductDefinition. A transition task 

(TransitionTaskDefinition) transforms an initial work product (InitialWorkProduct) or an 

intermediate work product (IntermediateWorkProduct) into an intermediate work product or 

a final work product (FinalWorkProduct). A transition task can transform an initial work 

product into an intermediate work product or an intermediate work product into an 

intermediate work product or even an intermediate work product into a final work product. 

An intermediate task (IntermediateTaskDefinition) transforms a final work product into an 

initial work product. The set of transition tasks of an execution of the 4SRS transforms an 

initial work product into a final work product. A transition step (TransitionStep) can only be 

contained by a transition task, whereas an intermediate step (IntermediateStep) can only be 

contained by an intermediate task. 

One execution of the 4SRS has always 2..* work products associated with it, despite 

this thesis modeled this multiplicity as * in order to turn the metamodel more flexible. This 

multiplicity is represented in the metamodel in the composition between MethodContent and 

WorkProductDefinition.  

Tasks and work products are linked in the metamodel through three associations with 

three different orders of reading: in, out and inout. An in work product is an input of a task. 

An out work product is an output of a task. An inout work product is both an input and an 

output of a task (it can be a version of a work product for instance). 

Tasks and roles are also linked in the metamodel via two associations with two 

different orders of reading: mandatorilyPerforms and optionallyPerforms, which means that a 

role can (respectively) mandatorily perform a task or optionally perform a task. 

This thesis already talked about execution, which is the execution of the 4SRS. In the 

metamodel that concept is represented through the element Execution. The element Iteration 

is a simplification of the SPEM metamodel just like the element Discipline is. This thesis 

adds a subtype of Iteration (IterationFromMacroprocess) to the metamodel in order to 

distinguish between microprocess and macroprocess. By doing so it is expected that Iteration 

is from the microprocess (although this thesis did not model it as
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Figure 45 – The use of method content elements represented in the SPEM. 

IterationFromMicroprocess). The Process shall contain Iteration from the microprocess 

since this thesis is extending the SPEM to model transition methods and they can be iterative 

like the 4SRS is. 

As stated before in this thesis the 4SRS method may be applied recursively, in several 

executions, and in the context of each one of those executions various iterations can be 

performed. The same task can be performed several times in the same process. Tasks are the 

central element in the execution of the 4SRS microprocess since the tasks from the 4SRS are 

performed in the context of the executions of the 4SRS and ultimately in the context of the 

iterations that can occur for each one of those executions. The association class between 

TaskDefinition and Iteration (TaskUse) represents that in the metamodel. The TaskUse 

represents an instance of TaskDefinition, therefore the use of a specific task from the method 

content within the development lifecycle. Figure 45 shows that the use of method content 

elements (like TaskDefinition, Step, RoleDefinition and WorkProductDefinition) is 

contextualized within the development lifecycle through instances of TaskUse, RoleUse and 

WorkProductUse. 

In the context of the 4SRS an execution transforms an initial work product into a final 

work product. An iteration (from the microprocess) also transforms an initial work product 

into a final work product. More accurately both an execution and an iteration take the same 

type of in work product and generate the same type of out work product. The difference 

between an execution and an iteration is that the execution ends a set of iterations (from the 

microprocess). Since no differences exist between execution and iteration in the context of 

the 4SRS in terms of work product manipulation and iterations are contained by executions, 

this thesis eliminates the association between execution and work product in the metamodel 

and gets to work product via task when necessary. That way the centrality of the task in the
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Figure 46 – The extension of the UML metamodel for modeling the method content of 

transition methods. 

association between method content and process is maintained for the reasons already 

exposed. 

The 4SRS microprocess is iterative and incremental but this thesis only models its 

iterations because increments have necessarily impact in the functionalities that are visible to 

the user and that is not what happens with the refinement in the 4SRS when the use cases are 

only visible to components originated by the previous execution of the 4SRS. 

This thesis does not also add activity to the metamodel since activity is related to 

phases of process and the 4SRS microprocess needs only the concept of discipline for 

expressing the transition it allows.  

The SPEM presents the metamodel for process modeling along with the profile it 

defines for the UML through extensions of the UML metamodel. Figure 46 presents the 

extension of the UML metamodel this thesis proposes in this chapter for modeling the 

method content of transition methods like the 4SRS. The stereotypes defined in the model in 

Figure 46 are all related to the method content of transition methods (except for the 

RoleDefinition, which is for methods in general). They are to be used in the method content 

model of the 4SRS, in the activity detail model of the 4SRS microprocess structure and in the 

workflow model of the 4SRS microprocess behavior. The next subsection of this chapter 

elaborates on these diagrams. 

Modeling the 4SRS Transition Method 

 Figure 47 shows the method content model for the 4SRS. It represents a 

hierarchy of containments of tasks by the method content itself and of steps by the respective 
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Figure 47 – The method content model for the 4SRS. 

 

Figure 48 – The process model for the 4SRS. 

tasks those 4SRSMicroprocessExecutionInEllaborationOfGoPhone. That Execution is 

composed of one steps compose. The classes in white background are related to transition 

tasks, whereas the ones in grey background are related to intermediate tasks.  

At the level of models, the concepts from the 4SRSProcessMetamodel are more relevant 

when executing the process with a tool, therefore in the context of process automation. A 

process model with instances from a process structure metamodel may be like the one in 

Figure 48. The diagram depicts an instance of Process, an instance of Execution and an 

instance of Iteration. The diagram shows an instance of the 4SRS (micro)process called 

4SRSMicroprocessInRUPForDevelopingGoPhone. That particular instance of Process 

contains one Execution of the (micro)process in the context of a macroprocess (the RUP 

phase Elaboration) for the development of a software product line (the GoPhone) called 

Iteration called FirstIteration4SRSMicroprocessExecutionInElaborationOfGoPhone. 
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Figure 49 – An activity detail model of the 4SRS (micro)process.

Figure 49 illustrates what the SPEM calls an activity detail diagram. It is a model of 

the 4SRS (micro)process structure. It is called like that because in the context of the SPEM 

an activity represents a list of tasks and/or roles and/or work products in use by a process. 

The model has instances of tasks, a role and work products. The associations between the 

classes are instances of the associations between the metaclasses those classes are an instance 

of. Again the classes in white background are related to transition tasks, whereas the ones in 

grey background are related to intermediate tasks. 

The model in Figure 50 is a workflow model that represents the 4SRS (micro)process 

behavior. The model is in fact a UML activity diagram with actions and object nodes. The 

actions are instances of tasks, whereas the object nodes are instances of work products. This 

thesis does not represent roles associated with tasks in the model because it considers a single 

role (the SystemAnalyst from the activity detail model in Figure 49), therefore only one 

swimlane would be considered. 

As the figure evidences both an execution and an iteration (from the microprocess) 

transform an initial work product into a final work product. The figure also evidences that 

iterations are contained by executions. This chapter mentioned earlier that an execution ends 

a set of iterations (from the microprocess). The model in Figure 50 evidences that after an 

iteration is performed two guard constraints are evaluated to decide on the need for a new 

execution (or the ending of the current execution). 
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Figure 50 – A workflow model of the 4SRS (micro)process. 

5.3. Automating the 4SRS Transition Method 

The core topic of this section is model transformation. Some model-to-model 

transformations from one source model (a use case diagram) into a target model (a 

component diagram) are presented. Since the 4SRS moves from UML use cases to UML 

component diagrams, the Moderne tool allows endogenous transformations to occur in the 

context of this section. When generating a component diagram from a use case diagram, the 

move is from user functional requirements to system functional requirements and so the 

abstraction level decreases. This means the transformations in this chapter are useful to 

transform views between different levels of abstraction. 

The goal of automated transition methods modeled with the SPEM is to automatically 

execute them as small dedicated software development processes. With regards to the 4SRS, 

that goal was achieved with the support of a tool. That tool is the Moderne. The Moderne is a 

model-driven tool of process modeling and execution. The Moderne tool allows the execution 

of the 4SRS in an explicit model-driven approach, which implies generating logical 

architectures through model transformations using a model-to-model transformation 

language. These model transformations can be executed with any ATL engine that uses 

UML, and not only with the Moderne. 

This section exposes the way the 4SRS transition method modeled with the SPEM 

was automated according to this thesis’ definition of goal for the automation of transition 

methods modeled with the SPEM: the automation allows the automatic or semiautomatic 

execution of these transition methods as small dedicated software development processes. By 

automatic it is meant that models (the artifacts) are transformed using a transformation 

language or based on some action the modeler (the tool user) performs with the tool (to which 

the tool is programmed to respond) or even based on rules the tool was programmed with to
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Figure 51 – The 4SRS transition method modeled with the SPEM for automation purposes. 

respond to some particular event without any modeler’s action. By semiautomatic it is meant 

that the tool supports decisions the modeler has to make by allowing him to represent them in 

the diagrams. 

The modeling of the 4SRS transition method with the SPEM this thesis performed 

beforehand had to be adapted in order for the method to be automatically executed as a 

microprocess with the Moderne tool. In the context of this chapter, a microprocess is a small 

dedicated software development process dedicated at transitioning from analysis to design, 

which can be plugged into larger software development processes. In this chapter, a method 

defines tasks (composed of steps), roles and work products, therefore methods are modeled 

with the following elements: tasks (and steps), roles and work products. A process uses those 

tasks, roles and work products as many times as needed. In this thesis a process defines the 

use of a structure of tasks, roles and work products for software and systems development. 

This thesis subclasses tasks into transition tasks and intermediate tasks, steps into transition 

steps and intermediate steps, and finally work products into initial work products, 

intermediate work products and final work products. Figure 51 illustrates some examples of 

these elements. In the case of tasks, steps and work products, the stereotypes respectively 

indicate the type of task, step or work product according to the subclassing just mentioned.   

The model of the 4SRS transition method with the SPEM (elaborated beforehand) 

was adapted by adding the transformation rule i-c-dComponentsFromLeafUseCases as an 

input to the transition task ComponentCreation and by adding the intermediate task 

UseCaseDiagramDrawing to the diagram. The transformation rule is an ATL rule that 

defines how to transform the use case diagram (the initial work product UseCaseDiagram) 

into the component diagram (the intermediate work product i-c-dComponents). The
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Figure 52 – A use case diagram from the GoPhone. 

intermediate task had to be modeled to give the input (initial work product UseCaseDiagram) 

to the task that consumes the only initial work product in the model of the 4SRS transition 

method with the SPEM, which are the transition task ComponentCreation and the initial work 

product UseCaseDiagram. The intermediate task UseCaseDiagramDrawing was needed 

since the Moderne tool does not allow creating an input to a task in the context of the task 

itself, rather in the context of another task as output of that own task. 

This thesis analyzed the model of the 4SRS transition method with the SPEM to 

identify the steps that could be automated with the Moderne tool. Table 2 shows that analysis. 

Some steps of the 4SRS transition method were concluded to be fully automated with the 

Moderne tool whereas others where concluded to be semiautomated or not automated at all. 

The automation capability is the ability of a method’s step to be automated with a tool. The 

ones concluded to be fully automated with the tool were classified as “Automatic” in terms of 

their automation capability, the ones concluded to be semiautomated with the tool were 

classified as “Semiautomatic” and the ones concluded to be not automated with the tool 

where classified as “Not automatic”. The automatic steps were automated using ATL model-

to-model transformation rules. A semiautomatic step depends on some modeler’s action in 

the models by means of the tool before the ATL model-to-model transformation rules 

concerning that particular step can be applied. The not automatic steps comprise actions that 

are fully performed by the modeler even that they consist of input for the models or for the 

information attached to the models, in the tool. 

The use case diagram in Figure 52 is used to exemplify the model-to-model 

transformations the Moderne tool is able to perform in the context of the 4SRS. The diagram 

is based on the GoPhone case study. 
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Table 2 – Analysis of the automation capability of the steps from the 4SRS. 

4SRS Step/Microstep Automation Capability 

Step 1: Component Creation Automatic 

Microstep 2.i: Use Case Classification Not automatic (the modeler shall decide each use 
case’s classification) 

Microstep 2.ii: Local Elimination Semiautomatic (the modeler shall tag in the component 
diagram the components to eliminate or maintain)  

Microstep 2.iii: Component Naming Not automatic 

Microstep 2.iv: Component Description Not automatic 

Microstep 2.v: Component Representation Not automatic (the modeler explicitly relates 
components in the diagram through Dependency 

relationships indicating which component represents 
others) 

Microstep 2.vi: Global Elimination Automatic (based on the Dependency relationships 
mentioned above in this table) 

Microstep 2.vii: Component Renaming Not automatic 

Step 3: Component Packaging and Nesting Not automatic 

Step 4: Component Association Semiautomatic (partially based on the rules for 
associating components and partially based on the 

modeler’s decision) 

Intermediate step 4+1: Filtering and Collapsing Semiautomatic (the collapsing is automatic; the filtering 
is semiautomatic depending partially on the modeler’s 
decision to perform refinement and with the automatic 
exclusion of the components not associated with any 

component from the region to refine determined by the 
modeler) 

Intermediate microstep 4+2.i: Deriving Use Cases 
from Components 

Not automatic 

Intermediate microstep 4+2.ii: Detailing Use Cases Not automatic 

 

The transformation of the use case diagram in Figure 52 into the corresponding 

component diagram was defined in an ATL rule that mostly determines what leaf use cases 

are. Leaf use cases are those from which interface components, control components and data 

components are generated in step 1 of the 4SRS (Component Creation). The ATL rule 

defines that leaf use cases are those that are included by at least one use case and that do not 

include any other use case, and those that are not included by any use case and do not include 

any use case. The rule also defines some associations between components, and between 

components and actors (from the use case diagram). This anticipates part of step 4 

(Component Association) to step 1 (Component Creation).  

Figure 53 depicts part of the ATL rule that determines the leaf use cases of a use case 

diagram. The function srcIncludes() gets all Include relationships whose source is the
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helper context UML!UseCase def : isLeaf() : Boolean = 

 self.srcIncludes()->size() = 0; 

Figure 53 – Part of the ATL rule that determines the leaf use cases of a use case diagram. 

 

Figure 54 – The component diagram automatically generated from the use case diagram in 

Figure 52. 

use case under evaluation. If the use case is not the source of any Include relationship, it 

means the use case under evaluation is a leaf use case. The component diagram generated 

from the use case diagram in Figure 52 through the ATL rule and the Moderne tool is in 

Figure 54. 

This thesis defines some well-formedeness rules or constraints in OCL to do what the 

following figures illustrate. 

A transition task can transform an initial work product into an intermediate work 

product or an intermediate work product into an intermediate work product or even an 

intermediate work product into a final work product. The OCL code for these constraints is in 

Figure 55. Figure 56 shows a validation error signaled with a cross in a transition task that 

transforms an intermediate work product into an initial work product. 

An intermediate task transforms a final work product into an initial work product. The 

OCL code for this constraint is in Figure 57. Figure 58 illustrates a validation error signaled 

with a cross in an association between an intermediate task and an initial work product. 
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context TransitionTask 

inv:  

(self.in->forAll(wp | wp.oclIsTypeOf(InitialWorkProduct)) 

and 

self.out->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct))) 

OR 

(self.in->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct)) 

and 

self.out->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct))) 

OR 

(self.in->forAll(wp | wp.oclIsTypeOf(IntermediateWorkProduct)) 

and 

self.out->forAll(wp | wp.oclIsTypeOf(FinalWorkProduct))) 

Figure 55 – The OCL code for constraints on the relation between transition tasks and work 

products. 

 

Figure 56 – An example of a validation error in the constraints on the relation between 

transition tasks and work products. 

context IntermediateTask 

inv:  self.in->forAll(wp | wp.oclIsTypeOf(FinalWorkProduct)); 

inv:  self.out->forAll(wp | wp.oclIsTypeOf(InitialWorkProduct)); 

Figure 57 – The OCL code for constraint on the relation between intermediate tasks and 

work products. 

 

Figure 58 – An example of a validation error in the constraint on the relation between 

intermediate tasks and work products.

A transition step can only be contained by a transition task, whereas an intermediate 

step can only be contained by an intermediate task. The OCL code for these constraints is in 

Figure 59. Figure 60 depicts that a composition could not be drawn between a transition task 

and an intermediate step. In the case of the constraints above, a validation error is signaled 

with a cross in model elements because changing properties (the names) of the associations 

would eliminate that error. In this case, changing properties of the association would not 

eliminate the error since the association should not exist in the first place to obey the 

constraint.
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context IntermediateTask 

inv: steps->forAll(step | step.oclIsTypeOf(IntermediateStep)) 

 

context TransitionTask 

inv: steps->forAll(step | step.oclIsTypeOf(TransitionStep))) 

Figure 59 – The OCL code for constraints on the relation between tasks and steps. 

 

Figure 60 – An example of the impossibility of a composition between a transition task and 

an intermediate step.

5.4. Variability Support with ATL Rules 

The emphasis of this section is on the ATL rules for transforming an analysis model 

into a design model in the context of the 4SRS transition method with support for software 

variability. That model-to-model transformation generates a logical architecture out of a use 

case diagram. The UML profile related to the transformation rules is composed of the 

following stereotypes applicable to the following (respective) model elements: 

«representedBy» to the Dependency relationship, «option» to UseCase and «alternative» to 

the Extend relationship. 

Previously, in this chapter, step 1 (Component Creation) of the 4SRS was considered 

to be automatic. This step is about creating an interface component, a control component and 

a data component for each use case. Microstep 2.vi (Global Elimination) was also concluded 

to be automatic. It is concerned with eliminating components based on some rules and the 

Dependency relationships the modeler explicitly relates components with in the diagram to 

indicate which component represents others. Step 4 (Component Association) of the 4SRS 

was identified as semiautomatic, since some rules were systematized for the association of 

components. 

Figure 61 depicts part of the ATL rule that defines how to transform the use case 

diagram into the component diagram. The ATL rule targets a subset of the source model 

elements of type UseCase: leaf use cases (that are leaf regardless of variability being modeled 

in the use case diagram). Leaf use cases are those from which interface components, control 

components and data components are generated in step 1 (Component Creation) of the 4SRS. 

The ATL rule defines that leaf use cases are those that do not include any other use case. The
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from u : UML!UseCase (if u.isLeaf() or u.name.startsWith('<<option>>') then u.extend-

>isEmpty() else false endif) 

Figure 61 – Part of the ATL rule that applies to a use case diagram: definition of the subset 

of source use cases in contexts of variability. 

helper context UML!UseCase def : isLeaf() : Boolean = 

 self.srcIncludes()->size() = 0; 

 

helper context UML!UseCase def : srcIncludes() : Sequence(UML!Include) = 

 UML!Include.allInstancesFrom('IN')->select(c|c.getSrc()=self); 

 

helper context UML!Include def : getSrc() : UML!UseCase = 

 self.includingCase; 

Figure 62 – Part of the ATL rule that applies to a use case diagram: definition of leaf use 

cases regardless of variability. 

ATL rule also defines some associations between components, and between components and 

actors (from the use case diagram). This anticipates part of step 4 (Component Association) to 

step 1 (Component Creation). In the presence of variability, alternative use cases (connected 

to each other through Extend relationships stereotyped as «alternative») are considered to be 

leaf use cases. Also, «option» use cases are considered to be leaf use cases. The ATL rule 

evaluates if a use case owns any Include relationship through the function isLeaf() and 

verifies if its name begins with «option». If the use case does not own any Include 

relationship or its name begins with «option», then the ATL rule verifies if the use case 

does not extend any other use case, which shall be the case. This means the subset of source 

use cases the ATL rule considers is composed of the ones returned from the function 

isLeaf()simultaneously not owning an Extend relationship (that can be an alternative or a 

specialization), as well as those marked with the stereotype «option» simultaneously not 

owning an Extend relationship.  

Figure 62 shows the implementation of the function isLeaf(). In the context of the 

srcIncludes() function, the function allInstancesFrom(‘IN’) gets all instances 

of Include relationships from the source model (in this case, the use case diagram). The 

function getSrc() gets all including use cases from the use case diagram. If getSrc() 

gets no use cases, it means the use case under evaluation is leaf (an including use case cannot 

be a leaf use case). 

Figure 63 illustrates the part of the ATL rule that creates components, as well as the 

associations it defines between those components, both for use cases simultaneously neither 

including, nor extending and use cases marked with the stereotype «option» simultaneously 

not extending. As previously stated, interface components, control components and data
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  ci.name <- u.name.regexReplaceAll('U ', 'C '); 

  ci.name <- ci.name.regexReplaceAll('}', '.i}');   

  cc.name <- u.name.regexReplaceAll('U ', 'C '); 

  cc.name <- cc.name.regexReplaceAll('}', '.c}');   

  cd.name <- u.name.regexReplaceAll('U ', 'C '); 

  cd.name <- cd.name.regexReplaceAll('}', '.d}'); 

 

  ci.package.packagedElement <- ci.package.packagedElement.including(cc); 

  ci.package.packagedElement <- ci.package.packagedElement.including(cd); 

  ci.package.packagedElement <- thisModule.createAssociation(ci, cc); 

 
lazy rule createAssociation { 

    from ClassDst : UML!Component, 

   ClassSrc : UML!Component 

    to t : UML!"uml::Association"( 

  ownedEnd <- dst, 

  ownedEnd <- src 

  ), 

    dst : UML!Property 

    ( 

      name<-'dst', 

   type<-ClassDst 

     ), 

       src : UML!Property 

  ( 

   name<-'src', 

   type<-ClassSrc 

  ) 

} 

Figure 63 – Part of the ATL rule that applies to a use case diagram: generation of 

components from leaf use cases regardless of variability. 

components are generated from leaf use cases and the use cases to which the part of the ATL 

rule illustrated in Figure 63 applies are leaf use cases regardless of variability consideration at 

the level of use cases. For each of these last mentioned use cases an interface component 

(ci), a control component (cc) and a data component (cd) are generated. After that, both the 

control component and the data component are packaged in the same package as the interface 

component. 

This thesis also proposes to extend step 4 of the 4SRS with a rule for the association 

of components originated from use cases in general (regardless of variability consideration), 

from alternative use cases, and from specialization use cases and the use cases they 

specialize. An interface component shall be associated with the corresponding control 

component, both originated from the same use case. In presence of variability, components 

shall be associated with each other and with actors according to the following rules. An 

interface component generated from a specialization use case shall be associated with the 

interface component generated from the use case it specializes, as well as a control
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  if(u.hasExtend() and u.isLeaf()) 

  {    

   for(e in u.getExtends()) 

   { 

    usecase<-e.extension; 

    if(usecase.isLeaf()) 

    { 

     compi <- thisModule.createComp(usecase); 

     compi.name <- compi.name.regexReplaceAll('U ', 'C '); 

     compi.name <- compi.name.regexReplaceAll('}', '.i}'); 

     ci.package.packagedElement <- 

ci.package.packagedElement.including(compi); 

      

     compc <- thisModule.createComp(usecase); 

     compc.name <- compc.name.regexReplaceAll('U ', 'C '); 

     compc.name <- compc.name.regexReplaceAll('}', '.c}'); 

     ci.package.packagedElement <- 

ci.package.packagedElement.including(compc); 

      

      

     if(e.name <> '<<alternative>>') 

     { 

      ci.package.packagedElement <- 

thisModule.createAssociation(ci, compi); 

      ci.package.packagedElement <- 

thisModule.createAssociation(cc, compc);       

     }  

     else 

     { 

       

      for(assoc in u.associations()) 

      { 

       if(assoc.getSrc().oclIsTypeOf(UML!Actor)) 

       {     

    

        actor <- assoc.getSrc(); 

        ci.package.packagedElement <- 

thisModule.copyAssociation(actor, compi); 

      }  

       if(assoc.getDst().oclIsTypeOf(UML!Actor)) 

       {     

    

        actor <- assoc.getDst(); 

        ci.package.packagedElement <- 

thisModule.copyAssociation(actor, compi); 

       }  

      }  

     }  

      

     ci.package.packagedElement <- 

thisModule.createAssociation(compi, compc); 

      

     compd <- thisModule.createComp(usecase); 

     compd.name <- compd.name.regexReplaceAll('U ', 'C '); 

     compd.name <- compd.name.regexReplaceAll('}', '.d}'); 

     ci.package.packagedElement <- 

ci.package.packagedElement.including(compd); 

      

    }  

   }  

  }  
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  else 

  { 

   for( assoc in u.getParent()) 

      { 

       if(assoc.getSrc().oclIsTypeOf(UML!Actor)) 

       {     

    

        actor <- assoc.getSrc(); 

        ci.package.packagedElement <- 

thisModule.copyAssociation(actor, ci); 

       }  

       if(assoc.getDst().oclIsTypeOf(UML!Actor)) 

       {     

    

        actor <- assoc.getDst(); 

        ci.package.packagedElement <- 

thisModule.copyAssociation(actor, ci); 

     

       }  

      }  

  }  

Figure 64 – Part of the ATL rule that applies to a use case diagram.

component generated from a specialization use case shall be associated with the control 

component generated from the use case it specializes. An interface component shall be 

associated with the actor of the use case that originated the component. An actor associated 

with a use case for which there is an alternative shall also be associated with the interface 

component generated from the use case that represents the alternative. 

The function createAssociation in Figure 63 creates an association between 

the interface component and the control component. Considering the possibility of data 

components representing each other, the ATL rule does not generates a data component for 

every leaf use case regardless of variability being considered. 

The part of the ATL rule that defines how to transform the use case diagram into the 

component diagram and considers the subset of source use cases simultaneously neither 

including, nor extending and source use cases marked with the stereotype «option» 

simultaneously not extending starts by evaluating that subset of source use cases with the first 

two functions in Figure 64: hasExtend() and isLeaf(). 

For each of the source use cases in the just mentioned subset, the function 

hasExtend() in Figure 65 checks if it is an extended use case. 
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helper context UML!UseCase def : hasExtend() : Boolean = 

 UML!Extend.allInstancesFrom('IN')-> exists(st| st.extendedCase = self); 

Figure 65 – Part of the ATL rule that applies to a use case diagram: the hasExtend() 

function. 

helper context UML!UseCase def : getExtends() : Sequence(UML!Extend) = 

 UML!Extend.allInstancesFrom('IN')-> select(st| st.extendedCase = self); 

Figure 66 – Part of the ATL rule that applies to a use case diagram: the getExtends() 

function. 

The combination of the hasExtend() function with the isLeaf() function 

equals considering use cases simultaneously not including, not extending and extended. This 

means these use cases are leaf and have at least one alternative to them. 

The ATL rule targets each of the leaf use cases from the use case diagram that have at 

least one alternative to them with the function getExtends(). In the context of that 

function, in Figure 66, the function allInstancesFrom(‘IN’) gets all instances of 

Extend relationships from the use case diagram. The function getExtends() gets all 

Extend relationships from the use case diagram of which the targeted use case is the extended 

use case. 

For every use case in the diagram that is leaf (not an including use case), not an 

extending use case and has at least one alternative to it, the ATL rule accesses each of the 

Extend relationships targeted at it. For each of those relationships, the ATL rule gets the 

extending use case and checks if that is not an including use case. If that is the case, then the 

ATL rule creates, from the extending use case, an interface component (compi) and a 

control component (compc) and packages them in the same package as the components 

previously created for the extended use case.  

In the context of each Extend relationship just mentioned, the ATL rule verifies if it is 

an «alternative». If that is not the case, it means it is a specialization relationship 

(relationship stereotyped as «specialization») and the ATL rule creates an association 

between the interface component generated from the extended use case and the interface 

component generated from the extending use case, as well as an association between the 

control component generated from the extended use case and the control component 

generated from the extending use case. 
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helper context UML!UseCase def : associations() : Sequence(UML!Association) = 

 UML!Association.allInstancesFrom('IN')->select(c|c.getSrc()=self or c.getDst()=self); 

 

helper context UML!Association def : getSrc() : UML!Element = 

 self.ownedEnd->select(c | c.name = 'src')->first(); 

 

helper context UML!Association def : getDst() : UML!Element = 

 self.ownedEnd->select(c | c.name = 'dst')->first(); 

Figure 67 – Part of the ATL rule that applies to a use case diagram: the associations() 

function. 

lazy rule copyAssociation { 

    from ClasseSrc : UML!Element, 

  ClasseDst : UML!Component 

    to t : UML!"uml::Association"( 

  ownedEnd <- dst, 

  ownedEnd <- src 

  ), 

    dst : UML!Property 

    ( 

      name<-'dst', 

   type<-ClasseDst 

     ), 

       src : UML!Property 

  ( 

   name<-'src', 

   type<-ClasseSrc 

  ) 

} 

Figure 68 – Part of the ATL rule that applies to a use case diagram: generation of 

associations between interface components and actors in contexts of alternative variability 

(variability related to alternative relationships, which are stereotyped as «alternative»). 

Again in the context of each Extend relationship just mentioned, if it is an 

«alternative», the ATL rule gets all associations of which the leaf extended use case is 

the source or the destination, as Figure 67 demonstrates.  

For each of those associations, the ATL rule checks if the source is an UML element 

of type Actor. If it is, then it creates an association between the actor and the interface 

component generated from the extending use case. After that, the ATL rule performs the 

same for the destination of each of those associations (it creates an association between the 

actor and the interface component generated from the extended use case). Figure 68 depicts 

the creation of these associations. 

Still for every use case in the diagram that is leaf, not an extending use case and has at 

least one alternative to it, the ATL rule creates an association between the interface 

component generated from the extending use case and the control component generated from 

the extending use case. Then the ATL rule creates a data component for the extending use
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helper context UML!UseCase def : getParent() : Sequence(UML!Association) = 

 if not self.dstIncludes()->isEmpty() then 

  self.firstDstInclude().getSrc().getParent() 

 else 

  self.actorAssociations() 

 endif; 

 

helper context UML!UseCase def : dstIncludes() : Sequence(UML!Include) = 

 UML!Include.allInstancesFrom('IN')->select(c|c.getDst()=self); 

 

helper context UML!UseCase def : firstDstInclude() : Sequence(UML!Include) = 

 UML!Include.allInstancesFrom('IN')->select(c|c.getDst()=self)->first(); 

 

helper context UML!UseCase def : hasSrcExtend() : Boolean = 

 UML!Extend.allInstancesFrom('IN')-> exists(st| st.extension = self); 

 

helper context UML!UseCase def : getSrcExtend() : Sequence(UML!Extend) = 

 UML!Extend.allInstancesFrom('IN')-> select(st| st.extension = self)->first(); 

 

helper context UML!UseCase def : actorAssociations() : Sequence(UML!Association) = 

 UML!Association.allInstancesFrom('IN')->select(c|(c.getSrc()=self or c.getDst()=self) 

and (c.getSrc().oclIsTypeOf(UML!Actor) or c.getDst().oclIsTypeOf(UML!Actor))); 

Figure 69 – Part of the ATL rule that applies to a use case diagram: generation of 

associations between actors and interface components generated from leaf use cases not 

involved in Extend relationships, and option use cases simultaneously not extending and 

extended. 

case and packages it in the same package that contains the interface component generated 

from the extended use case. 

For every use case in the diagram that is leaf and not involved in Extend relationships, 

and is option simultaneously not extending and extended, the ATL rule evaluates if the use 

case is included by any other (through the function dstIncludes() in Figure 69). If that 

is the case, the ATL rule gets the including use case (through the function getSrc() over 

firstDstInclude() in Figure 69) and recursively looks for associations between the use 

case and an actor. Otherwise, the ATL rule gets the associations of which the use case is 

either source or destination and either the destination or the source is a UML element of type 

Actor. 

For each of those associations, the ATL rule gets the actor and associates it with the 

interface component generated from the including use case on the top of the Include 

hierarchy. 

Part of the ATL rule that applies to the component diagram resulting from microstep 

2.v (Component Representation) (the diagram in which the modeler explicitly relates 

components in the diagram through Dependency relationships indicating which component
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 from src : UML!Component(if thisModule.allModelElements('IN')->includes(src) then 

        if 

src.name.split('(?s)e(.+)[cd]}').size() = 1 then 

        src.isRepresented() 

        else 

         true 

        endif 

       else false endif) 

 

helper context UML!Component def : isRepresented() : Boolean = 

 self.clientDependency->exists(dep|dep.isStereotyped('«representedBy»')); 

 

helper context UML!UseCase def : isStereotyped(stereotype : String) : Boolean = 

 self.getAppliedStereotypes()->exists(c|c.name = stereotype); 

Figure 70 – Part of the ATL rule that applies to the component diagram resulting from 

microstep 2.v of the 4SRS. 

represents others) to generate the component diagram resulting from microstep 2.vi (Global 

Elimination) is going to be presented next. 

Since UML2 Tools [108] (the editor of UML models the Moderne tool uses) does not 

allow forbidding the modeler from drawing a «representedBy» Dependency relationship from 

a component that cannot be represented by any other, the rules for the global elimination of 

components previously mentioned in this section can only be applied when applying the ATL 

rule just mentioned. 

The next ATL rule automatically performs the transformation of 4SRS’ microstep 2.vi 

(Global Elimination). Based on the Dependency relationships the modeler used to explicitly 

relate components in the diagram that represent others, this ATL rule (shown partly in Figure 

70) takes the name of a component in the source component diagram and evaluates whether 

the component shall be copied to the target component diagram or not. If the component’s 

name is from a control or data component involved in an Extend relationship, the ATL rule 

evaluates if the component is represented by any other (owning at least one Dependency 

relationship tagged with the stereotype «representedBy»). If that is the case, the ATL rule 

does not maintain the component in the component diagram resulting from this 

transformation. The component’s name is evaluated with a split, which is determined by a 

regular expression ((?s)e(.+)[cd]}). e represents the character e, (.+) represents one 

or more characters (including line terminators, which is determined by the embedded flag 

(?s) that enables the DOTALL mode) and [cd]} represents either the characters c} or d}. 

If the source component is the client of at least one Dependency relationship stereotyped as 

«representedBy», then the ATL rule considers it to be represented by at least another 

component (this is achieved through the function isRepresented()). Since UML2 Tools 



Chapter 5: Automating Model Transformations 

138 

does not allow the stereotype «representedBy» on Dependency relationships, the ATL rule 

looks for the stereotype in the component’s name (c.name = stereotype). 

5.5. Conclusions 

The SPEM is a software and systems development process modeling language. 

Transition methods describe how to transform artifacts originally produced within a certain 

discipline of a large software development process into artifacts from another discipline of 

such a process. Some transition methods are targeted at moving from the analysis to the 

design of software. The 4SRS is a method that allows moving from the analysis to the design 

of software. In the case of the 4SRS, the analysis model (a UML use case diagram) influences 

architectural decisions that originate a design model (a UML component diagram, the first 

technical artifact to initiate the design of the system). 

The work reported in this chapter was to formalize transition methods as small 

dedicated software development processes that can be plugged into larger software 

development processes. In that sense, the SPEM was extended through metamodeling 

techniques for defining a visual language to model transition methods and formalizing small 

dedicated (at transitioning from the analysis to the design of) software development processes 

(such as the 4SRS). The 4SRS modeled as a method content from the SPEM can be the basis 

for formalizing it as a small software development process dedicated at transitioning from the 

analysis to the design of software, which can be plugged into larger software development 

processes. 

This chapter presents some models drawn (in the context of the 4SRS) with the visual 

language this thesis defined by extending the SPEM: the method content model for the 4SRS, 

a process model with instances from the process structure metamodel, an activity detail 

model of the 4SRS microprocess structure and a workflow model of the 4SRS microprocess 

behavior. 

This chapter describes the automation of a transition method, using the 4SRS method 

modeled with the SPEM as the case study. This thesis reports the adaptation of the Moderne 

tool to automate the generation of logical architectures through model transformations 

defined with the ATL language. This thesis defines some well-formedeness rules or 

constraints in OCL to validate the models of the 4SRS transition method with the SPEM. 



5.5. Conclusions 

139 

The SPEM model of the 4SRS transition method elaborated beforehand was adapted 

for automation purposes. For instance a transformation rule was added to the diagram.  

The OCL constraints on the models of the 4SRS transition method with the SPEM 

established the well-formedeness of the relations between transition tasks and work products, 

between intermediate tasks and work products, and between tasks and steps (all of these are 

elements for the modeling of methods). The violation of the constraints on those relations is 

tagged in the model through validation errors. 

This chapter also reported the transformation rules to automate some steps of the 

transition from use cases to a logical architecture, both diagrams supporting the 

representation of variability. The metamodel this thesis extended represents a metamodeling 

approach, which means the approach in this thesis is in concordance with the suggestion of 

Brown, et al. stating that if a metamodel is ellaborated, transformations between models 

using automation tools are facilitated [65]. 

The method to refine logical architectures with variability support prompted by 

chapter 3 has been automated with the work reported in this chapter. 
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This last chapter is devoted to showing the way the contributions of this thesis addressed the research goals 

pointed out in Chapter 1, to presenting the list of publications this thesis produced, and to providing 

suggestions to continue developing and applying this research. 

6. Conclusions 

6.1. Discussion 

Research Contributions 

Chapter 3 reflected upon the support of the UML metamodel for the functional 

refinement of use case diagrams. It concluded that the «include» relationship is not adequate 

for that purpose and proposed an extension to the UML metamodel to bridge that gap with a 

new relationship: the «refine» relationship. Chapter 3 also proposed a systematization of use 

case variability modeling, as well as an extension to the UML metamodel in order to model 

variability in use case diagrams according to that systematization. This chapter proposed to 

represent variability in use case diagrams through «extend» relationships and stereotypes. It 

considered that the «extend» relationship is adequate for modeling alternatives and 

specializations, and a stereotype applicable to use cases for modeling options. This chapter 

proposed the stereotypes «alternative», «specialization» and «option» to distinguish the three 

variability types it proposed. It also proposed the stereotype «variant» to mark use cases at 

higher levels of abstraction before they are realized into alternatives or specializations. The 

stereotypes «alternative» and «specialization» were recommended to be applicable to the 

«extend» relationship for modeling alternatives and specializations, respectively, and the 
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stereotype «option» to mark use cases that represent options. Chapter 3 also argued about the 

implications of functionally refining use cases when variability is represented in use case 

diagrams with use cases connected through «extend» relationships. The approach of this 

chapter to use case modeling with support for refinement and variability was illustrated with 

the GoPhone case study. Chapter 3 provided for the following research contributions: 

Research contribution 1: an extension to the UML metamodel for the functional 

refinement of use case diagrams.  

Research contribution 2: an extension to the UML metamodel for variability 

modeling in use case diagrams. 

These contributions addressed the following research goals, pointed out in Chapter 1: 

Research goal 1: providing specific guidelines on how to conduct the activity of use 

case modeling with support for functional refinement. 

Research goal 2: providing specific guidelines on how to conduct the activity of use 

case modeling with support for both functional refinement and software variability. 

 

By representing variability in use case diagrams, chapter 3 provided for variability 

support in the logical architectures generated with the execution of the 4SRS transition 

method over those use case diagrams. Chapter 3 formalized use case refinement, which is 

relevant for the preparation of the recursive method’s execution, as well as it provided for 

guidelines to determine the use cases that will be the input for the method’s execution 

(recursive or not) and exposed the implications of executing the method itself when 

variability is considered in use cases. The extension of the 4SRS proposed in chapter 3 

included the formalization of filtering and collapsing techniques applicable to the logical 

architectures delivered by the method’s execution (recursive or not) and the formalization of 

the transformation from components to use cases in order to prepare the recursive execution 

of the method. Chapter 3 provided for the following research contributions: 

Research contribution 3: guidelines to determine the use cases that will be the input 

for the 4SRS’ execution (recursive or not) when variability is considered in use cases. 
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Research contribution 4: guidelines for the execution of the 4SRS when variability is 

considered in use cases. 

Research contribution 5: extension of the 4SRS with filtering and collapsing 

techniques applicable to the logical architectures delivered by the method’s execution 

(recursive or not). 

Research contribution 6: formalization of the transformation from components to 

use cases in order to prepare the recursive execution of the 4SRS. 

These contributions addressed the following research goal, pointed out in Chapter 1: 

Research goal 3: supporting the refinement of logical software architectures with 

variability support by extending a method applicable for modeling those architectures (the 

4SRS). 

 

Chapter 4 concluded that a procedural referential such as the RUP is important to 

classify patterns, mainly because it gives the classification a notion of software development 

process, therefore, it proposed a multilevel and multistage pattern classification. That 

classification provides for the knowledge of the moment from the software development 

process in which to use specific kinds of patterns. The foundation for the model 

transformation the 4SRS conducts is given the classification chapter 4 reported of a specific 

pattern (the MVC) and its incorporation in the structure of the logical architectures the 4SRS 

generates. Chapter 4 provided for the following research contribution: 

Research contribution 7: multilevel and multistage software development pattern 

classification based on the RUP and the classification of some software development 

patterns. 

This contribution addressed the following research goal, pointed out in Chapter 1: 

Research goal 4: classifying software patterns according to a multilevel and 

multistage pattern classification based on the software development process to justify the 

pattern used for the model transformation the 4SRS guides. 
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Chapter 5 formalized a transition method (the 4SRS) as a small dedicated (at 

transitioning from the analysis to the design of) software development process that can be 

plugged into larger software development processes. For that purpose, chapter 5 extended the 

SPEM through metamodeling techniques for defining a visual language to model transition 

methods. Then, it modeled the 4SRS as a method content from the SPEM. Chapter 5 also 

elaborated on the automation of transition methods by means of a case study with the 4SRS 

method modeled with the SPEM and automated with the Moderne tool, which was adapted 

for the purpose. In the context of the Moderne tool, the 4SRS model transformations were 

defined with the ATL language, as well as some well-formedeness rules or constraints were 

defined with OCL to validate the models of the 4SRS transition method with the SPEM. 

Finally, chapter 5 addressed the transformation rules the Moderne tool used to automate some 

steps of the 4SRS with support for variability. Chapter 5 provided for the following research 

contributions: 

Research contribution 8: visual language to model transition methods by means of 

an extension to the SPEM. 

Research contribution 9: model of the 4SRS as a method content from the SPEM. 

Research contribution 10: the Moderne tool adapted to automate the 4SRS 

transition method modeled with the SPEM, including ATL model transformation rules for the 

execution of the 4SRS with support for variability and OCL constraints to validate the models 

of the 4SRS with the SPEM. 

These contributions addressed the following research goals, pointed out in Chapter 1: 

Research goal 5: exploring the particularities of modeling transition methods (like 

the 4SRS) to formalize them as small dedicated software development processes. 

Research goal 6: exemplifying the SPEM modeling of a transition method like the 

4SRS as a way to study the benefits of the automatic execution of transition methods as small 

dedicated software development processes. 

Research goal 7: reflecting on the impact of variability over the automation of 

transition methods (like the 4SRS) modeled with SPEM. 
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Publications 

This thesis produced some research publications, namely: 

1) S. Azevedo, et al., "On the Refinement of Use Case Models with Variability Support," 

Innovations in Systems and Software Engineering, vol. 8, pp. 51-64, 2012; 

2) S. Azevedo, et al., "On the Use of Model Transformations for the Automation of the 

4SRS Transition Method " presented at the 10th International Workshop on 

System/Software Architectures (IWSSA 2012), Gdańsk, Poland, 2012; 

3) S. Azevedo, et al., "Systematic Use of Software Development Patterns through a 

Multilevel and Multistage Classification," in Model-Driven Domain Analysis and 

Software Development: Architectures and Functions, J. Osis and E. Asnina, Eds., ed 

Hershey: IGI Global, 2011, pp. 304-333; 

4) S. Azevedo, et al., "Support for Variability in Use Case Modeling with Refinement," 

presented at the 7th International Workshop on Model-Based Methodologies for 

Pervasive and Embedded Software (MOMPES 2010), Antwerp, Belgium, 2010; 

5) S. Azevedo, et al., "The UML «extend» Relationship as Support for Software 

Variability," presented at the 14th International Software Product Line Conference (SPLC 

2010), Jeju Island, South Korea, 2010; 

6) S. Azevedo, et al., "The UML «include» Relationship and the Functional Refinement of 

Use Cases," presented at the 36th Euromicro Conference on Software Engineering and 

Advanced Applications (SEAA 2010), Lille, France, 2010; 

7) S. Azevedo, et al., "Refinement of Software Product Line Architectures through 

Recursive Modeling Techniques," presented at the 8th International Workshop on 

System/Software Architectures (IWSSA 2009), Vilamoura, Portugal, 2009; 

8) S. Azevedo, et al., "Multistage Model Transformations in Software Product Lines," 

presented at the Simpósio para Estudantes de Doutoramento em Engenharia de Software 

(SEDES 2009), Porto, Portugal, 2009. 

6.2. Future Work 

The most obvious work to conduct in the future as an extension of this thesis is to 

define or formalize the support for refinement and variability in other perspectives over 

software systems or families of software systems development. 

Future work concerning the software patterns in the context of the software 

development process involves studying how patterns evolve over the time of that process. 

This evolution demands for the comprehension of the relationships between software patterns 

(especially those positioned at consecutive stages). It also demands for the analysis of how 

time implies that software patterns are associated with each other in a chain. The gap between 

patterns used at different stages shall be bridged in order to have a complete multistage 
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software development process that contemplates different artifacts (software patterns and 

other artifacts like use cases, component diagrams and others). In fact software patterns used 

at different stages solve the same problem at different levels of abstraction. 

Software patterns may be used to detail logical software system architectures 

(expressed through component diagrams). As software patterns are normally presented in 

class diagrams, the detailing of those architectures requires knowing how to apply the 

concept of class to the concept of (logical) component.  

The consideration of software patterns within the context of the software development 

process claims for the specialization of the actors who intervene in that process with specific 

roles during the adoption of those patterns. It is relevant to study the impacts of other 

software development processes (besides the RUP) in the proposed pattern classification.  

Developing software product lines with software patterns (and other artifacts) may 

have some particular implications. Some variability mechanisms may have to be taken into 

account in software patterns. The use of those mechanisms may be constrained to a specific 

level of the OMG modeling infrastructure (the M2-level) and to specific pattern types. It may 

be necessary to define all the possible M2-level concepts (e.g. classes, attributes, operations) 

and/or the values of those concepts (e.g. class names, class attributes, class operations) as 

well as the application of all of them to all or some of the product line’s members. The whole 

matter with software product lines and software patterns may mainly lie on the instantiation 

of M2-level artifacts at the M1-level. 

Finally it is important to determine which software patterns may and shall be made 

available in modeling infrastructures (either through libraries of software pattern metamodels 

or models, or through domain-specific languages). 

In terms of future work concerned with the automation of transition methods (like the 

4SRS), it is planned to assess the efficiency of this thesis’ approach by adopting the Moderne 

tool to apply the 4SRS transition method in a real industrial project. It is also planned to 

include the approach of this thesis to the refinement of logical architectures with the 4SRS 

transition method in the Moderne tool, as well as conducting a broader case study on the use 

of the Moderne for the same purpose and validating that approach with software metrics. 
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Appendix I. Tabular Transformations over the GoPhone Messaging Domain 

Table 3 presents the tabular transformations from the first execution of the 4SRS method over the Send Message use case from the 

GoPhone case study.  

Table 3 – Tabular transformations over the GoPhone’s Send Message use case. 

4SRS step nr. 1. 2i. 2ii. 2iii. 2iv. 2v. 2vi. 2vii. 3 4 

           

column name 
compo. 
ref. 

classify 
original 
use 
case 

local 
killing 
[T/F] 

name description representation 
global 
killing 
[kill/alive] 

renaming packages/aggregations 
related 
components 

{U 0.1.1e1} 
Choose 
Recipient's 
Phone Number 

  i-d                 

  i  T 
phone number 
choice 

This component provides for a user 
interface to allow the mobile user to 
choose the phone numbers of one or 
multiple message recipients. The mobile 
user shall be able to use this interface to 
choose multiple phone numbers. This 
component shall also include a user 
interface to connect to the message 
sending functionality. It is responsible for 
forbidding the mobile user at the user 
interface level to insert more than the 
maximum number of digits possible for 
each phone number. 

{C 0.1.1e1.i} alive 
phone number 
choice 

  {C 0.1.1e1.c} 

  c  T 
phone number 
choice 
management 

This component is responsible for 
controlling the user interface flow from 
the phone number choice functionality to 
the message sending functionality. It is 
also responsible for controlling the 
maximum number of digits the mobile 
user can type for each phone number. It 
shall as well retrieve the phone numbers 
from the repository of contacts. 

{C 0.1.1e1.c} alive 
phone number 
choice 
management 

  
{C 0.1.1e1.i} 
{C 0.1.3.i} 
{C 0.1.1e1.d} 

  d   T 
address book 
repository 

This component provides for a repository 
of contacts. 

{C 0.1.1e1.d} 
{C 0.1.1e2.d} 

alive 
address book 
repository 

  
{C 0.1.1e1.c} 
{C 0.1.1e2.c} 
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{U 0.1.1e2} 
Choose 
Recipient's 
Phone Number 
or E-mail 
Address 

  i-d                 

  i  T 
phone number 
or e-mail 
address choice 

This component provides for a user 
interface to allow the mobile user to 
choose the phone numbers or the e-mail 
addresses of one or multiple message 
recipients. The mobile user shall be able 
to use this interface to choose multiple 
phone numbers or multiple e-mail 
addresses. This component shall include 
a user interface to connect to the 
message sending functionality. It is 
responsible for forbidding the mobile user 
at the user interface level to insert more 
than the maximum number of digits 
possible for each phone number or to 
insert invalid e-mail addresses. 

{C 0.1.1e2.i} alive 
phone number 
or e-mail 
address choice 

  {C 0.1.1e2.c} 

  c  T 

phone number 
or e-mail 
address choice 
management 

This component is responsible for 
controlling the user interface flow from 
the phone number/e-mail address choice 
functionality to the message sending 
functionality. It is also responsible for 
controlling the maximum number of digits 
the mobile user can type for each phone 
number or the validity of e-mail 
addresses. It shall as well retrieve the 
phone numbers or the e-mail addresses 
from the repository of contacts. 

{C 0.1.1e2.c} alive 

phone number 
or e-mail 
address choice 
management 

  
{C 0.1.1e2.i} 
{C 0.1.3.i} 
{C 0.1.1e1.d} 

  d   T 
address book 
repository 

This component provides for a repository 
of contacts. 

{C 0.1.1e2.d} 
{C 0.1.1e1.d} 

kill       

{U 0.1.2.1e1} 
Select Basic or 
Extended Kind 
of Message 

  i                 

  i   T 

basic or 
extended 
message kind 
selection 

This component provides for a user 
interface to allow the mobile user to 
choose the kind of message to send 
(basic SMS or extended SMS). It shall 
include a user interface to connect to the 
message writing functionality. 

{C 0.1.2.1e1.i} alive 

basic or 
extended 
message kind 
selection 

  
{C 
0.1.2.1e1.c} 

  c   T 
message kind 
selection 
management 

This component is responsible for 
controlling the user interface flow from 
the basic/extended kind of message 
selection functionality to the message 

{C 0.1.2.1e1.c} 
{C 0.1.2.1e2.c} 

alive 
message kind 
selection 
management 

  {C 0.1.2.5.i} 
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writing functionality. 

  d   F               

{U 0.1.2.1e2} 
Select Basic, 
Extended or E-
mail Kind of 
Message 

  i                 

  i   T 

basic, 
extended or e-
mail message 
kind selection 

This component provides for a user 
interface to allow the mobile user to 
choose the kind of message to send 
(basic SMS, extended SMS or e-mail). It 
shall include a user interface to connect 
to the message writing functionality. 

{C 0.1.2.1e2.i} alive 

basic, 
extended or e-
mail message 
kind selection 

  
{C 
0.1.2.1e1.c} 

  c   T 
message kind 
selection 
management 

This component is responsible for 
controlling the user interface flow from 
the basic/extended/e-mail kind of 
message selection functionality to the 
message writing functionality. 

{C 0.1.2.1e2.c} 
{C 0.1.2.1e1.c} 

kill       

  d   F               

{U 0.1.2.2e1} 
Activate Letter 
Combination 

  c-d                 

  i  T 
letter 
combination 
activation 

This component provides for a user 
interface to allow the mobile user to 
activate the letter combination (into words 
from the word repository) according to the 
keys pressed by him when writing the 
message. It is responsible for notifying 
the mobile user on the 
activation/deactivation of the letter 
combination. 

{C 0.1.2.2e1.i} alive 
letter 
combination 
activation 

  
{C 
0.1.2.2e1.c} 

  c   T 
letter 
combination 
management 

This component is actually responsible 
for activating/deactivating the letter 
combination, therefore it shall keep 
record of letter combination's activation 
state. It is also responsible for getting the 
possible combinations of letters (words) 
from the word repository according to the 
keys pressed by the mobile user when 
writing the message. It is responsible as 
well for composing and sending an 
alphabetically ordered list with those 
combinations (words) to the message 
writing functionality upon request. This 
component shall notify the message 
writing functionality on the changes to the 
letter combination's activation state, 

{C 0.1.2.2e1.c} alive 
letter 
combination 
management 

  

{C 
0.1.2.2e1.i} 
{C 
0.1.2.2e1.d} 
{C 0.1.2.5.c} 
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whenever that happens. It can also 
receive requests for updating the letter 
combination's activation state from the 
message writing functionality. 

  d   T word repository 

This component provides for a repository 
of possible combinations of letters 
(words) for the keys and language 
availables. 

{C 0.1.2.2e1.d} alive word repository   
{C 
0.1.2.2e1.c} 

{U 0.1.2.3e1} 
Insert Picture 

  i-c-d                 

  i  T 
picture 
insertion 

This component provides for a user 
interface to allow the mobile user to insert 
pictures into a message. The mobile user 
shall be able to use this interface to insert 
multiple pictures. This component is 
responsible for notifying the mobile user 
on the violation of validation rules over 
the pictures. This component receives 
requests for picture insertion from the 
message writing functionality. 

{C 0.1.2.3e1.i} alive 
picture 
insertion 

  
{C 
0.1.2.3e1.c} 
{C 0.1.2.5.c} 

  c   T 
picture 
insertion 
management 

This component is actually responsible 
for inserting pictures into a message. It 
provides for the validation of the pictures 
to be inserted into the message. It is also 
responsible for retrieving pictures from 
the picture repository. 

{C 0.1.2.3e1.c} alive 
picture 
insertion 
management 

  

{C 
0.1.2.3e1.i} 
{C 
0.1.2.3e1.d} 

  d   T 
picture 
repository 

This component provides for a repository 
of pictures. 

{C 0.1.2.3e1.d} 
{C 0.1.2.3e2.d} 
{C 0.1.2.4e1.d} 
{C 0.1.2.4e2.d} 

alive 
object 
repository 

  

{C 
0.1.2.3e1.c} 
{C 
0.1.2.3e2.c} 
{C 
0.1.2.4e1.c} 
{C 
0.1.2.4e2.c} 

{U 0.1.2.3e2} 
Insert Picture or 
Draft Text 

  i-c-d                 

  i  T 
picture or draft 
text insertion 

This component provides for a user 
interface to allow the mobile user to insert 
pictures and/or draft texts into a 
message. The mobile user shall be able 
to use this interface to insert multiple 
pictures and/or multiple draft texts. This 
component is responsible for notifying the 

{C 0.1.2.3e2.i} alive 
picture or draft 
text insertion 

  
{C 
0.1.2.3e2.c} 
{C 0.1.2.5.c} 
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mobile user on the violation of validation 
rules over the pictures and/or the draft 
texts. This component receives requests 
for picture or draft text insertion from the 
message writing functionality. 

  c   T 
picture or draft 
text insertion 
management 

This component is actually responsible 
for inserting pictures and/or draft texts 
into a message. It provides for the 
validation of the pictures and/or the draft 
texts to be inserted into the message. It is 
also responsible for retrieving pictures or 
draft texts from the picture and draft text 
repository. 

{C 0.1.2.3e2.c} alive 
picture or draft 
text insertion 
management 

  

{C 
0.1.2.3e2.i} 
{C 
0.1.2.3e1.d} 

  d   T 
picture and 
draft text 
repository 

This component provides for a repository 
of pictures and draft texts. 

{C 0.1.2.3e2.d} 
{C 0.1.2.3e1.d} 

kill       

{U 0.1.2.4e1} 
Attach 
Business Card 
or Calendar 
Entry 

  i-c-d                 

  i   T 
business card 
or calendar 
entry attaching 

This component provides for a user 
interface to allow the mobile user to 
attach business cards and/or calendar 
entries to a message. The mobile user 
shall be able to use this interface to insert 
multiple business cards and/or multiple 
calendar entries. This component 
receives requests for business card or 
calendar entry attaching from the 
message writing functionality. 

{C 0.1.2.4e1.i} alive 
business card 
or calendar 
entry attaching 

  
{C 
0.1.2.4e1.c} 
{C 0.1.2.5.c} 

  c   T 

business card 
or calendar 
entry attaching 
management 

This component is actually responsible 
for attaching business cards and/or 
calendar entries to a message. It is also 
responsible for retrieving business cards 
or calendar entries from the business 
card and calendar entry repository. 

{C 0.1.2.4e1.c} alive 

business card 
or calendar 
entry attaching 
management 

  

{C 
0.1.2.4e1.i} 
{C 
0.1.2.3e1.d} 

  d   T 
business card 
and calendar 
entry repository 

This component provides for a repository 
of business cards and calendar entries. 

{C 0.1.2.4e1.d} 
{C 0.1.2.3e1.d} 

kill       

{U 0.1.2.4e2} 
Attach File, 
Business Card, 
Calendar Entry 
or Sound 

  i-c-d                 

  i   T 
file, business 
card, calendar 
entry or sound 

This component provides for a user 
interface to allow the mobile user to 
attach files, business cards, calendar 

{C 0.1.2.4e2.i} alive 
file, business 
card, calendar 
entry or sound 

  
{C 
0.1.2.4e2.c} 
{C 0.1.2.5.c} 
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attaching entries and/or sounds to a message. The 
mobile user shall be able to use this 
interface to insert multiple files, multiple 
business cards, multiple calendar entries 
and/or multiple sounds. This component 
is responsible for notifying the mobile 
user on the violation of validation rules 
over the files, the business cards, the 
calendar entries and/or the sounds. It 
receives requests for file, business card, 
calendar entry or sound attaching from 
the message writing functionality. 

attaching 

  c   T 

file, business 
card, calendar 
entry or sound 
attaching 
management 

This component is actually responsible 
for attaching files, business cards, 
calendar entries and/or sounds to a 
message. It is also responsible for the 
validation of the files and/or the sounds to 
be introduced to the message. It is 
responsible as well for retrieving files, 
business cards, calendar entries or 
sounds from the file, business card, 
calendar entry and sound repository. 

{C 0.1.2.4e2.c} alive 

file, business 
card, calendar 
entry or sound 
attaching 
management 

  

{C 
0.1.2.4e2.i} 
{C 
0.1.2.3e1.d} 

  d   T 

file, business 
card, calendar 
entry and 
sound 
repository 

This component provides for a repository 
of files, business cards, calendar entries 
and sounds. 

{C 0.1.2.4e2.d} 
{C 0.1.2.3e1.d} 

kill       

{U 0.1.3} Send 
Message to 
Network 

  i                 

  i  T 
message 
sending 

This component provides for an interface 
that receives messages for sending 
through the network. It is responsible for 
notifying the mobile user on the sending 
operation's initialization (message being 
sent) and on the success of the sending 
operation. It receives requests for 
message sending from the phone number 
choice functionality, or from the phone 
number or e-mail address choice 
functionality. It is also responsible for 
calling the message archiving 
functionality. 

{C 0.1.3.i} alive 
message 
sending 

  
{C 0.1.3.c} 
{C 0.1.4e1.i} 
{C 0.1.4e2.i} 

  c   T 
message 
sending 
management 

This component is responsible for 
actually sending the message through the 
network and controling the state of the 
message sending (message successfully 
sent or message not sent). 

{C 0.1.3.c} alive 
message 
sending 
management 

  {C 0.1.3.i} 
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  d   F               

{U 0.1.4e1} 
Archive 
Message by 
Request 

  d                 

  i  T 
message 
archiving by 
request 

This component provides for a user 
interface to ask the mobile user whether 
he wants to save the message into the 
sent messages folder or not. It is 
reponsible for notifying the mobile user 
on the success of the archiving operation. 
It receives requests for message 
archiving from the message sending 
functionality. 

{C 0.1.4e1.i} alive 
message 
archiving by 
request 

  {C 0.1.4e1.c} 

  c   T 
message 
archiving 
management 

This component is responsible for 
verifying the memory space for archiving 
messages into the sent messages folder. 
It is also responsible for controlling the 
state of the message archiving (message 
archived or message not archived). It is 
responsible as well for saving the sent 
messages into the message repository. 

{C 0.1.4e1.c} 
{C 0.1.4e2.c} 

alive 
message 
archiving 
management 

  
{C 0.1.4e1.i} 
{C 0.1.4e2.i} 
{C 0.1.4e1.d} 

  d   T 
message 
repository 

This component provides for a repository 
of messages (sent messages folder). 

{C 0.1.4e1.d} 
{C 0.1.4e2.d} 

alive 
message 
repository 

  {C 0.1.4e1.c} 

{U 0.1.4e2} 
Automatically 
Archive 
Message 

  d                 

  i  T 
automatic 
message 
archiving 

This component is responsible for 
notifying the mobile user on the success 
of the archiving operation. It receives 
requests for message archiving from the 
message sending functionality. 

{C 0.1.4e2.i} alive 
automatic 
message 
archiving 

  {C 0.1.4e1.c} 

  c   T 
message 
archiving 
management 

This component is responsible for 
verifying the memory space for archiving 
messages into the sent messages folder. 
It is also responsible for controlling the 
state of the message archiving (message 
archived or message not archived). It 
receives requests for message archiving 
from the message sending functionality. 

{C 0.1.4e2.c} 
{C 0.1.4e1.c} 

kill       

  d   T 
message 
repository 

This component provides for a repository 
of messages (sent messages folder). 

{C 0.1.4e2.d} 
{C 0.1.4e1.d} 

kill       

{U 0.1.2.5} Write 
Message 

  d                 
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  i  T 
message 
writing 

This component provides for a user 
interface to allow the mobile user to write 
a message in the message area of the 
message editor (which is a text editor). If 
the letter combination is supported and 
activated, the user interface shall display 
the first possible combination of letters 
(words) for the keys pressed by the 
mobile user and allow him to choose 
other combinations from the word 
repository. This component is responsible 
for displaying to the mobile user the alerts 
of maximum number of characters 
reached. It shall include a user interface 
to connect to the object insertion 
functionality (either pictures, or pictures 
or draft texts), to the object attaching 
functionality (either business cards or 
calendar entries, or files, business cards, 
calendar entries or sounds), to the 
recipient's contact choice functionality 
(either phone numbers, or phone 
numbers or e-mail addresses) and to the 
letter combination activation functionality. 
This component receives requests for 
message writing from the basic or 
extended kind of message selection 
functionality, or from the basic, extended 
or e-mail kind of message selection 
functionality. 

{C 0.1.2.5.i} alive 
message 
writing 

  {C 0.1.2.5.c} 
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  c   T 
message text 
management 

This component is responsible for 
keeping a local record of the letter 
combination's activation state, which is 
updated upon initialization (by requesting 
it to the letter combination management) 
and whenever it changes (by notification 
from the letter combination 
management). It is also responsible for 
getting the list of possible combinations of 
letters (words) from the letter combination 
management for the keys pressed by the 
mobile user. It is responsible as well for 
controlling the number of characters in 
the message's text according to the kind 
of message. It shall generate alerts of 
maximum number of characters reached 
to be displayed to the mobile user. This 
component is responsible as well for 
controlling the user interface flow from 
the message writing functionality to the 
object insertion functionality (either 
pictures, or pictures or draft texts), to the 
object attaching functionality (either 
business cards or calendar entries, or 
files, business cards, calendar entries or 
sounds), to the recipient's contact choice 
functionality and to the letter combination 
activation functionality. 

{C 0.1.2.5.c} alive 
message text 
management 

  

{C 0.1.2.5.i} 
{C 
0.1.2.2e1.c} 
{C 
0.1.2.3e1.i} 
{C 
0.1.2.3e2.i} 
{C 
0.1.2.4e1.i} 
{C 
0.1.2.4e2.i} 
{C 0.1.1e1.i} 
{C 0.1.1e2.i} 
{C 
0.1.2.2e1.i} 

  d   F               

 

Table 4 shows the tabular transformations from the first recursive execution of the 4SRS method over the object insertion and object 

attaching functionalities from the GoPhone’s messaging domain. 

Table 4 – Tabular transformations over the GoPhone’s object insertion and object attaching functionalities. 

4SRS step nr. 1. 2i. 2ii. 2iii. 2iv. 2v. 2vi. 2vii. 3 4 

           

column name 
compo. 
ref. 

classify 
original 
use 
case 

local 
killing 
[T/F] 

name description representation 
global 
killing 
[kill/alive] 

renaming packages/aggregations 
related 
components 

{U 1.1.2.3e1.1} 
Browse 

  i-c-d                 
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Directory of 
Pictures 

  i  T 
picture 
directory 
browsing 

This component provides for a user 
interface to show the picture files in a 
directory of picture files (eventually 
with folders). The directory can be 
browsed for selection of those picture 
files. The mobile user shall be able to 
use this interface to select multiple 
picture files. This component is 
responsible for showing the picture 
files in the directory with a small 
image of the picture (icon) next to 
them. 

{C 1.1.2.3e1.1.i} 
{C 1.1.2.3e2.1.i} 

alive 
picture 
directory 
browsing 

  
{C 1.1.2.3e1.1.c} 
{C 1.1.2.3e1.2.i} 

  c   T 

picture 
directory 
browsing 
management 

This component is responsible for 
retrieving the picture files from the 
picture file repository and resizing 
them to the icon size. 

{C 1.1.2.3e1.1.c} 
{C 1.1.2.3e2.1.c} 

alive 

picture 
directory 
browsing 
management 

  
{C 1.1.2.3e1.1.i} 
{C 1.1.2.3e1.1.d} 

  d   T 
picture file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.3e1.1.d} 
{C 1.1.2.3e1.2.d} 
{C 1.1.2.3e2.1.d} 
{C 1.1.2.3e2.2.d} 
{C 1.1.2.3e2.3.d} 
{C 1.1.2.3e2.4.d} 
{C 1.1.2.4e2.1.d} 
{C 1.1.2.4e2.4.d} 
{C 1.1.2.4e2.7.d} 

alive 
general file 
repository 

  

{C 1.1.2.3e1.1.c} 
{C 1.1.2.3e1.2.c} 
{C 1.1.2.3e2.4.c} 
{C 1.1.2.4e2.1.c} 
{C 1.1.2.4e2.8.c} 
{C 1.1.2.4e2.4.c} 
{C 1.1.2.4e2.7.c} 

{U 1.1.2.3e1.2} 
Display 
Picture in 
Message Area 

  i-c-d                 

  i   T 
picture 
displaying 

This component is responsible for 
displaying pictures in the message 
area of the message editor. It is also 
responsible for notifying the mobile 
user on the violation of size 
constraints over the picture files. 

{C 1.1.2.3e1.2.i} 
{C 1.1.2.3e2.3.i} 

alive 
picture 
displaying 

  {C 1.1.2.3e1.2.c} 

  c   T 
picture 
displaying 
management 

This component provides for the 
validation of size constraints over the 
picture files. It is also responsible for 
retrieving them from the picture file 
repository and resizing them to fit the 
message area. 

{C 1.1.2.3e1.2.c} 
{C 1.1.2.3e2.3.c} 

alive 
picture 
displaying 
management 

  
{C 1.1.2.3e1.2.i} 
{C 1.1.2.3e1.1.d} 

  d   T 
picture file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.3e1.2.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.3e2.1} 
Browse 
Directory of 

  i-c-d                 
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Pictures 

  i  T 
picture 
directory 
browsing 

This component provides for a user 
interface to show the picture files in a 
directory of picture files (eventually 
with folders). The directory can be 
browsed for selection of those picture 
files. The mobile user shall be able to 
use this interface to select multiple 
picture files. This component is 
responsible for showing the picture 
files in the directory with a small 
image of the picture (icon) next to 
them. 

{C 1.1.2.3e2.1.i} 
{C 1.1.2.3e1.1.i} 

kill       

  c   T 

picture 
directory 
browsing 
management 

This component is responsible for 
retrieving the picture files from the 
picture file repository and resizing 
them to the icon size. 

{C 1.1.2.3e2.1.c} 
{C 1.1.2.3e1.1.c} 

kill       

  d   T 
picture file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.3e2.1.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.3e2.2} 
Browse List of 
Draft Texts 

  i-c-d                 

  i  T 
draft text list 
browsing 

This component provides for a user 
interface to show the draft text files in 
a list. It can be browsed for selection 
of those draft text files. The mobile 
user shall be able to use this interface 
to select multiple draft text files. This 
component is responsible for 
presenting the draft text files in the list 
by showing the beginning of the text 
(fitting the user interface's length). 

{C 1.1.2.3e2.2.i} alive 
draft text list 
browsing 

  
{C 1.1.2.3e2.4.c} 
{C 1.1.2.3e2.4.i} 

  c   T 
draft text list 
browsing 
management 

This component is responsible for 
retrieving the draft text files from the 
draft text file repository. 

{C 1.1.2.3e2.2.c} 
{C 1.1.2.3e2.4.c} 

kill       

  d   T 
draft text file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.3e2.2.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.3e2.3} 
Display 
Picture in 
Message Area 

  i-c-d                 

  i   T 
picture 
displaying 

This component is responsible for 
displaying pictures in the message 
area of the message editor. It is also 
responsible for notifying the mobile 
user on the violation of size 
constraints over the picture files. 

{C 1.1.2.3e2.3.i} 
{C 1.1.2.3e1.2.i} 

kill       
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  c   T 
picture 
displaying 
management 

This component provides for the 
validation of size constraints over the 
picture files. It is also responsible for 
retrieving them from the picture file 
repository and resizing them to fit the 
message area. 

{C 1.1.2.3e2.3.c} 
{C 1.1.2.3e1.2.c} 

kill       

  d   T 
picture file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.3e2.3.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.3e2.4} 
Display Draft 
Text in 
Message Area 

  i-c-d                 

  i   T 
draft text 
displaying 

This component is responsible for 
displaying draft texts in the message 
area of the message editor. It is also 
responsible for notifying the mobile 
user on the violation of length 
constraints over the text files. 

{C 1.1.2.3e2.4.i} alive 
draft text 
displaying 

  {C 1.1.2.3e2.4.c} 

  c   T 
draft text 
displaying 
management 

This component provides for the 
validation of length constraints 
(character number) over the text files. 
It is also responsible for retrieving 
them from the draft text file repository. 

{C 1.1.2.3e2.4.c} 
{C 1.1.2.3e2.2.c} 

alive 
draft text 
management 

  
{C 1.1.2.3e2.4.i} 
{C 1.1.2.3e1.1.d} 
{C 1.1.2.3e2.2.i} 

  d   T 
draft text file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.3e2.4.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.4e1.1} 
Browse List of 
Business 
Cards 

  i-c-d                 

  i  T 
business card 
list browsing 

This component provides for a user 
interface to show the business cards 
in a list. It can be browsed for 
selection of those business cards. 
The mobile user shall be able to use 
this interface to select multiple 
business cards. 

{C 1.1.2.4e1.1.i} 
{C 1.1.2.4e2.2.i} 

alive 
business card 
list browsing 

  
{C 1.1.2.4e1.1.c} 
{C 1.1.2.4e1.3.i} 

  c   T 
business card 
list browsing 
management 

This component is responsible for 
retrieving business cards from the 
business card repository (by business 
card holder). 

{C 1.1.2.4e1.1.c} 
{C 1.1.2.4e1.3.c} 
{C 1.1.2.4e2.2.c} 
{C 1.1.2.4e2.5.c} 

alive 
business card 
management 

  
{C 1.1.2.4e1.1.i} 
{C 1.1.2.4e1.1.d} 
{C 1.1.2.4e1.3.i} 

  d   T 
business card 
repository 

This component provides for a 
repository of business cards. 

{C 1.1.2.4e1.1.d} 
{C 1.1.2.4e1.3.d} 
{C 1.1.2.4e2.2.d} 
{C 1.1.2.4e2.5.d} 

alive 
business card 
repository 

  {C 1.1.2.4e1.1.c} 

{U 1.1.2.4e1.2} 
Browse 
Calendar 

  i-c-d                 
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  i   T 
calendar 
browsing 

This component provides for a user 
interface to show the calendar entries 
in a calendar. It can be browsed for 
selection of those calendar entries. 
The mobile user shall be able to use 
this interface to select multiple 
calendar entries. This component is 
responsible for showing the text of the 
calendar entries concerning each day 
while the mobile user browses the 
calendar. 

{C 1.1.2.4e1.2.i} 
{C 1.1.2.4e2.3.i} 

alive 
calendar 
browsing 

  
{C 1.1.2.4e1.2.c} 
{C 1.1.2.4e1.3.i} 

  c   T 
calendar 
browsing 
management 

This component is responsible for 
retrieving calendar entries from the 
calendar (by date). 

{C 1.1.2.4e1.2.c} 
{C 1.1.2.4e1.4.c} 
{C 1.1.2.4e2.3.c} 
{C 1.1.2.4e2.6.c} 

alive 
calendar 
management 

  
{C 1.1.2.4e1.2.i} 
{C 1.1.2.4e1.2.d} 
{C 1.1.2.4e1.3.i} 

  d   T calendar 
This component provides for a 
repository of calendar entries. 

{C 1.1.2.4e1.2.d} 
{C 1.1.2.4e1.4.d} 
{C 1.1.2.4e2.3.d} 
{C 1.1.2.4e2.6.d} 

alive calendar   {C 1.1.2.4e1.2.c} 

{U 1.1.2.4e1.3} 
Add Business 
Card to 
Attachments 
List 

  i-c-d                 

  i   T 
business card 
addition 

This component is responsible for 
adding items to the attachments list in 
the message editor. 

{C 1.1.2.4e1.3.i} 
{C 1.1.2.4e1.4.i} 

alive 
business card 
or calendar 
entry addition 

  
{C 1.1.2.4e1.1.c} 
{C 1.1.2.4e1.2.c} 

  c   T 
business card 
addition 
management 

This component is responsible for 
retrieving business cards from the 
business card repository (by business 
card holder). 

{C 1.1.2.4e1.3.c} 
{C 1.1.2.4e1.1.c} 

kill 

 

  

  

  d   T 
business card 
repository 

This component provides for a 
repository of business cards. 

{C 1.1.2.4e1.3.d} 
{C 1.1.2.4e1.1.d} 

kill       

{U 1.1.2.4e1.4} 
Add Calendar 
Entry to 
Attachments 
List 

  i-c-d                 

  i   T 
calendar 
entry addition 

This component is responsible for 
adding items to the attachments list in 
the message editor. 

{C 1.1.2.4e1.4.i} 
{C 1.1.2.4e1.3.i} 

kill       

  c   T 
calendar 
entry addition 
management 

This component is responsible for 
retrieving calendar entries from the 
calendar (by date). 

{C 1.1.2.4e1.4.c} 
{C 1.1.2.4e1.2.c} 

kill     
  

  d   T calendar 
This component provides for a 
repository of calendar entries. 

{C 1.1.2.4e1.4.d} 
{C 1.1.2.4e1.2.d} 

kill       

{U 1.1.2.4e2.1} 
Browse 

  i-c-d                 
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Directory of 
Files 

  i  T 
file directory 
browsing 

This component provides for a user 
interface to show the files in a 
directory of files (eventually with 
folders). The directory can be 
browsed for selection of those files. 
The mobile user shall be able to use 
this interface to select multiple files. 

{C 1.1.2.4e2.1.i} alive 
file directory 
browsing 

  
{C 1.1.2.4e2.4.c} 
{C 1.1.2.4e2.4.i} 

  c   T 
file directory 
browsing 
management 

This component is responsible for 
retrieving files from the file repository. 

{C 1.1.2.4e2.1.c} 
{C 1.1.2.4e2.4.c} 

kill       

  d   T file repository 
This component provides for a 
repository of files. 

{C 1.1.2.4e2.1.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.4e2.8} 
Browse 
Directory of 
Sounds 

  i-c-d                 

  i  T 
sound 
directory 
browsing 

This component provides for a user 
interface to show the sound files in a 
directory of sound files (eventually 
with folders). The directory can be 
browsed for selection of those sound 
files. The mobile user shall be able to 
use this interface to select multiple 
sound files. 

{C 1.1.2.4e2.8.i} alive 
sound 
directory 
browsing 

  
{C 1.1.2.4e2.7.c} 
{C 1.1.2.4e2.4.i} 

  c   T 

sound 
directory 
browsing 
management 

This component is responsible for 
retrieving sound files from the sound 
file repository. 

{C 1.1.2.4e2.8.c} 
{C 1.1.2.4e2.7.c} 

kill       

  d   T 
sound file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.4e2.8.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.4e2.2} 
Browse List of 
Business 
Cards 

  i-c-d                 

  i  T 
business card 
list browsing 

This component provides for a user 
interface to show the business cards 
in a list. It can be browsed for 
selection of those business cards. 
The mobile user shall be able to use 
this interface to select multiple 
business cards. 

{C 1.1.2.4e2.2.i} 
{C 1.1.2.4e1.1.i} 

kill       

  c   T 
business card 
list browsing 
management 

This component is responsible for 
retrieving business cards from the 
business card repository (by business 
card holder). 

{C 1.1.2.4e2.2.c} 
{C 1.1.2.4e1.1.c} 

kill       

  d   T business card This component provides for a {C 1.1.2.4e2.2.d} kill       
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repository repository of business cards. {C 1.1.2.4e1.1.d} 

{U 1.1.2.4e2.3} 
Browse 
Calendar 

  i-c-d                 

  i   T 
calendar 
browsing 

This component provides for a user 
interface to show the calendar entries 
in a calendar. It can be browsed for 
selection of those calendar entries. 
The mobile user shall be able to use 
this interface to select multiple 
calendar entries. This component is 
responsible for showing the text of the 
calendar entries concerning each day 
while the mobile user browses the 
calendar. 

{C 1.1.2.4e2.3.i} 
{C 1.1.2.4e1.2.i} 

kill       

  c   T 
calendar 
browsing 
management 

This component is responsible for 
retrieving calendar entries from the 
calendar (by date). 

{C 1.1.2.4e2.3.c} 
{C 1.1.2.4e1.2.c} 

kill       

  d   T calendar 
This component provides for a 
repository of calendar entries. 

{C 1.1.2.4e2.3.d} 
{C 1.1.2.4e1.2.d} 

kill       

{U 1.1.2.4e2.4} 
Add File to 
Attachments 
List 

  i-c-d                 

  i   T file addition 

This component is responsible for 
adding files to the attachments list in 
the message editor. It is also 
responsible for notifying the mobile 
user on the violation of size 
constraints over the files. 

{C 1.1.2.4e2.4.i} 
{C 1.1.2.4e2.7.i} 

alive 
file or sound 
file addition 

  {C 1.1.2.4e2.4.c} 

  c   T 
file addition 
management 

This component provides for the 
validation of size constraints over the 
files. It is responsible for retrieving 
them from the file repository. 

{C 1.1.2.4e2.4.c} 
{C 1.1.2.4e2.1.c} 

alive 
file 
management 

  
{C 1.1.2.4e2.4.i} 
{C 1.1.2.3e1.1.d} 
{C 1.1.2.4e2.1.i} 

  d   T file repository 
This component provides for a 
repository of files. 

{C 1.1.2.4e2.4.d} 
{C 1.1.2.3e1.1.d} 

kill       

{U 1.1.2.4e2.5} 
Add Business 
Card to 
Attachments 
List 

  i-c-d                 

  i   T 
business card 
addition 

This component is responsible for 
adding items to the attachments list in 
the message editor. 

{C 1.1.2.4e2.5.i} 
{C 1.1.2.4e1.3.i} 

kill       

  c   T 
business card 
addition 
management 

This component is responsible for 
retrieving business cards from the 
business card repository (by business 
card holder). 

{C 1.1.2.4e2.5.c} 
{C 1.1.2.4e1.1.c} 

kill       
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  d   T 
business card 
repository 

This component provides for a 
repository of business cards. 

{C 1.1.2.4e2.5.d} 
{C 1.1.2.4e1.1.d} 

kill       

{U 1.1.2.4e2.6} 
Add Calendar 
Entry to 
Attachments 
List 

  i-c-d                 

  i   T 
calendar 
entry addition 

This component is responsible for 
adding items to the attachments list in 
the message editor. 

{C 1.1.2.4e2.6.i} 
{C 1.1.2.4e1.3.i} 

kill       

  c   T 
calendar 
entry addition 
management 

This component is responsible for 
retrieving calendar entries from the 
calendar (by date). 

{C 1.1.2.4e2.6.c} 
{C 1.1.2.4e1.2.c} 

kill       

  d   T calendar 
This component provides for a 
repository of calendar entries. 

{C 1.1.2.4e2.6.d} 
{C 1.1.2.4e1.2.d} 

kill       

{U 1.1.2.4e2.7} 
Add Sound to 
Attachments 
List 

  i-c-d                 

  i   T 
sound file 
addition 

This component is responsible for 
adding sound files to the attachments 
list in the message editor. It is also 
responsible for notifying the mobile 
user on the violation of size 
constraints over the sound files. 

{C 1.1.2.4e2.7.i} 
{C 1.1.2.4e2.4.i} 

kill       

  c   T 
sound file 
addition 
management 

This component provides for the 
validation of size constraints over the 
sound files. It is responsible for 
retrieving them from the sound file 
repository. 

{C 1.1.2.4e2.7.c} 
{C 1.1.2.4e2.8.c} 

alive 
sound file 
management 

  
{C 1.1.2.4e2.8.i} 
{C 1.1.2.3e1.1.d} 

  d   T 
sound file 
repository 

This component provides for a 
repository of files. 

{C 1.1.2.4e2.7.d} 
{C 1.1.2.3e1.1.d} 

kill       

 

 

 

 


