
Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

GUIsurfer: A TOOL FOR GUI REASONING

João Carlos Cardoso Silva
Dep. Informática / CCTC, Universidade do Minho, Braga, Portugal

jcsilva.mail@gmail.com

KEYWORDS
GUI, Reverse Engineering, Models

ABSTRACT
The design of interactive systems does not seem to be
much improved by the use of tool support. Interfaces
are often difficult to understand and use for end users.
Moreover, the code produced by available tools is
difficult to understand and maintain. In the context of
an effort to develop tools to support the automated
analysis of interactive system designs, we are
developing GUIsurfer, a tool capable of deriving and
reasoning about models of graphical user interfaces
from source code. The goal is to enable the analysis of
existing interactive applications, for example, when
they must be ported or updated.

INTRODUCTION
In order for an user interface to have good usability
characteristics it must both be adequately designed and
adequately implemented. Tools are currently available
to developers that allow for fast development of user
interfaces with graphical components. However, the
design of interactive systems does not seem to be much
improved by the use of such tools. Interfaces are often
difficult to understand and use for end users. In many
cases users have problems in identifying all the
supported tasks of a system, or in understanding how to
achieve their goals (Loer et al., 2005). Moreover, these
tools produce spaghetti code, which is difficult to
understand and maintain (Mikkonen and Taivalsaari,
2008). The generated code is composed by call-back
procedures for most widgets like buttons, scroll bars,
menu items, and other widgets in the interface. These
procedures are called by the system when the user
interacts with the system through an widget’s event.
Graphical user interfaces may contains hundreds of
widgets, and therefore many call-back procedures
which turn difficult to understand and maintain the
source code. Additionally, it is important to ensure that
Graphical User Interfaces (GUI) based applications
behave as expected. The correctness of the GUI is
essential to the correct execution of the software.

Model-based development and formal methods could be
used to validate system requirements early in the life
cycle at reasonable cost. Different types of models can
be used in the design and development of interactive
systems, from user and task models to software
engineering models of the implementation (Blandford,
2004).
In the context of an effort to develop tools to support
the automated analysis of interactive system designs,
we are investigating the applicability of reverse

engineering approaches to graphical user interface
(GUI) analysis from source code. Our objective consists
in developing tools to automatically extract models of
the GUI structure and behaviour, from its source code.
The models should specify which widgets are present in
the interface, and their relationships; which particular
GUI events can occur, and when; which are the
conditions affecting the effect of those events in the
interface; which system actions are executed; and which
GUI state is generated next.

We want to be able to reason and test these GUI models
in order to analyse aspects of the original application’s
behaviour, and the quality of the implementation. To
that end, we are developing GUIsurfer, a tool capable of
automatically deriving and reasoning about structural
and behavioural GUI models of applications written in
Java/Swing, WxHaskell, or GWT.

This work enables the analysis of existing interactive
applications, for example, when an existing application
must be ported or simply updated (Moore, 1996). Being
able to reason at a higher level of abstraction than that
of code will help in guaranteeing that the new/updated
user interface has the same characteristics of the
previous one.

THE ARCHITECTURE OF GUIsurfer

The GUIsurfer tool is composed by four modules (see
Figure 1): FileParser, AstAnalyser, GuiModelAnalysis
and Graph. These modules are configurable through
command line parameters. Below we outline some of
the more important functionalities for each module.

- FileParser - Currently this module allows the
parsing of Java/Swing or WxHaskell source
code. The FileParser tool is language
dependent.

- AstAnalyser - This module is used to extract
the GUI layer from any abstract syntax tree.
This process is parameterized with
constructors. The AstAnalyser tool is another
language dependent tool used to slice an
abstract syntax tree, considering only it
graphical user interface layer. Part of this tool
is easily retargetable, however most of the tool
needs to be rewritten to consider another
particular programming language. The
AstAnalyser tool is composed of a slicing
library, containing a generic set of traversal
functions that traverse any AST. This tool must
be used with three arguments, i.e. the abstract
syntax tree, the entry point in source code

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

(e.g., the main method for Java source code),
and a list with all widgets to consider during
the GUI slicing process.

- GuiModelAnalysis - This module implements
the GUI abstraction step. From several
fragments of the GUI layer, this module
automatically generates a Haskell GUI’s
specification and other GUI models;

- Graph - Finally the Graph module is used to
test the graphical user interface through it’s
Haskell GUI’s specification. To implement this
task we make use of QUICKCHECK. The
Graph tool is language independent and
generates several metadata files with events,
conditions, actions, and states extracted form
source code. Each of these types of data is
related to a particular fragment from the AST.
Another important output generated by the
Graph tool are GUI specifications written in
the Haskell programming language. These
specifications define the GUI layer mapping
events/conditions to actions. This tool allows
us also to generate several visual models
through the GraphViz tool, such as state
machines, behavioral graph, etc.

CONCLUSIONS AND FUTURE WORK

The current version of GUIsurfer has been developed to
reverse engineering interactive applications from source
code. This work has shown that model-based reasoning
provides an easy way to implement interactive systems
analysis. Models provide a tool to explore GUI
properties. We evaluated these models from different
case studies, which demonstrated how model-based
reasoning enables us to test interactive systems.

In what concerns user interface development, two
perspectives on quality can be considered. Users, on the
one hand, are typically interested on what can be called
external quality: the quality of the interaction between
users and system. Programmers, on the other hand, are
typically more focused on the quality attributes of the
code being produced.

This work is an approach to bridging this gap by
allowing us to reason about GUI models from source
code. We described GUI models extracted
automatically from the code, and presented a
methodology to reason about the user interface model.
A number of metrics over the graphs representing the
user interface are being investigated. Some ideas on
testing the graph against desirable properties of the
interface are also being explored.

ACKNOWLEDGMENT

This work is supported by Fundação para a Ciência e
Tecnologia (FCT, Portugal) through PhD Grant
SFRH/BD/1179/2006.

REFERENCES

A. Blandford, R. Butterworth, and P. Curzon. Models of
interactive systems: a case study on programmable user
modelling. International Journal of Human-Computer
Studies International Journal of Human-Computer
Studies, 60:149–200, 2004.

K. Loer and M.D. Harrison. Analysing user confusion
in context aware mobile applications. In M.F.
Constabile and F. Paternó, editors, PINTERACT 2005,
volume 3585 of Lecture Notes in Computer Science,
page 184-197, New York, NY, USA, 2005. Springer.

T. Mikkonen and A. Taivalsaari. Web applications -
spaghetti code for the 21st century. In International
Conference on Software Engineering Research,
Management and Applications, pp. 319–328, 2008.

M. Moore. A survey of representations for recovering
user interface specifications for reengineering.
Technical report, Institute of Technology, Atlanta GA
30332-0280, june 1996.

AUTHOR BIOGRAPHY

JOÃO CARLOS C. SILVA
Licentiate in Computer Science and Mathematics. He is
currently doing a PhD at University of Minho with the
thesis title: GUI SURFER: A Tool for Reverse
Engineering of Graphical User Interface.

