MULTIFUNCTIONAL NANOCOATING ON SYNTHETIC FIBRES DEPOSITED BY PULSED MAGNETRON SPUTTERING

J.H.O. Nascimento¹, J. Neves¹, V. Teixeira², J. Carneiro²

¹ Textile Engineering Department
² Physics Department, GRF- Group Functional Coatings
E-mail address: jose.heriberto@det.uminho.pt

KEYWORDS
Nanocoatings, Multifunctional textiles, Super hydrophobicity, Sputtering.

ABSTRACT
The using of new techniques applied to the development of new materials, devices or systems in nanometrics scale is increasing in the recent years. Those new materials are receiving higher attention because of their potential applications in medicine, biology, microelectronics, magnetic devices, powder metallurgy, renewable energies, and textile. Textile industries are using a new technology nanocoating, which is the application of a thin film of a material polymeric or not on a textile material. Researchers are inspired to mimic nature in order to create textile materials with higher levels of functions and smartness. Applied nanocoatings on textiles fibers have the objective to develop materials with multifunctional properties as: antimicrobial, UV protection, water repellence, soil resistance, anti-static, anti-infrared, flame-retardant properties, colour fastness and strength of textile (Carneiro, 2010).

In the present work, low temperature pulsed DC magnetron sputtering method (PMS) (Figure 1) was used to create multifunctional nanocoatings on poly(lactic acid) (PLA) textile fibres surfaces. In this study, the principal objectives are:
- The application of TiO₂ nanocoating on PLA fibres to obtain a textile material with UV protection, photocatalytic and antibactelatal properties;
- PTFE nanocoatings and thermochoic micro/nanocapsules was used on PLA fibres to obtain a thermochoic super water-repellent textile material.

The nanocoatings were characterized by SEM (scanning electron microscopy), AFM (atomic force microscopy) and TEM (transmission electron microscopy). Photocatalytic efficacy was tested by degradation of MB dye (1 ppm). And the reaction kinetics can be described by a modified Langmuir-Hinshelwood model in agreement with a surface reaction, as discussed, e.g. by Fonzo et al (2009).

\[\ln \frac{C_0}{C} + k(C_0 - C) = k_r K t \]

Where \(C \) is the methylene blue concentration at time \(t \), \(C_0 \) the initial value, \(K \) is the adsorption coefficient of the methylene blue and \(k_r \) the reaction rate constant.

The ultraviolet protection factor (UPF) values were calculated according to the Standard AS/NZS 4399:1996. Measurements were performed in a UV-visible spectrophotometer system SDL, model M284, from 295 nm at an interval of 1 nm. The percentage blockings of UV-A (315nm – 400 nm) and UV-B (295 nm – 315 nm) were calculated from the transmittance data. The UV protection factor (UPF) was calculated using the following equation (Kathirvelu et al. 2009).

\[UPF = \frac{\sum E_\lambda \times S_\lambda \times \Delta \lambda}{\sum E_\lambda \times T_\lambda \times \Delta \lambda} \]

where \(E_\lambda \) is the relative erythemal spectral effectiveness, \(S_\lambda \) is the solar spectral irradiance (in W/m²·nm⁻¹), \(T_\lambda \) is the spectral transmission of the specimen, and \(\Delta \lambda \) is the measured wavelength interval (nm).

Antimicrobial property of the textile fabric nanocoated was evaluated according to AATCC: 100-2004 and 147-2004 (qualitative and quantitative values), using Staphylococcus aureus.

Figure 1. Schematics of DC pulsed magnetron sputtering system for nanocoating deposition.

The super hydrophobic properties of the thermochoic PLA were evaluated by Contact angle measurements carried out in OCA 20 using distilled water (5 µL) where the drop image
was captured by Dynamic Contact Angle (DCA) measurement. The contact angle for the WDCA measurements was determined mathematically through the fitting of a Young–Laplace curve around the drop by the equation:

$$\cos(\theta) = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}}$$

(3)

where γ_{SV}, γ_{SL}, and γ_{LV} are surface energies (solid/vapor, solid/liquid, and liquid/vapor, respectively) and θ is the contact angle between the liquid and the solid surface. The results showed that pulsed DC magnetron sputtering method is efficient for the application of the nanocoating ultra thin film on this textile fibre (Figure 2). The photocatalytic property of nanocoated PLA is showed in Figure 3. The degradation of colour was efficient (93%) after 4 hours.

![Figure 2](image1.png)

Figure 2 – The SEM image of TiO$_2$ thin films deposited on PLA.

![Figure 3](image2.png)

Figure 3 - Photocatalytic degradation of Methylene blue dye (1 ppm, pH=7) with 93% efficiency after 4 hours.

The Figures 4 show the thermochoic PLA nanocoated with PTFE in nanometer scale. The fabric showed superhydrophobicity of about 168°. The results also showed that the nanofinishing also enhanced the super water repellent properties on textile fabrics.

![Figure 4](image3.png)

Figure 4 – The SEM image of nanocoating deposited on super water-repellent PLA with thermochromic micro and nanocapsules.

Unquestionably, we believe that techniques applied to the development of new materials in nanoscale (nanotechnology), holds a strong promising future for textile industry and for the consumers.

REFERENCES

AUTHOR BIOGRAPHIES

JOSE HERIBERTO NASCIMENTO was born in Natal, Brazil and went to the University of Federal of RN (UFRN), where he studied Textile Engineering and Mechanical Engineering obtained his degree in 2004 and 2005. He has Master Degree in Mechanical Engineering and obtained his degree in 2006. Today, He is finishing PhD in Textile Engineering with the Project Multifuncional Nanocoating PMS applied on Textile Materials. Your actuation area is Surface Chemistry, Nanoparticles and nanocoating functional, Self assembly organic-inorganic. His e-mail address is jose.heriberto@det.uminho.pt.