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Abstract 

A new approach for the implementation of linear Navier 

slip boundary conditions into a finite volume method is 

presented. The details of this implementation are given for 

a simple geometry and using Cartesian coordinates. A 

comparison is made between this new method (implicit 

approach) and the usual iterative process (explicit 

approach). It could be found that for this new 

implementation the convergence issues during the 

iterative procedure are solved and for some specific 

geometry the greater the slip velocity better is 

convergence of the process. With this new arrangement 

the boundary conditions are implicit in the system of 

equations and there is no need for any relaxation factor in 

the slip velocity when using high slip (friction) 

coefficients. The robustness of the code was also tested in 

a 4:1 contraction, allowing the study of the vortex 

dimension with slip velocity, using a Newtonian and PPT 

constitutive equations. 

 

Introduction 

The motion of incompressible fluids is governed by the 

the Navier Stokes Equations (Batchelor 1967), which 

express the conservation of mass and momentum. In 2D 

this equations are the following:  
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Assuming that the fluid slips at the wall, and the slip 

velocity is given by the Navier Slip Law (Navier 1827) 

the following relationship, between slip velocity (us) and 

the wall shear stress (xy), applies: 
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Numerical implementation of wall slip 

Explicit approach  

Using the usual explicit approach for the implementation 

of the wall slip boundary condition the calculation 

proceeds as illustrated in the flow chart of Figure 1, until 

convergence is achieved. 

 

 

 

 

 

Figure 1. Explicit implementation of the wall slip. 

However, the explicit approach requires the employment 

of high levels of relaxation (Sunarso and Yamamoto 

2007)  increasing with the intensity of slip imposed, fact 

that delays the calculation, and may limit the maximum 

level of slip imposed. 

Implicit approach  

Since most of the terms in the conservation of momentum 

equations are not influenced by the existence of slip at the 

wall, an alternative approach for the implementation of 

this boundary condition can be proposed. For the sake of 

simplicity one can consider a flow between parallel plates 

as illustrated in Figure 2. 

 

 

 

Figure 2. Flow and geometry. 

For this geometry and analyzing in detail a computational 

cell close to the upper wall, only the diffusive term in the 

guarantees the velocity 

vector points in the stress 

opposite direction. 
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x-momentum equation is affected by the existence of a 

slip velocity. In this cell, the variation of u  along the y 

direction must be calculated. The discretization of this 

term in the computational cell shown in Figure 3, gives: 
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Figure 3. Computational cell near the wall. 

Using the Navier Slip Law (1.4), an explicit relation 

between un and uP can be obtained: 
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Thus the derivative of the velocity at the wall, Eq. (1.5), 

can be approximated by: 
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Consequently, there is no need to obtain the value of un to 

solve the system of equations, since the required term is 

only function of uP. 

Using this formulation, during the iterative calculation 

process, the last step of the flow chart shown in Figure 1 

does not have to be performed. The slip velocity can be 

obtained, at the end of the calculation procedure, using 

Eq. (1.7). 

Results and Discussion 

The two alternative approaches described for the 

implementations of the wall slip boundary condition, were 

tested in a simple problem of the flow of a Newtonian 

Fluid between parallel plates, as shown in Figure 2. The 

results obtained, in terms of iterations required to obtain 

convergence are illustrated in Figure 4.  

The resolution with the explicit approach requires, in 

general, more iterations than the implicit approach, since 

the relaxation factor, needed to obtain convergence, has to 

be increased with the level of slip. Moreover, for the 

largest levels of slip, S1 and S0, it was not possible to 

reach a converged solution with the explicit formulation. 

To test the robustness of the implicit procedure, a 4:1 

contraction was also used (see Fig. 5). It was possible to 

obtain convergence both with Newtonian and a PTT fluid 

for high slip velocities. This allowed studying the 

evolution of the vortex geometry with the increasing if the 

slip velocity. For Newtonian fluids the vortex dimension 

is decreasing with an increase in slip (see Fig. 6-top). For 

non-Newtonian fluids the vortex dimension changes little 

(see Fig. 6-bottom). 
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Figure 4. graph representing a comparison for the number of 

iterations needed to get convergence using the two methods. 

 
Figure 5. Variables rescaling in the 4:1 contraction. 
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Figure 6. Evolution of vortex dimension in Newtonian fluid 

(top) PTT fluid (bottom). 
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