
Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

MODEL-BASED PROGRAMMING ENVIRONMENTS FOR
SPREADSHEETS

Jácome Cunha
Departamento de Informática

jacome@di.uminho.pt

João Saraiva
Departamento de Informática

jas@di.uminho.pt

Joost Visser
Software Improvement Group

j.visser@sig.eu

ABSTRACT

Although spreadsheets can be seen as a flexible
programming environment, they lack some of the
concepts of declarative programming languages, such as
structured data types. This can lead the user to edit the
spreadsheet in a wrong way and perhaps cause corrupt
or redundant data.

We devised a method for extraction of a relational
model from a spreadsheet and the subsequent
embedding of the model back into the spreadsheet to
create a model-based spreadsheet programming
environment. The extraction algorithm is specific for
spreadsheets since it considers particularities such as
layout and column arrangement. The extracted model is
used to generate formulas and visual elements that are
embedded in the spreadsheet helping users to edit
correct data.

We present preliminary experimental results from
applying our approach to a sample of spreadsheets from
the EUSES Spreadsheet Corpus.

INTRODUCTION

Developments in programming languages are changing
the way in which we construct programs: naive text
editors are now replaced by powerful programming
language environments which are specialized for the
programming language under consideration and which
help the user throughout the editing process. Helpful
features like highlighting keywords of the language or
maintaining a beautified indentation of the program
being edited are now provided by several text editors.
Recent advances in programing languages extend such
naive editors to powerful language-based environments
(Kuiper and Saraiva 1998; Reps and Teitelbaum 1984;
van den Brand et al. 1999; Holzner 2004). Language-
based environments use knowledge of the programming
language to provide the users with more powerful
mechanisms to develop their programs. This knowledge
is based on the structure and the meaning of the
language. To be more precise, it is based on the
syntactic and (static) semantic characteristics of the
language. Having this knowledge about a language, the
language-based environment is not only able to
highlight keywords and beautify programs, but it can
also detect features of the programs being edited that,
for example, violate the properties of the underlying

language. Furthermore, a language-based environment
may also give information to the user about properties
of the program under consideration. Consequently,
language-based environments guide the user in writing
correct and more reliable programs.
Moreover, advances in declarative programming
languages are providing programmers with powerful
mechanisms to structure and develop their programs.
Indeed, the development of powerful type systems,
modular systems, abstract models, support for generic
programming and testing, lazy evaluation engines,
incremental models of computation, etc. are changing
the way we write our programs. However, spreadsheets
when viewed as a declarative programming language
does not support any of those developments! Indeed,
with the exception of the pioneer work of Martin Erwig
(Erwig and Burnett 2002; Abraham and Erwig 2004;
Erwig et al. 2005), little work has been done on the
foundations of spreadsheets by the declarative
programming language community.
In this paper, we propose a declarative approach to
enhance a spreadsheet system with mechanisms to guide
end-users to introduce correct data. An overview of the
approach is shown in Figure 1.

A background process adds formulas and visual objects
to an existing spreadsheet, based on a relational
database schema. To obtain this schema, we follow the
approach used in language-based environments: we use
the knowledge about the data already existing in the
spreadsheet to guide end-users in introducing correct
data. The knowledge about the spreadsheet under
consideration is based on the meaning of its data that we
infer using data mining and database normalization
techniques. Data mining techniques specific to
spreadsheets are used to infer functional dependencies
from the spreadsheet data. These functional
dependencies define how certain spreadsheet columns
determine the values of other columns. Database
normalization techniques, namely the use of normal

Figure 1: Edit assistance is added to a spreadsheet
based on a relational database schema.

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

forms (Codd 1970), are used to eliminate redundant
functional dependencies induced by the data mining
techniques, and to define a relational database model.
This model may include several tables, which may
contain primary keys: a column, or a set of columns,
that determine the value of other columns.
Knowing the relational database model induced by the
spreadsheet data, we construct a new spreadsheet

environment that not only contains the data of the
original one, but that also includes advanced features
which provide information to the end user about correct
data that can be introduced.
We consider three types of advanced features: auto-
completion of column values, non-editable columns and
safe deletion of rows. Auto-completion means that when
the user inserts a primary key (by typing or selecting
from a combo box), the columns that are functionally
dependent on this primary key will be filled with values
automatically. The non-editable column feature prevents
the end-user from editing columns that depend on a
primary key value. Note that such columns are
automatically filled in by selecting a primary key. By
using the auto-completion feature the spreadsheet
system guarantees that the end-user does not introduce
data that violates the relational model inferred. The safe
deletion of rows feature warns if by deleting a selected
row some information not represented elsewhere is lost.
Like in a modern programming language environment,
the refactored spreadsheet system also offers the
possibility of using traditional editing, that is, the
introduction of data by editing any of the columns.
When using traditional editing the end-user is able to
introduce data that may violate the relational database
model inferred from the previous spreadsheet data. The
spreadsheet environment includes a mechanism to
recalculate the relational database model after
traditional editing. This new relational model is used to
guide the end-user in future assisted editing of the
spreadsheet.
Our techniques not only work for database-like
spreadsheets, like the example we will use throughout
the paper, but they work also for realistic spreadsheets
defined in other contexts (for example, inventory, grades
or modeling). In this paper we present our first
experimental results obtained by considering a large set
of spreadsheets included in the EUSES Spreadsheet
Corpus (Fisher II and Rothermel 2005).

MOTIVATING EXAMPLE

In order to present our approach we shall consider the
following well-known example taken from (Connolly
and Begg 2002) and modeled in a spreadsheet as shown
in Figure 2.
This spreadsheet contains information related to a
housing renting system. It gathers information about

clients, owners, properties, prices and renting periods.
The name of each column gives a clear idea of the
information it represents. We extend this example with
three additional columns, named days (that computes
the total number of renting days by subtracting the
column rentStart to rentFinish), total (that multiplies the
number of renting days by the rent per day value, rent)
and country (that represents the property’s country). The
columns days and rent are expressed by formulas.
This spreadsheet defines a valid model to represent the
information of the renting system. However, it contains
redundant information: the displayed data specifies the
house renting of two clients (and owners) only, but their
names are included five times, for example. This kind of
redundancy makes the maintenance and update of the
spreadsheet complex and error-prone. A mistake is
easily made, for example, by mistyping a name, thus
corrupting the data on the spreadsheet. Two common
problems occur as a consequence of redundant data:
update anomalies and deletion anomalies (Ullman and
Widom 1997). The former problem occurs when we
change information in one place but leave the same
information unchanged in the other places. The problem
also occurs if the update is not performed exactly in the
same way. In our example, this happens if we change
the rent of property number pg4 from 50 to 60 only one
row and leave the others unchanged, for example. The
latter problem occurs when we delete some data and
lose other information as a side effect. For example, if
we delete row 5 in the our example all the information
concerning property pg36 is lost. The database
community has developed techniques, such as data
normalization, to eliminate such redundancy and
improve data integrity (Ullman and Widom 1997; Date
1995). Database normalization is based on the detection
and exploitation of functional dependencies inherent in
the data (Beeri et al. 1977). Can we leverage these
database techniques for spreadsheets systems so that the
system eliminates the update and deletion anomalies by
guiding the end-user to introduce correct data? Based on
the data contained in our example spreadsheet, we

Figure 2: A spreadsheet representing a property renting system.

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

would like to discover the following functional
dependencies which represent the four entities involved
in our house renting system: countries, clients, owners
and properties.

country ⇀ {}
clientNr ⇀ cName
ownerNr ⇀ oName
propNr ⇀ pAddress,rent,ownerNr

A functional dependency A ⇀ B means that if we have
two equal inhabitants of A, then the corresponding
inhabitants of B are also equal. For instance, the client
number functionally determines his/her name, since no
two clients have the same number. The right hand side
of a functional dependency can be an empty set. This
occurs, for example, in the country functional
dependency. Note that there are several columns
(labeled rentStart,rentFinish,days and total) that are not
included in any functional dependency. This happens
because their data do not define any functional
dependency.
Using these functional dependencies it is possible to
construct a relational database schema. Each functional
dependency is translated into a table where the attributes
are the ones participating in the functional dependency
and the primary key is the left hand side of the
functional dependency. In some cases, foreign keys can
be inferred from the schema. The relational database
schema can be normalized in order to eliminate data
redundancy. A possible normalized relational database
schema created for the house renting spreadsheet is
presented bellow.

country
clientNr , cName
ownerNr , oName
propNr , pAddress , rent , ownerNr

This database schema defines a table for each of the
entities described before. Having defined a relational
database schema we would like to construct a
spreadsheet environment that respects that relational
model, as shown in Figure 3.
For example, this spreadsheet would not allow the user
to introduce two different properties with the same
property number propNr. Instead, we would like that the
spreadsheet offers to the user a list of possible

properties, such that he can choose the value to fill in
the cell. Figure 3 shows a possible spreadsheet
environment where possible properties can be chosen
from a combo box. Columns with underlined labels and

in green color (e.g. propNr) correspond to primary keys.
By choosing one possible value from the combo box,
the other attributes/columns in such table schema are
automatically filled in. The environment also allows
users to select non-primary key attributes/columns
values from a combo box. In this case, however, the
values do not uniquely determine their primary key.
They are used to filter the set of possible values only.
For example, if in column I the user selects the rent of
70, then in column B there are only two properties the
user may choose: pg16 and pg36. Since the primary key
is now restricted, the other non-primary key columns
become also restricted. This means that the environment
uses the functional dependencies in both directions. The
delete button performs safe deletion. Besides the combo
box and the button support, the spreadsheet would also
provide users with traditional editing.
Using the relational data base schema we would like to
achieve that our house renting spreadsheet offers the
following features: auto-completion of column values,
non-editable columns, safe deletion of rows, traditional
editing and recalculation of the relational database
model.
In this section we have described an instance of our
techniques. In fact, the spreadsheet programming
environment shown in the Figure 3 was automatically
produced from the original spreadsheet displayed in
Figure 2. In the following sections we will present in
detail the technique to perform such an automatic
spreadsheet refactoring.

FROM SPREADSHEETS TO RELATIONAL
DATABASES

This section briefly explains how to extract functional
dependencies from the spreadsheet data and how to
construct a normalized relational database schema
modeling such data. These techniques were introduced
in detail in our work on defining a bidirectional
mapping between spreadsheets and relational databases
(Cunha et al. 2009a). Although such techniques work
well for database-like spreadsheets, the algorithm that
infers functional dependencies has several limitations
when processing other types of spreadsheets included in

Figure 3: A spreadsheet with auto-completion based on relational tables.

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

the EUSES Corpus. In this section we briefly present an
extension to that algorithm that uses spreadsheet
specific properties to infer more realistic functional
dependencies.

Relational Databases: A relational schema R is a finite
set of attributes {A1 , ..., Ak }. Corresponding to each
attribute Ai is a set Di called the domain of Ai. These
domains are arbitrary, non-empty sets, finite or
countably infinite. A relation (or table) r on a relation
schema R is a finite set of tuples (or rows) of the form
{t1, ..., tk}. For each t ∈ r, t(Ai) must be in Di. A
relational database schema is a collection of relation
schemas {R1 , ..., Rn }. A Relational Database (RDB) is
a collection of relations {r1, ..., rn}.
Each tuple is uniquely identified by a minimum non-
empty set of attributes called a Primary Key (PK). On
certain occasions there may be more than one set
suitable for becoming the primary key. They are
designated candidate keys and only one is chosen to
become primary key. A Foreign Key (FK) is a set of
attributes within one relation that matches the primary
key of some relation.
The normalization of a database is important to prevent
data redundancy. Although there are several different
normal forms, in general, a RDB is considered
normalized if it respects the Third Normal Form (3NF)
(Connolly and Begg 2002).

Discovering Functional Dependencies: In order to
define the RDB schema, we first need to compute the
functional dependencies presented in a given
spreadsheet data. In (Cunha et al. 2009a) we reused the
well known data mine algorithm, named FUN, to infer
such dependencies. This algorithm was developed in the
context of databases with the main goal of inferring all
existing functional dependencies in the input data. As a
result, FUN may infer a large set of functional
dependencies depending on the input data. For our
example, we list the functional dependencies inferred
from the data using FUN:

clientNr ⇀ cName, country
propNr ⇀ country , pAddress , rent , ownerNr , oName
cName ⇀ clientNr , country
pAddress ⇀ propNr , country , rent , ownerNr , oName
rent ⇀ propNr , country , pAddress , ownerNr , oName
ownerNr ⇀ country,oName
oName ⇀ country,ownerNr

Note that the data contained in the spreadsheet exhibits
all those dependencies. In fact, even the non-natural
dependency rent ⇀ propNr, country, pAddress,
ownerNr, oName is inferred. Indeed, the functional
dependencies derived by the FUN algorithm depend
heavily on the quantity and quality of the data. Thus, for
small samples of data, or data that exhibits too many or
too few dependencies, the FUN algorithm may not
produce the desired functional dependencies. Note also

that the country column occurs in most of the functional
dependencies although only a single country actually
appears in a column of the spreadsheet, namely UK.
Such single value columns are common in spreadsheets.
However, for the FUN algorithm they induce redundant
fields and redundant functional dependencies.
In order to derive more realistic functional dependencies
for spreadsheets we have extended the FUN algorithm
so that it considers the following spreadsheet properties:

• Single value columns: these columns produce a single
functional dependency with no right hand side (country
⇀ {}, for example). This columns are not considered
when finding other functional dependencies.

• Semantic of labels: we consider label names as strings
and we look for the occurrence of words like code,
number, nr, id, giving them more priority when
considered as primary keys.

• Column arrangement: we give more priority to
functional dependencies that respect the order of
columns. For example, clientNr ⇀ cName has more
priority than cName ⇀ clientNr.

Moreover, to minimize the number of functional
dependencies we consider the smallest subset that
includes all attributes/columns in the original set
computed by FUN. The result of our spreadsheet
functional dependency inference algorithm is:

country ⇀ {}
clientNr ⇀ cName
ownerNr ⇀ oName
propNr ⇀ pAddress , rent , ownerNr , oName

This set of functional dependencies is very similar to the
one presented previously. The exception is the last
dependency which has an extra attribute (oName).
User Defined Functional Dependencies: Although the
system can work in a fully automatic way, it also has the
possibility of receiving user defined functional
dependencies. This functional dependencies are merged
with the automatically inferred ones, and then
normalized as a single set (see bellow the normalization
paragraph).

Spreadsheet Formulas: Spreadsheets use formulas to
define the values of some elements in terms of other
elements. For example, in the house renting spreadsheet,
the column days is computed by subtracting the column
rentFinish from rentStart, and it is usually written as
follows: H3 = G3 – F3. This formulas test that the
values of G3 and F3 determine the value of H3, thus
inducing the following functional dependency:
rentStart, rentFinish ⇀ days.
Formulas can have references to other formulas.
Consider, for example, the second formula of the
running example J3 = H3 * I3, which defines the total

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

rent by multiplying the total number of days by the
value of the rent. Because H3 is defined by another
formula, the values that determine H3 also determine
J3. As a result, the two formulas induce the following
functional dependencies: rentStart , rentFinish ⇀ days
and rentStart , rentFinish , rent ⇀ total.
In general, a spreadsheet formula of the following form
X0 = f (X1 , . . . , Xn) induces the following functional
dependency: X1 , . . . , Xn ⇀ X0. In spreadsheet
systems, formulas are usually introduced by copying
them through all the elements in a column, thus making
the functional dependency explicit in all the elements.
This may not always be the case and some elements can
be defined otherwise (e.g. by using a constant value or a
different formula). In both cases, all the cells referenced
must be used in the antecedent of the functional
dependency.
These functional dependencies are useful for the
mapping of spreadsheets to databases as presented in
(Cunha et al. 2009a). In this work, they are not relevant
since the existing formulas are used to fill in those
columns.

Normalizing Functional Dependencies: Having
computed the functional dependencies, we can now
normalize them. Next, we show the results produced by
the synthesize algorithm introduced by Maier in (Maier
1983).
The synthesize algorithm receives a set of functional
dependencies as argument and returns a new set of
compound functional dependencies. A compound
functional dependency (CFD) has the form (X1 , . . . ,
Xn) ⇀ Y , where X1 , . . . , Xn are all distinct subsets
of a scheme R and Y is also a subset of R. A relation r
satisfies the CFD (X1, . . . , Xn) ⇀ Y if it satisfies the
functional dependencies Xi ⇀ Xj and Xi ⇀ Y, where 1
≤ i and j ≤ k. In a CFD, (X1,...,Xn) is the left side,
X1,...,Xn are the left sets and Y is the right side.
Next, we list the compound functional dependencies
computed from the functional dependencies induced by
our running example.

({country}) ⇀ {}
({clientNr}) ⇀ {cName}
({ ownerNr }) ⇀ { oName }
({ propNr }) ⇀ { pAddress , rent , ownerNr }

Computing the Relational Database Schema: Each
compound functional dependency defines several
candidate keys for each table. However, to fully
characterize the relational database schema we need to
choose the primary key from those candidates. To find
such keys we use a simple algorithm: we produce all the
possible tables using each candidate key as the primary
key; we then use the same algorithm that is used to
choose the initial functional dependencies to choose the
best table. Note that before applying the synthesize
algorithm, all the functional dependencies with
antecedents’ attributes representing formulas should be

eliminated since a primary key must not change over
time. The final result is listed bellow.

country
clientNr , cName
ownerNr , oName
propNr , pAddress , rent , ownerNr

This relational database model corresponds exactly to
the one shown in Section . Note that the synthesize
algorithm removed the redundant attribute oName that
occurred in the last functional dependency.

SPREADSHEET PROGRAMMING
ENVIRONMENT

This section presents techniques to refactor spreadsheets
into powerful spreadsheet programming environments.
The functional dependencies and the relational database
model induced by the data included in the original
spreadsheet are the building block techniques for such a
refactoring. In fact, the spreadsheet refactoring is
implemented as the embedding of the relational
database model in the spreadsheet. This embedding is
modeled in the spreadsheet itself by standard formulas
and visual objects: additional formulas are included in
the spreadsheet to guide the user to introduce correct
data.
Before we present how this embedding is defined, let us
first define a spreadsheet. A spreadsheet can be seen as a
partial function S : A → V mapping addresses to
spreadsheet values. Elements of S are called cells and
are represented as (a,v). A cell address is taken from the
set A = N × N. A value v ∈ V can be an input plain
value c ∈ C like a string or a number, references to
other cells using addresses or formulas f ∈ F that can be
applied to one or more values: v∈V ::= c | a | f(v,...,v).

Auto-completion of Column Values: The columns
corresponding to primary keys (with underlined labels
and green combo boxes columns in Figure 3) in the
relational model uniquely determine the values of the
other columns in such a relation. Moreover, choosing
one of the non-primary key columns (red combo boxes
columns in Figure 3) the possible values of the primary
key become more restricted. We want the spreadsheet
environment to be able to automatically fill those
columns provided the end-user defines the value of the
primary key or, in the other hand, to restrict the primary
key when one of the other attributes is chosen. For
example, the value of the property number (propNr,
column B) determines the values of the address
(pAddress, column D), rent per day (rent, column I),
and owner number (ownerNr, column K). Consequently,
the spreadsheet environment should be able to
automatically fill in the values of the columns D, I and
K, given the value of column B. Since ownerNr
(column K) is a primary key of another table,
transitively the value of oName (column L) is also

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

defined. In the other hand, if a rent per day (column I is
chosen, the corresponding primary column B values
should be restricted to those values that can determine
such a choice. We consider two mechanisms to model
such an auto-completion feature.

• First, by using visual objects, that is a combo box, to
choose the primary key and/or the non-primary key
column values as shown in the running example.

• Second, by providing traditional editing via the
keyboard that obeys to the underlying relational model.
In this case the and-user may edit the primary key and
the columns that it determines are automatically filled
in. This traditional editing uses the (usual) column value
completion provided by commercial systems: as soon as
a known prefix is inserted the complete string is
suggested. When the insertion is completed, the auto-
completable columns become also filled.

These two editing models use the derived functional
dependencies/relational schema in both directions.
Next we present the details of the embedding of the
relational model in the original spreadsheet. Let us
consider the table ownerNr, oName from our running
example. In the spreadsheet, ownerNr is in column K
and oName in column L. This table is embedded in the
spreadsheet introducing a combo box containing the
existing values in the column K (as displayed in Figure
3). Knowing the value in the column K we can
automatically introduce the value in column L. To
achieve this, we introduce the following formula in row
7 of column L: S (L,7) = if (isna (vlookup (K7,K2 : L6 ,
2, 0)), "", vlookup (K7 , K2 : L6 , 2, 0)). This formula
uses a (library) function isna to test if there is a value
introduced in column K. In case that value exists, it
searches (with the function vlookup) the corresponding
value in the column L and references it. If there is no
selected value, it produces the empty string. The
combination of the combo box and this formula guides
the user to introduce correct data as illustrated in Figure
3.
We have just presented a particular case of the formula
and visual object induced by a relational table. Next we
present the general case.
Let minr be the very next row after the existing data in
the spreadsheet, maxr the last row in the spreadsheet,
and r1 the first row with already existing data. Each
relational database table a1, ..., an, c1, ..., cm, with
a1, ..., an, c1, ..., cm column indexes of the spreadsheet,
induces firstly, a combo box defined as follows:

∀c ∈ {a1,...,an},∀r ∈ {minr,...,maxr}:
 S(c,r) = combobox := {linkedcell :=(c,r);
 source cells:=(c,r1):(c,r−1)}

secondly, a spreadsheet formula defined as:

∀c ∈ {c1,...,cm},∀r ∈ {minr,...,maxr}:

S (c,r) =
if (if (isna (vlookup ((a1,r),(a1,r1):(c,r −1),r −a1+1,0)),
"",
vlookup ((a1,r),(a1,r1):(c,r −1),r −a1 +1,0))
==
if (isna (vlookup ((a2,r),(a2,r1):(c,r −1),r −a2 +1,0)),
"",
vlookup ((a2,r),(a2,r1):(c,r −1),r −a2 +1,0))
== ... ==
if(isna(vlookup((an,r),(an,r1):(c,r−1),r−an +1,0)),
"",
vlookup((an,r),(an,r1):(c,r−1),r−an +1,0)),
vlookup ((a1,r),(a1,r1):(c,r −1),r −a1 +1,0),"")

This formula must be used for each non primary key
column created by our algorithm. Each if inside the
main if is responsible for checking a primary key
column. In the case a primary key column value is
chosen, isna (vlookup (...)), the formula calculates the
corresponding non primary key column value, vlookup
(...). If the values chosen by all primary key columns are
equal, then that value is used in the non primary key
column.
Note that this formula considers tables with primary
keys consisting of multiple attributes (columns). Note
also that the formula is defined in each column
associated to non-key attribute values.
The example table analyzed before is an instance of this
general one. In the table ownerNr,oName, ownerNr is
a1, oName is c1, c is L, r1 is 2, minr is 7. The value of
maxr is always the last row supported by the
spreadsheet system.
Foreign keys pointing to primary keys become very
helpful in this setting. For example, if we have the
relational tables A, B and B, C where B is a foreign key
from the second table to the first one, then when we
perform auto-completion in column A, both B and C are
automatically filled in. This was the case presented in
Figure 3. The combo box visual object is implemented
as a script defined in the macro’s language used by the
spreadsheet systems1.

Non-Editable Columns: To prevent wrong introduction
of data and, thus, producing update anomalies, we
protect some columns from edition. The relational table
a1, ..., an, c1, ..., cm induces the non-edition of columns
a1, ..., an, c1, ..., cm. That
is to say that all columns that form a table become non-
editable. For example, column L is part of the owner
table but it is not part of its primary key. In the case
where the end-user needs to change the value of such
protected columns, we provide traditional editing as
described in Subsection .

Safe Deletion of Rows: Another usual problem with
non-normalized data is the deletion problem. Suppose in
our running example that row 5 is deleted. All the
knowledge about the pg36 property is lost, although the
end-user would probably want to delete the renting

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

transaction only. To correctly delete rows in the
spreadsheet, a button is added to each row in the
spreadsheet as follows: for each relational table a1 , ...,
an , c1 , ..., cm each button checks, on its corresponding
row, the columns that are part of the primary key,
a1 , ..., an . For each primary key column, it verifies if
the value that is being removed is the last one. Let c ∈
{a1, ..., an}, let r be the button row, r1 be the first row of
column c with data and rn be the last row of column c
with data. The test is defined as follows: if (isLast((c,r),
(c,r1):(c,rn)),showMessage,deleteRow(r)). If the value
is the last one, the spreadsheet warns the user
(showMessage). If the user presses the OK button, the
spreadsheet will remove the row. In the other case,
Cancel, no action will be performed. In the case the
value is not the last one, the row will simply be
removed, deleteRow (r).
For example, in column propNr of our running example,
the row 5 contains the last data about the house with
code pg36. If the user tries to delete this row, the
warning will be triggered.

Traditional Editing: Advanced programming language
environments provide both advanced editing
mechanisms and traditional ones (i.e., text editing). In a
similar way, a spreadsheet environment should allow the
user to perform traditional spreadsheet editing too.
Thus, the environment should provide a mechanism to
enable/disable the advanced features described in this
section. When advanced features are disabled, the end-
user is be able to introduce data that violates the
(previously) inferred relational model. However, when
the end-user returns to advance editing, the spreadsheet
infers a new relational model that will be used in future
(advanced) interactions.

Recalculation of the Relational Database Model:
because standard editing allows the end-user to
introduce data violating the underlying relational model,
we would like that the spreadsheet environment may
enable/disable the advanced features described in this
section. When advanced features are disabled, the end
user would be able to introduce data that violates the
(previously) inferred relational model. However, when
the end-user returns to advanced editing, then the
spreadsheet should infer a new relational model that will
be used in future (advanced) interactions.

HaExcel Addon: We have implemented the FUN
algorithm, the extensions described in this paper, the
synthesize algorithm, and the embedding of the
relational model in the HASKELL programming
language (Peyton Jones 2003). We have also defined the
mapping from spreadsheet to relational databases in the
same framework named HaExcel (Cunha et al. 2009a).
Finally, we have extended this framework to produce
the visual objects and formulas to model the relational
tables in the spreadsheet. An OpenOffice addon has also
been constructed so that the end-user can use

spreadsheets in this popular system and at the same time
our advanced features. This can be seen in the left part
of Figure 3. There are three buttons that allow HaExcel
with auto-completion with combo boxes (first button),
HaExcel with auto-completion without combo boxes
(second button) and disable HaExcel (third button). This
addon can be found in the first author’s web page.

PRELIMINARY EXPERIMENTAL RESULTS

In order to evaluate the applicability of our approach,
we have performed a preliminary experiment on the
EUSES Corpus (Fisher II and Rothermel 2005). This
corpus was conceived as a shared resource to support
research on technologies for improving the
dependability of spreadsheet programming. It contains
more than 4500 spreadsheets gathered from different
sources and developed for different domains. These
spreadsheets are assigned to eleven different categories.
Among the spreadsheets in the corpus, about 4.4%
contain macros, about 2.3% contain charts, and about
56% do not have formulas being only used to store data.
In our preliminary experiment we have selected the first
ten spreadsheets from each of the eleven categories of
the corpus. We then applied our tool to each
spreadsheet, with different results (see also Table 1):

A few spreadsheets failed to parse. This was due to
glitches in the Excel to Gnumeric conversion, which we
use to bring spreadsheets into a processable form.

• Some spreadsheets were parsed, but no tables could be
recognized in them, i.e., their users did not adhere to
any of the supported layout conventions. The layout
conventions we support are the ones presented in the
UCheck project (Abraham and Erwig 2007). This was
the case for about one third of the spreadsheets in our
selection.

• The other spreadsheets were parsed, tables were
recognized, and edit assistance was generated for them.
We will focus on the last groups in the upcoming
sections.

Table 1: The number of spreadsheets per category
present in the EUSES corpus.

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

Processed Spreadsheets: The results of processing our
sample of spreadsheets from the EUSES corpus are
summarized in Table 2. The rows of the table are
grouped by category as documented in the corpus. The
first three columns contain size metrics on the
spreadsheets. They indicate how many tables were

recognized, how many columns are present in these
tables, and how many cells. For example, the first
spreadsheet in the financial category contains 15 tables
with a total of 65 columns and 242 cells.The fourth
column shows how many functional dependencies were
extracted from the recognized tables by our algorithm.
These are the non-trivial functional dependencies that
remain after we use our extension to the FUN algorithm

to discard redundant functional dependencies. The last
three columns are metrics on the generated edit
assistance. In some cases, no edit assistance was
generated, indicated by zeros in these columns. This
situation occurs when no (non-trivial) dependencies are
induced from the recognized tables. In the other cases,
the three columns respectively indicate:

• For how many columns a combo box has been
generated for controlled insertion. The same columns
are also enhanced with the safe deletion of rows feature.

• For how many columns the auto-completion of column
values has been activated, i.e., for how many columns
the user is no longer required to insert values manually.

Table 2:Preliminary results of processing the selected spreadsheets.

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

• How many columns are locked to prevent edit actions
where information that does not appear elsewhere is
deleted inadvertently.

For example, for the first spreadsheet of the inventory
category, combo boxes have been generated for 31
columns, auto-completion has been activated for 1
column, and locking has been applied to 32 columns.
Note that for the categories jackson and personal, no
results were obtained due to absent or unrecognized
layout conventions or to the size of the spreadsheets
(more than 150,000 cells).

Observations: On the basis of these preliminary results
for our sample of corpus spreadsheets, a number of
interesting observations can be made. For some
categories, edit assistance is successfully added to
almost all spreadsheets (e.g. inventory and database),
while for others almost none of the spreadsheets lead to
results (e.g. the forms/3 category). The latter may be
due to the small sizes of the spreadsheets in this
category. For the financials category, we can observe
that in only 2 out of 10 sample spreadsheets tables were
recognized, but edit assistance was successfully
generated for both of these. The percentage of columns
for which edit assistance was generated varies. The
highest percentage was obtained for the second
spreadsheet of the modeling category, with 9 out of 10
columns (90 %). A good result is also obtained for the
first spreadsheet of the grades category with 28 out of
41 columns (68.3 %). On the other hand, the 5th of the
homework category gets edit assistance for only 2 out of
28 columns (7.1 %). The number of columns with
combo boxes often outnumbers the columns with auto-
completion. This may be due to the fact that many of the
functional dependencies are small, with many having
only one column in the antecedent and none in
consequent.

Evaluation: Our preliminary experiment justifies two
preliminary conclusions. Firstly, the tool is able to
successfully add edit assistance to a series of non-trivial
spreadsheets. A more thorough study of these and other
cases can now be started to identify technical
improvements that can be made to the algorithms for
table recognition and functional dependency extraction.
Secondly, in the enhanced spreadsheets a large number
of columns are generally affected by the generated edit
assistance, which indicates that the user experience can
be impacted in a significant manner. Thus, a validation
experiment can be started to evaluate how users
experience the additional assistance and to which extent
their productivity and effectiveness can be improved.

RELATED WORK

Our work is strongly related to a series of techniques by
Abraham et al.. Firstly, they designed and implemented
an algorithm that uses the labels within a spreadsheet
for unit checking (Erwig and Burnett 2002; Abraham
and Erwig 2004). By typing the cells in a spreadsheet
with unit information and tracking them through
references and formulas, various types of users errors
can be caught. We have adopted the view of Abraham et
al. of a spreadsheet as a collection of tables and we have
reused their algorithm for identifying the spatial
boundaries of these tables. Rather than exploiting the
labels in the spreadsheet to reconstruct implicit user
intentions, we exploit redundancies in data elements.
Consequently, the errors caught by our approach are of a
different kind.
Secondly, Abraham et al. developed a type system and
corresponding inference algorithm that assigns types to
values, operations, cells, formulas, and entire
spreadsheets (Abraham and Erwig 2006b). The type
system can be used to catch errors in existing
spreadsheets or to infer models for spreadsheets that can
help to prevent errors. These models are condensed
representations of areas of repeating types, and so, they
are not relational database models, as in our approach,
but similar to collection types in regular programming.
Thirdly, Abraham et al. developed a tool for generating
spreadsheets from spreadsheet specifications (models)
(Erwig et al. 2006). Generated spreadsheets are
guaranteed to be free of reference, range, or type errors.
This implies a significant departure of normal
spreadsheet usage, where domain experts create
spreadsheet specifications and others use these to
generate spreadsheets. A system has also been
developed to extract specifications from existing
spreadsheets (Abraham and Erwig 2006a). Our
approach does not require such a paradigm shift. The
inferred model is present in the background only, of a
familiar spreadsheet environment enhanced with
features for completion, protection, and insertion of
data.
In previous work we presented techniques and tools to
transform spreadsheets into relational databases and
back (Cunha et al. 2009a). As in the current paper, we
used an algorithm for functional dependency recovery
to construct a relational model, but rather than
generating edit assistance, the recovered information
was used to perform spreadsheet refactoring. The
algorithm for extracting and filtering spreadsheets
presented in the current paper is an improvement over
that work. We provided a short user-centered overview
of the idea of generating edit assistance for spreadsheets
via extraction of functional dependencies in a previous
short paper (Cunha et al. 2009b). In the current paper,
we provide the technical details of the solution,
including the improved algorithm for inferring and
filtering functional dependencies. Also, we provide the
first preliminary evaluation of the approach by

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

application to a sample of spreadsheets from the EUSES
corpus.

CONCLUSIONS

We have demonstrated how implicit structural
properties of spreadsheet data can be exploited to offer
edit assistance to spreadsheet users. To discover these
properties, we have made use of our improved approach
for mining functional dependencies from spreadsheets
and subsequent synthesis of a relational database. On
this basis, we have made the following contributions:
Derivation of formulas and visual elements that capture
the knowledge encoded in the reconstructed relational
database schema; Embedding of these formulas and
visual elements into the original spreadsheet in the form
of features for auto-completion, guarded deletion, and
controlled insertion; Integration of the algorithms for
reconstruction of a schema, for derivation of
corresponding formulas and visual elements, and for
their embedding into an addon for spreadsheets.
A spreadsheet environment enhanced with our addon
compensates to a significant extent for the lack of the
structured programming concepts in spreadsheets. In
particular, it assists users to prevent common update and
deletion anomalies during editing.
There are several extensions of our work that we would
like to explore. The algorithms running in the
background need to recalculate the relational schema
and the ensuing formulas and visual elements every
time new data is inserted. For larger spreadsheets, this
recalculation may incur waiting time for the user.
Several optimizations of our algorithms can be
attempted to eliminate such waiting times, for example,
by use of incremental evaluation. Our approach could
be integrated with similar, complementary approaches
to cover a wider range of possible user errors. In
particular, the work of Abraham et al. (Abraham and
Erwig 2006b,a) for preventing range, reference, and
type errors could be combined with our work for
preventing data loss and inconsistency.
We have presented some preliminary experimental
results to pave the way for a more comprehensive
validation experiments. In particular, we intend to set up
a structured experiment for testing the impact on end-
user productivity, and effectiveness.

REFERENCES

R. Abraham and M. Erwig. Header and unit inference
for spreadsheets through spatial analyses. Visual
Languages and Human Centric Computing, IEEE
Symp. on, pages 165–172, Sept. 2004.

R. Abraham and M. Erwig. UCheck: A spreadsheet type
checker for end users. J. Vis. Lang. Comput.,
18(1):71–95, 2007.

Robin Abraham and Martin Erwig. Inferring templates
from spreadsheets. In ICSE ’06: Proceedings of

the 28th Int. Conf. on Software Engineering,
pages 182–191, New York, NY, USA, 2006a.
ACM. ISBN 1-59593-375-1.

Robin Abraham and Martin Erwig. Type inference for
spreadsheets. In Annalisa Bossi and Michael J.
Maher, editors, Proc. of the 8th Int. ACM
SIGPLAN Conf. on Principles and Practice of
Declarative Programming, Venice, Italy, pages
73–84. ACM, 2006b. ISBN 1-59593-388-3.

C. Beeri, R. Fagin, and J.H. Howard. A complete
axiomatization for functional and multivalued
dependencies in database relations. In Proc. of
the ACM SIGMOD Int. Conf. on Management of
Data, pages 47–61, 1977.

E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387,
1970.

T. Connolly and C. Begg. Database Systems, A Practical
Approach to Design, Implementation, and
Management. Addison-Wesley, 3 edition, 2002.

Jácome Cunha, João Saraiva, and Joost Visser. From
spreadsheets to relational databases and back. In
PEPM ’09: Proc. of the 2009 ACM SIGPLAN
Workshop on partial evaluation and program
manipulation, pages 179–188, New York, NY,
USA, 2009a. ACM. ISBN 978-1-60558-327-3.

Jácome Cunha, João Saraiva, and Joost Visser.
Discovery-based edit assistance for spreadsheets.
In IEEE Symposium on Visual Languages and
Human-Centric Computing, IEEE, 2009b.

C. J. Date. An Introduction to Database Systems.
Addison-Wesley, 1995. ISBN 0-201-82458-2.

Martin Erwig and Margaret M. Burnett. Adding apples
and oranges. 4th Int. Symp. on Practical Aspects
of Declarative Languages, pages 173–191, 2002.

Martin Erwig, Robin Abraham, Irene Cooperstein, and
Steve Kollmansberger. Automatic generation and
maintenance of correct spreadsheets. In ICSE
’05: Proceedings of the 27th international
conference on Software engineering, pages 136–
145, New York, NY, USA, 2005. ACM. ISBN 1-
59593-963-2.

Martin Erwig, Robin Abraham, Steve Kollmansberger,
and Irene Cooperstein. Gencel: a program
generator for correct spreadsheets. J. Funct.
Program, 16(3):293–325, 2006.

Marc Fisher II and Gregg Rothermel. The EUSES
Spreadsheet Corpus:A shared resource for
supporting experimentation with spreadsheet
dependability mechanism. In 1st Workshop on
End-User Software Engineering, pages 47–51,
May 2005.

Steve Holzner. Eclipse. O’Reilly, May 2004. ISBN
0596006411.

Matthijs Kuiper and João Saraiva. Lrc - A Generator for
Incremental Language-Oriented Tools. In Kay
Koskimies, editor, 7th International Conference
on Compiler Construction, volume 1383 of

Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

LNCS, pages 298–301. Springer-Verlag, April
1998.

D. Maier. The Theory of Relational Databases.
Computer Science Press, 1983. ISBN 0-914894-
42-0. S. Peyton Jones. Haskell 98: Language and
libraries. J. Funct. Program., 13(1):1–255, 2003.

A.D. Pitonyak, C.R. Pearsall, J.H. Weber, and A. Boyer.
OpenOffice. org macros explained.
Hentzenwerke Pub Inc, 2004.

Thomas Reps and Tim Teitelbaum. The synthesizer
generator. SIGSOFT Sof. Eng. Notes, 9(3):42–
48, 1984. ISSN 0163-5948.

J. D. Ullman and J. Widom. A First Course in Database
Systems. Prentice Hall, 1997.

Mark van den Brand, Paul Klint, and Pieter Olivier.
Compilation and Memory Management for
ASF+SDF. In Stefan Jahnichen, editor, 8th
International Conference on Compiler
Construction, volume 1575 of LNCS, pages
198–213, March 1999.

