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ABSTRACT

Although  spreadsheets  can  be  seen  as  a  flexible 
programming  environment,  they  lack  some  of  the 
concepts of declarative programming languages, such as 
structured data types. This can lead the user to edit the 
spreadsheet in a wrong way and perhaps cause corrupt 
or redundant data.

We  devised  a  method  for  extraction  of  a  relational 
model  from  a  spreadsheet  and  the  subsequent 
embedding of  the  model back into the spreadsheet  to 
create  a  model-based  spreadsheet  programming 
environment.  The  extraction  algorithm  is  specific  for 
spreadsheets  since  it  considers  particularities  such  as 
layout and column arrangement. The extracted model is 
used to generate formulas and visual elements that are 
embedded  in  the  spreadsheet  helping  users  to  edit 
correct data.

We  present  preliminary  experimental  results  from 
applying our approach to a sample of spreadsheets from 
the EUSES Spreadsheet Corpus.

INTRODUCTION

Developments in programming languages are changing 
the  way  in  which  we  construct  programs:  naive  text 
editors  are  now  replaced  by  powerful  programming 
language  environments  which  are  specialized  for  the 
programming language under consideration and which 
help  the  user  throughout  the  editing  process.  Helpful 
features like highlighting keywords of the language or 
maintaining  a  beautified  indentation  of  the  program 
being edited are now provided by several text editors. 
Recent advances in programing languages extend such 
naive editors to powerful language-based environments 
(Kuiper and Saraiva 1998; Reps and Teitelbaum 1984; 
van den Brand et al. 1999; Holzner 2004).  Language-
based environments use knowledge of the programming 
language  to  provide  the  users  with  more  powerful 
mechanisms to develop their programs. This knowledge 
is  based  on  the  structure  and  the  meaning  of  the 
language.  To  be  more  precise,  it  is  based  on  the 
syntactic  and  (static)  semantic  characteristics  of  the 
language. Having this knowledge about a language, the 
language-based  environment  is  not  only  able  to 
highlight  keywords  and  beautify  programs,  but  it  can 
also detect features of the programs being edited that, 
for  example,  violate  the  properties  of  the  underlying 

language.  Furthermore,  a  language-based environment 
may also give information to the user about properties 
of  the  program  under  consideration.  Consequently, 
language-based environments guide the user in writing 
correct and more reliable programs.
Moreover,  advances  in  declarative  programming 
languages  are  providing  programmers  with  powerful 
mechanisms  to  structure  and  develop  their  programs. 
Indeed,  the  development  of  powerful  type  systems, 
modular systems, abstract  models, support  for generic 
programming  and  testing,  lazy  evaluation  engines, 
incremental  models of  computation, etc.  are changing 
the way we write our programs. However, spreadsheets 
when  viewed as  a  declarative  programming language 
does  not  support  any  of  those  developments!  Indeed, 
with the exception of the pioneer work of Martin Erwig 
(Erwig  and  Burnett  2002;  Abraham and  Erwig  2004; 
Erwig  et  al.  2005),  little  work has  been done on the 
foundations  of  spreadsheets  by  the  declarative 
programming language community.
In  this  paper,  we  propose  a  declarative  approach  to 
enhance a spreadsheet system with mechanisms to guide 
end-users to introduce correct data. An overview of the 
approach is shown in Figure 1.

A background process adds formulas and visual objects 
to  an  existing  spreadsheet,  based  on  a  relational 
database schema. To obtain this schema, we follow the 
approach used in language-based environments: we use 
the  knowledge  about  the  data  already  existing  in  the 
spreadsheet  to  guide  end-users  in  introducing  correct 
data.  The  knowledge  about  the  spreadsheet  under 
consideration is based on the meaning of its data that we 
infer  using  data  mining  and  database  normalization 
techniques.  Data  mining  techniques  specific  to 
spreadsheets are used to infer functional dependencies 
from  the  spreadsheet  data.  These  functional 
dependencies  define  how certain  spreadsheet  columns 
determine  the  values  of  other  columns.  Database 
normalization  techniques,  namely  the  use  of  normal 

Figure 1: Edit assistance is added to a spreadsheet  
based on a relational database schema.
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forms  (Codd  1970),  are  used  to  eliminate  redundant 
functional  dependencies  induced  by  the  data  mining 
techniques,  and to define a relational  database model. 
This  model  may  include  several  tables,  which  may 
contain primary keys:  a column, or  a set  of columns, 
that determine the value of other columns. 
Knowing the relational database model induced by the 
spreadsheet  data,  we  construct  a  new  spreadsheet 

environment  that  not  only  contains  the  data  of  the 
original  one,  but  that  also  includes  advanced  features 
which provide information to the end user about correct 
data that can be introduced.
We  consider  three  types  of  advanced  features:  auto-
completion of column values, non-editable columns and 
safe deletion of rows. Auto-completion means that when 
the user inserts a primary key (by typing or selecting 
from a combo box), the columns that are functionally 
dependent on this primary key will be filled with values 
automatically. The non-editable column feature prevents 
the  end-user  from  editing  columns  that  depend  on  a 
primary  key  value.  Note  that  such  columns  are 
automatically filled in by selecting a primary key. By 
using  the  auto-completion  feature  the  spreadsheet 
system guarantees that the end-user does not introduce 
data that violates the relational model inferred. The safe 
deletion of rows feature warns if by deleting a selected 
row some information not represented elsewhere is lost.
Like in a modern programming language environment, 
the  refactored  spreadsheet  system  also  offers  the 
possibility  of  using  traditional  editing,  that  is,  the 
introduction  of  data  by  editing  any  of  the  columns. 
When using traditional editing the end-user  is  able to 
introduce data that may violate the relational database 
model inferred from the previous spreadsheet data. The 
spreadsheet  environment  includes  a  mechanism  to 
recalculate  the  relational  database  model  after 
traditional editing. This new relational model is used to 
guide  the  end-user  in  future  assisted  editing  of  the 
spreadsheet.
Our  techniques  not  only  work  for  database-like 
spreadsheets, like the example we will use throughout 
the paper, but they work also for realistic spreadsheets 
defined in other contexts (for example, inventory, grades 
or  modeling).  In  this  paper  we  present  our  first 
experimental results obtained by considering a large set 
of  spreadsheets  included  in  the  EUSES  Spreadsheet 
Corpus (Fisher II and Rothermel 2005).

MOTIVATING EXAMPLE

In order to present our approach we shall consider the 
following  well-known example  taken  from (Connolly 
and Begg 2002) and modeled in a spreadsheet as shown 
in Figure 2.
This  spreadsheet  contains  information  related  to  a 
housing  renting  system.  It  gathers  information  about 

clients,  owners,  properties,  prices and renting periods. 
The  name of  each  column  gives  a  clear  idea  of  the 
information it represents. We extend this example with 
three  additional  columns,  named days  (that  computes 
the  total  number  of  renting  days  by  subtracting  the 
column rentStart to rentFinish), total (that multiplies the 
number of renting days by the rent per day value, rent) 
and country (that represents the property’s country). The 
columns days and rent are expressed by formulas.
This spreadsheet defines a valid model to represent the 
information of the renting system. However, it contains 
redundant information: the displayed data specifies the 
house renting of two clients (and owners) only, but their 
names are included five times, for example. This kind of 
redundancy makes the maintenance and update of  the 
spreadsheet  complex  and  error-prone.  A  mistake  is 
easily  made,  for  example,  by mistyping a  name, thus 
corrupting  the  data  on the  spreadsheet.  Two common 
problems  occur  as  a  consequence  of  redundant  data: 
update anomalies and deletion anomalies (Ullman and 
Widom  1997).  The  former  problem  occurs  when  we 
change  information  in  one  place  but  leave  the  same 
information unchanged in the other places. The problem 
also occurs if the update is not performed exactly in the 
same way. In our example, this happens if we change 
the rent of property number pg4 from 50 to 60 only one 
row and leave the others unchanged, for example. The 
latter  problem occurs  when we  delete  some  data and 
lose other information as a side effect. For example, if 
we delete row 5 in the our example all the information 
concerning  property  pg36  is  lost.  The  database 
community  has  developed  techniques,  such  as  data 
normalization,  to  eliminate  such  redundancy  and 
improve data integrity (Ullman and Widom 1997; Date 
1995). Database normalization is based on the detection 
and exploitation of functional dependencies inherent in 
the  data  (Beeri  et  al.  1977).  Can  we  leverage  these 
database techniques for spreadsheets systems so that the 
system eliminates the update and deletion anomalies by 
guiding the end-user to introduce correct data? Based on 
the  data  contained  in  our  example  spreadsheet,  we 

Figure 2: A spreadsheet representing a property renting system.
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would  like  to  discover  the  following  functional 
dependencies which represent the four entities involved 
in our house renting system: countries, clients, owners 
and properties. 

country ⇀ {}
clientNr ⇀ cName 
ownerNr ⇀ oName
propNr ⇀ pAddress,rent,ownerNr 

A functional dependency A ⇀ B means that if we have 
two  equal  inhabitants  of  A,  then  the  corresponding 
inhabitants of  B are also equal. For instance, the client 
number functionally determines his/her name, since no 
two clients have the same number. The right hand side 
of a functional dependency can be an empty set. This 
occurs,  for  example,  in  the  country  functional 
dependency.  Note  that  there  are  several  columns 
(labeled rentStart,rentFinish,days and total) that are not 
included  in  any  functional  dependency.  This  happens 
because  their  data  do  not  define  any  functional 
dependency.
Using  these  functional  dependencies  it  is  possible  to 
construct a relational database schema. Each functional 
dependency is translated into a table where the attributes 
are the ones participating in the functional dependency 
and  the  primary  key  is  the  left  hand  side  of  the 
functional dependency. In some cases, foreign keys can 
be  inferred  from the  schema.  The relational  database 
schema can  be  normalized  in  order  to  eliminate  data 
redundancy.  A possible  normalized relational  database 
schema  created  for  the  house  renting  spreadsheet  is 
presented bellow.

country
clientNr , cName 
ownerNr , oName 
propNr , pAddress , rent , ownerNr

This  database  schema defines  a  table  for  each  of  the 
entities  described  before.  Having  defined  a  relational 
database  schema  we  would  like  to  construct  a 
spreadsheet  environment  that  respects  that  relational 
model, as shown in Figure 3.
For example, this spreadsheet would not allow the user 
to  introduce  two  different  properties  with  the  same 
property number propNr. Instead, we would like that the 
spreadsheet  offers  to  the  user  a  list  of  possible 

properties, such that he can choose the value to fill in 
the  cell.  Figure  3  shows  a  possible  spreadsheet 
environment  where possible  properties  can  be chosen 
from a combo box. Columns with underlined labels and 

in green color (e.g. propNr) correspond to primary keys. 
By choosing one possible value from the combo box, 
the  other  attributes/columns  in  such  table  schema are 
automatically  filled  in.  The  environment  also  allows 
users  to  select  non-primary  key  attributes/columns 
values  from a  combo box.  In  this  case,  however,  the 
values  do  not  uniquely  determine  their  primary  key. 
They are used to filter the set of possible values only. 
For example, if in column I the user selects the rent of 
70, then in column B there are only two properties the 
user may choose: pg16 and pg36. Since the primary key 
is  now restricted,  the  other  non-primary  key  columns 
become also restricted. This means that the environment 
uses the functional dependencies in both directions. The 
delete button performs safe deletion. Besides the combo 
box and the button support, the spreadsheet would also 
provide users with traditional editing.
Using the relational data base schema we would like to 
achieve  that  our  house  renting  spreadsheet  offers  the 
following features:  auto-completion of  column values, 
non-editable columns, safe deletion of rows, traditional 
editing  and  recalculation  of  the  relational  database 
model.
In  this  section  we  have  described  an  instance  of  our 
techniques.  In  fact,  the  spreadsheet  programming 
environment shown in the Figure 3 was automatically 
produced  from  the  original  spreadsheet  displayed  in 
Figure 2. In the following sections we will present in 
detail  the  technique  to  perform  such  an  automatic 
spreadsheet refactoring.

FROM SPREADSHEETS TO RELATIONAL 
DATABASES

This section briefly explains how to extract functional 
dependencies  from  the  spreadsheet  data  and  how  to 
construct  a  normalized  relational  database  schema 
modeling such data. These techniques were introduced 
in  detail  in  our  work  on  defining  a  bidirectional 
mapping between spreadsheets and relational databases 
(Cunha et  al.  2009a). Although such techniques work 
well  for  database-like spreadsheets,  the algorithm that 
infers  functional  dependencies  has  several  limitations 
when processing other types of spreadsheets included in 

Figure 3: A spreadsheet with auto-completion based on relational tables.
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the EUSES Corpus. In this section we briefly present an 
extension  to  that  algorithm  that  uses  spreadsheet 
specific  properties  to  infer  more  realistic  functional 
dependencies.

Relational Databases: A relational schema R is a finite 
set of attributes {A1 , ..., Ak }. Corresponding to each 
attribute Ai is a set Di called the domain of Ai. These 
domains  are  arbitrary,  non-empty  sets,  finite  or 
countably infinite. A relation (or table) r on a relation 
schema R is a finite set of tuples (or rows) of the form 
{t1,  ...,  tk}.  For  each  t  ∈  r,  t(Ai)  must  be  in  Di.  A 
relational  database  schema  is  a  collection  of  relation 
schemas {R1 , ..., Rn }. A Relational Database (RDB) is 
a collection of relations {r1, ..., rn}.
Each tuple is  uniquely identified  by a minimum non-
empty set of attributes called a Primary Key (PK). On 
certain  occasions  there  may  be  more  than  one  set 
suitable  for  becoming  the  primary  key.  They  are 
designated  candidate  keys  and  only  one  is  chosen  to 
become primary key. A Foreign Key (FK) is a  set  of 
attributes within one relation that matches the primary 
key of some relation.
The normalization of a database is important to prevent 
data  redundancy.  Although  there  are  several  different 
normal  forms,  in  general,  a  RDB  is  considered 
normalized if it respects the Third Normal Form (3NF) 
(Connolly and Begg 2002).

Discovering  Functional  Dependencies: In  order  to 
define the RDB schema, we first need to compute the 
functional  dependencies  presented  in  a  given 
spreadsheet data. In (Cunha et al. 2009a) we reused the 
well known data mine algorithm, named FUN, to infer 
such dependencies. This algorithm was developed in the 
context of databases with the main goal of inferring all 
existing functional dependencies in the input data. As a 
result,  FUN  may  infer  a  large  set  of  functional 
dependencies  depending  on  the  input  data.  For  our 
example,  we list  the  functional  dependencies  inferred 
from the data using FUN:

clientNr ⇀ cName, country 
propNr ⇀ country , pAddress , rent , ownerNr , oName  
cName ⇀ clientNr , country 
pAddress ⇀ propNr , country , rent , ownerNr , oName 
rent ⇀ propNr , country , pAddress , ownerNr , oName
ownerNr ⇀ country,oName 
oName ⇀ country,ownerNr

Note that the data contained in the spreadsheet exhibits 
all  those  dependencies.  In  fact,  even  the  non-natural 
dependency  rent  ⇀  propNr,  country,  pAddress,  
ownerNr,  oName is  inferred.  Indeed,  the  functional 
dependencies  derived  by  the  FUN  algorithm  depend 
heavily on the quantity and quality of the data. Thus, for 
small samples of data, or data that exhibits too many or 
too  few  dependencies,  the  FUN  algorithm  may  not 
produce the desired functional dependencies. Note also 

that the country column occurs in most of the functional 
dependencies  although  only  a  single  country  actually 
appears  in  a  column of  the  spreadsheet,  namely  UK. 
Such single value columns are common in spreadsheets. 
However, for the FUN algorithm they induce redundant 
fields and redundant functional dependencies.
In order to derive more realistic functional dependencies 
for spreadsheets we have extended the FUN  algorithm 
so that it considers the following spreadsheet properties:

• Single value columns: these columns produce a single 
functional dependency with no right hand side (country 
⇀  {},  for  example).  This  columns are  not considered 
when finding other functional dependencies.

• Semantic of labels: we consider label names as strings 
and  we  look  for  the  occurrence  of  words  like  code, 
number,  nr,  id,  giving  them  more  priority  when 
considered as primary keys.

• Column  arrangement: we  give  more  priority  to 
functional  dependencies  that  respect  the  order  of 
columns.  For  example,  clientNr  ⇀  cName has  more 
priority than cName ⇀ clientNr.

Moreover,  to  minimize  the  number  of  functional 
dependencies  we  consider  the  smallest  subset  that 
includes  all  attributes/columns  in  the  original  set 
computed  by  FUN.  The  result  of  our  spreadsheet 
functional dependency inference algorithm is:

country ⇀ {}
clientNr ⇀ cName 
ownerNr ⇀ oName 
propNr ⇀ pAddress , rent , ownerNr , oName

This set of functional dependencies is very similar to the 
one  presented  previously.  The  exception  is  the  last 
dependency which has an extra attribute (oName).
User Defined Functional Dependencies: Although  the 
system can work in a fully automatic way, it also has the 
possibility  of  receiving  user  defined  functional 
dependencies. This functional dependencies are merged 
with  the  automatically  inferred  ones,  and  then 
normalized as a single set (see bellow the normalization 
paragraph).

Spreadsheet  Formulas: Spreadsheets  use  formulas  to 
define  the values of  some elements in  terms of  other 
elements. For example, in the house renting spreadsheet, 
the column days is computed by subtracting the column 
rentFinish  from rentStart,  and  it  is  usually  written  as 
follows:  H3 =  G3  –  F3.  This  formulas  test  that  the 
values of  G3 and F3 determine the value of H3, thus 
inducing  the  following  functional  dependency: 
rentStart, rentFinish ⇀ days.
Formulas  can  have  references  to  other  formulas. 
Consider,  for  example,  the  second  formula  of  the 
running example J3 = H3 * I3, which defines the total 
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rent  by  multiplying  the  total  number  of  days  by  the 
value  of  the  rent.  Because  H3 is  defined  by  another 
formula,  the  values that  determine  H3 also determine 
J3. As a result, the two formulas induce the following 
functional dependencies:  rentStart , rentFinish ⇀ days  
and rentStart , rentFinish , rent ⇀ total.
In general, a spreadsheet formula of the following form 
X0 = f (X1 , . . . , Xn) induces the following functional 
dependency:  X1  ,  .  .  .  ,  Xn  ⇀  X0.  In  spreadsheet 
systems,  formulas  are  usually  introduced  by  copying 
them through all the elements in a column, thus making 
the functional dependency explicit in all the elements. 
This may not always be the case and some elements can 
be defined otherwise (e.g. by using a constant value or a 
different formula). In both cases, all the cells referenced 
must  be  used  in  the  antecedent  of  the  functional 
dependency.
These  functional  dependencies  are  useful  for  the 
mapping  of  spreadsheets  to  databases  as  presented  in 
(Cunha et al. 2009a). In this work, they are not relevant 
since  the  existing  formulas  are  used  to  fill  in  those 
columns.

Normalizing  Functional  Dependencies: Having 
computed  the  functional  dependencies,  we  can  now 
normalize them. Next, we show the results produced by 
the synthesize algorithm introduced by Maier in (Maier 
1983).
The  synthesize  algorithm receives  a  set  of  functional 
dependencies  as  argument  and  returns  a  new  set  of 
compound  functional  dependencies.  A  compound 
functional dependency (CFD) has the form (X1 , . . . , 
Xn ) ⇀ Y , where X1 , . . . , Xn are all distinct subsets 
of a scheme R and Y is also a subset of R. A relation r  
satisfies the CFD (X1, . . . , Xn) ⇀ Y if it satisfies the 
functional dependencies Xi ⇀ Xj and Xi ⇀ Y, where 1 
≤ i  and j  ≤ k.  In  a  CFD, (X1,...,Xn) is  the left  side, 
X1,...,Xn are the left sets and Y is the right side.
Next,  we  list  the  compound  functional  dependencies 
computed from the functional dependencies induced by 
our running example.

({country}) ⇀ {} 
({clientNr}) ⇀ {cName} 
({ ownerNr }) ⇀ { oName } 
({ propNr }) ⇀ { pAddress , rent , ownerNr }

Computing  the  Relational  Database  Schema:  Each 
compound  functional  dependency  defines  several 
candidate  keys  for  each  table.  However,  to  fully 
characterize the relational database schema we need to 
choose the primary key from those candidates. To find 
such keys we use a simple algorithm: we produce all the 
possible tables using each candidate key as the primary 
key;  we  then  use  the  same  algorithm that  is  used  to 
choose the initial functional dependencies to choose the 
best  table.  Note  that  before  applying  the  synthesize 
algorithm,  all  the  functional  dependencies  with 
antecedents’ attributes representing formulas should be 

eliminated since  a primary key  must not  change over 
time. The final result is listed bellow.

country
clientNr , cName 
ownerNr , oName 
propNr , pAddress , rent , ownerNr

This relational database model corresponds exactly to 
the one shown in Section . Note that the synthesize 
algorithm removed the redundant attribute oName that 
occurred in the last functional dependency.

SPREADSHEET PROGRAMMING 
ENVIRONMENT

This section presents techniques to refactor spreadsheets 
into powerful  spreadsheet  programming environments. 
The functional dependencies and the relational database 
model  induced  by  the  data  included  in  the  original 
spreadsheet are the building block techniques for such a 
refactoring.  In  fact,  the  spreadsheet  refactoring  is 
implemented  as  the  embedding  of  the  relational 
database model in the spreadsheet.  This embedding is 
modeled in the spreadsheet itself by standard formulas 
and visual objects: additional formulas are included in 
the spreadsheet  to  guide the  user to  introduce correct 
data.
Before we present how this embedding is defined, let us 
first define a spreadsheet. A spreadsheet can be seen as a 
partial  function  S  :  A  →  V  mapping  addresses  to 
spreadsheet values. Elements of S are called cells and 
are represented as (a,v). A cell address is taken from the 
set A = N × N. A value v ∈ V can be an input plain 
value  c ∈  C like a  string or  a  number,  references to 
other cells using addresses or formulas f ∈ F that can be 
applied to one or more values: v∈V ::= c | a | f(v,...,v).

Auto-completion  of  Column  Values: The  columns 
corresponding to primary keys (with underlined labels 
and  green  combo  boxes  columns  in  Figure  3)  in  the 
relational  model  uniquely determine the values  of  the 
other  columns in  such a  relation. Moreover,  choosing 
one of the non-primary key columns (red combo boxes 
columns in Figure 3) the possible values of the primary 
key become more restricted. We want the spreadsheet 
environment  to  be  able  to  automatically  fill  those 
columns provided the end-user defines the value of the 
primary key or, in the other hand, to restrict the primary 
key  when  one  of  the  other  attributes  is  chosen.  For 
example,  the  value  of  the  property  number  (propNr, 
column  B)  determines  the  values  of  the  address 
(pAddress,  column D),  rent  per  day  (rent,  column I), 
and owner number (ownerNr, column K). Consequently, 
the  spreadsheet  environment  should  be  able  to 
automatically fill in the values of the columns D, I and 
K,  given  the  value  of  column  B.  Since  ownerNr 
(column  K)  is  a  primary  key  of  another  table, 
transitively  the  value  of  oName  (column  L)  is  also 
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defined. In the other hand, if a rent per day (column I is 
chosen,  the  corresponding  primary  column  B  values 
should be restricted to those values that can determine 
such a choice. We consider two mechanisms to model 
such an auto-completion feature.

• First, by using visual objects, that is a combo box, to 
choose   the  primary  key  and/or  the  non-primary  key 
column values as shown in the running example.

•  Second,  by  providing  traditional  editing  via  the 
keyboard that obeys to the underlying relational model. 
In this case the and-user may edit the primary key and 
the columns that it determines are automatically filled 
in. This traditional editing uses the (usual) column value 
completion provided by commercial systems: as soon as 
a  known  prefix  is  inserted  the  complete  string  is 
suggested. When the insertion is completed, the auto-
completable columns become also filled.

These  two  editing  models  use  the  derived  functional 
dependencies/relational schema in both directions.
Next  we present  the  details  of  the  embedding  of  the 
relational  model  in  the  original  spreadsheet.  Let  us 
consider  the table ownerNr,  oName from our running 
example. In the spreadsheet,  ownerNr is in column K 
and oName in column L. This table is embedded in the 
spreadsheet  introducing  a  combo  box  containing  the 
existing values in the column K (as displayed in Figure 
3).  Knowing  the  value  in  the  column  K  we  can 
automatically  introduce  the  value  in  column  L.  To 
achieve this, we introduce the following formula in row 
7 of column L: S (L,7) = if (isna (vlookup (K7,K2 : L6 ,  
2, 0)), "", vlookup (K7 , K2 : L6 , 2, 0)). This formula 
uses a (library) function  isna to test if there is a value 
introduced  in  column K.  In  case  that  value  exists,  it 
searches (with the function  vlookup) the corresponding 
value in the column L and references it. If there is no 
selected  value,  it  produces  the  empty  string.  The 
combination of the combo box and this formula guides 
the user to introduce correct data as illustrated in Figure 
3.
We have just presented a particular case of the formula 
and visual object induced by a relational table. Next we 
present the general case.
Let minr be the very next row after the existing data in 
the spreadsheet,  maxr the last  row in the spreadsheet, 
and  r1  the  first  row with already existing data.  Each 
relational  database  table  a1,  ...,  an,  c1,  ...,  cm,  with 
a1, ..., an, c1, ..., cm column indexes of the spreadsheet, 
induces firstly, a combo box defined as follows:

∀c ∈ {a1,...,an},∀r ∈ {minr,...,maxr}: 
    S(c,r) = combobox := {linkedcell :=(c,r);
                                          source cells:=(c,r1):(c,r−1)}

secondly, a spreadsheet formula defined as:

∀c ∈ {c1,...,cm},∀r ∈ {minr,...,maxr}: 

S (c,r) =
if (if (isna (vlookup ((a1,r),(a1,r1):(c,r −1),r −a1+1,0)),  
"",
vlookup ((a1,r),(a1,r1):(c,r −1),r −a1 +1,0)) 
==
if (isna (vlookup ((a2,r),(a2,r1):(c,r −1),r −a2 +1,0)),  
"",
vlookup ((a2,r),(a2,r1):(c,r −1),r −a2 +1,0)) 
== ... ==
if(isna(vlookup((an,r),(an,r1):(c,r−1),r−an +1,0)), 
"",
vlookup((an,r),(an,r1):(c,r−1),r−an +1,0)), 
vlookup ((a1,r),(a1,r1):(c,r −1),r −a1 +1,0),"")

This formula must be used for each non primary key 
column  created  by  our  algorithm.  Each  if  inside  the 
main  if  is  responsible  for  checking  a  primary  key 
column.  In  the  case  a  primary  key  column  value  is 
chosen, isna (vlookup (...)),  the formula calculates the 
corresponding non primary key column value,  vlookup 
(...). If the values chosen by all primary key columns are 
equal,  then that  value is  used in the non primary key 
column.
Note  that  this  formula  considers  tables  with  primary 
keys consisting of  multiple attributes  (columns).  Note 
also  that  the  formula  is  defined  in  each  column 
associated to non-key attribute values.
The example table analyzed before is an instance of this 
general one. In the table ownerNr,oName, ownerNr is 
a1, oName is c1, c is L, r1 is 2, minr is 7. The value of 
maxr  is  always  the  last  row  supported  by  the 
spreadsheet system.
Foreign  keys  pointing  to  primary  keys  become  very 
helpful  in  this  setting.  For  example,  if  we  have  the 
relational tables A, B and B, C where B is a foreign key 
from the  second table  to  the  first  one,  then when we 
perform auto-completion in column A, both B and C are 
automatically filled in. This was the case presented in 
Figure 3. The combo box visual object is implemented 
as a script defined in the macro’s language used by the 
spreadsheet systems1.

Non-Editable Columns: To prevent wrong introduction 
of  data  and,  thus,  producing  update  anomalies,  we 
protect some columns from edition. The relational table 
a1, ..., an, c1, ..., cm induces the non-edition of columns 
a1, ..., an, c1, ..., cm. That
is to say that all columns that form a table become non-
editable.  For example,  column L is part  of the owner 
table but it  is  not  part  of its primary key. In the case 
where the end-user needs to change the value of such 
protected  columns,  we  provide  traditional  editing  as 
described in Subsection .

Safe  Deletion  of  Rows: Another  usual  problem with 
non-normalized data is the deletion problem. Suppose in 
our  running  example  that  row  5  is  deleted.  All  the 
knowledge about the pg36 property is lost, although the 
end-user  would  probably  want  to  delete  the  renting 
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transaction  only.  To  correctly  delete  rows  in  the 
spreadsheet,  a  button  is  added  to  each  row  in  the 
spreadsheet as follows: for each relational table a1 , ..., 
an , c1 , ..., cm each button checks, on its corresponding 
row, the columns that are part of the primary key,
a1 , ..., an . For each primary key column, it verifies if 
the value that is being removed is the last one. Let c ∈ 
{a1, ..., an}, let r be the button row, r1 be the first row of 
column c with data and rn be the last row of column c
with data. The test is defined as follows: if (isLast((c,r),
(c,r1):(c,rn)),showMessage,deleteRow(r)). If  the  value 
is  the  last  one,  the  spreadsheet  warns  the  user 
(showMessage). If the user presses the OK button, the 
spreadsheet  will  remove  the  row.  In  the  other  case, 
Cancel,  no  action  will  be  performed.  In  the  case  the 
value  is  not  the  last  one,  the  row  will  simply  be 
removed, deleteRow (r ).
For example, in column propNr of our running example, 
the row 5 contains the last  data about the house with 
code  pg36.  If  the  user  tries  to  delete  this  row,  the 
warning will be triggered.

Traditional Editing: Advanced programming language 
environments  provide  both  advanced  editing 
mechanisms and traditional ones (i.e., text editing). In a 
similar way, a spreadsheet environment should allow the 
user  to  perform  traditional  spreadsheet  editing  too. 
Thus, the environment should provide a mechanism to 
enable/disable the advanced features described in  this 
section. When advanced features are disabled, the end-
user  is  be  able  to  introduce  data  that  violates  the 
(previously) inferred relational model. However, when 
the end-user returns to advance editing, the spreadsheet 
infers a new relational model that will be used in future 
(advanced) interactions.

Recalculation  of  the  Relational  Database  Model: 
because  standard  editing  allows  the  end-user  to 
introduce data violating the underlying relational model, 
we  would  like  that  the  spreadsheet  environment  may 
enable/disable the advanced features described in  this 
section. When advanced features are disabled, the end 
user  would be able to introduce data that violates the 
(previously) inferred relational model. However, when 
the  end-user  returns  to  advanced  editing,  then  the 
spreadsheet should infer a new relational model that will 
be used in future (advanced) interactions.

HaExcel  Addon: We  have  implemented  the  FUN 
algorithm,  the  extensions  described  in  this  paper,  the 
synthesize  algorithm,  and  the  embedding  of  the 
relational  model  in  the  HASKELL  programming 
language (Peyton Jones 2003). We have also defined the 
mapping from spreadsheet to relational databases in the 
same framework named HaExcel (Cunha et al. 2009a). 
Finally,  we have  extended this  framework to  produce 
the visual objects and formulas to model the relational 
tables in the spreadsheet. An OpenOffice addon has also 
been  constructed  so  that  the  end-user  can  use 

spreadsheets in this popular system and at the same time 
our advanced features. This can be seen in the left part 
of Figure 3. There are three buttons that allow HaExcel 
with auto-completion with combo boxes (first button), 
HaExcel  with  auto-completion  without  combo  boxes 
(second button) and disable HaExcel (third button). This 
addon can be found in the first author’s web page.

PRELIMINARY EXPERIMENTAL RESULTS

In order to evaluate the applicability of our approach, 
we  have  performed  a  preliminary  experiment  on  the 
EUSES Corpus  (Fisher  II  and  Rothermel  2005).  This 
corpus was conceived as a shared resource to support 
research  on  technologies  for  improving  the 
dependability of  spreadsheet  programming. It  contains 
more  than  4500  spreadsheets  gathered  from different 
sources  and  developed  for  different  domains.  These 
spreadsheets are assigned to eleven different categories. 
Among  the  spreadsheets  in  the  corpus,  about  4.4% 
contain macros, about 2.3% contain charts,  and about 
56% do not have formulas being only used to store data. 
In our preliminary experiment we have selected the first 
ten spreadsheets from each of the eleven categories of 
the  corpus.  We  then  applied  our  tool  to  each 
spreadsheet, with different results (see also Table 1): 

A few  spreadsheets  failed  to  parse.  This  was  due  to 
glitches in the Excel to Gnumeric conversion, which we 
use to bring spreadsheets into a processable form.

• Some spreadsheets were parsed, but no tables could be 
recognized in them, i.e.,  their  users did not adhere to 
any  of  the  supported  layout  conventions.  The  layout 
conventions we support  are the ones presented in the 
UCheck project (Abraham and Erwig 2007). This was 
the case for about one third of the spreadsheets in our 
selection. 

•  The  other  spreadsheets  were  parsed,  tables  were 
recognized, and edit assistance was generated for them. 
We  will  focus  on  the  last  groups  in  the  upcoming 
sections.

Table 1: The number of spreadsheets per category  
present in the EUSES corpus.
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Processed Spreadsheets: The results of processing our 
sample  of  spreadsheets  from  the  EUSES  corpus  are 
summarized  in  Table  2.  The  rows  of  the  table  are 
grouped by category as documented in the corpus. The 
first  three  columns  contain  size  metrics  on  the 
spreadsheets.  They  indicate  how  many  tables  were 

recognized,  how  many  columns  are  present  in  these 
tables,  and  how  many  cells.  For  example,  the  first 
spreadsheet in the financial category contains 15 tables 
with  a  total  of  65  columns  and  242  cells.The  fourth 
column shows how many functional dependencies were 
extracted from the recognized tables by our algorithm. 
These  are the non-trivial  functional  dependencies that 
remain after we use our extension to the FUN algorithm 

to discard redundant functional dependencies. The last 
three  columns  are  metrics  on  the  generated  edit 
assistance.  In  some  cases,  no  edit  assistance  was 
generated,  indicated  by  zeros  in  these  columns.  This 
situation occurs when no (non-trivial) dependencies are 
induced from the recognized tables. In the other cases, 
the three columns respectively indicate:

•  For  how  many  columns  a  combo  box  has  been 
generated  for  controlled  insertion.  The same  columns 
are also enhanced with the safe deletion of rows feature.

• For how many columns the auto-completion of column 
values has been activated, i.e., for how many columns 
the user is no longer required to insert values manually.

Table 2:Preliminary results of processing the selected spreadsheets.
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• How many columns are locked to prevent edit actions 
where  information  that  does  not  appear  elsewhere  is 
deleted inadvertently.

For example, for the first spreadsheet of the inventory 
category,  combo  boxes  have  been  generated  for  31 
columns,  auto-completion  has  been  activated  for  1 
column, and locking has been applied to 32 columns. 
Note that  for  the categories  jackson and personal,  no 
results  were  obtained  due  to  absent  or  unrecognized 
layout  conventions  or  to  the  size  of  the  spreadsheets 
(more than 150,000 cells).

Observations: On the basis of these preliminary results 
for  our  sample  of  corpus  spreadsheets,  a  number  of 
interesting  observations  can  be  made.  For  some 
categories,  edit  assistance  is  successfully  added  to 
almost  all  spreadsheets  (e.g.  inventory  and  database), 
while for others almost none of the spreadsheets lead to 
results  (e.g.  the  forms/3  category).  The latter  may  be 
due  to  the  small  sizes  of  the  spreadsheets  in  this 
category.  For the  financials  category,  we can  observe 
that in only 2 out of 10 sample spreadsheets tables were 
recognized,  but  edit  assistance  was  successfully 
generated for both of these. The percentage of columns 
for  which  edit  assistance  was  generated  varies.  The 
highest  percentage  was  obtained  for  the  second 
spreadsheet of the modeling category, with 9 out of 10 
columns (90 %). A good result is also obtained for the 
first spreadsheet of the grades category with 28 out of 
41 columns (68.3 %). On the other hand, the 5th of the 
homework category gets edit assistance for only 2 out of 
28  columns  (7.1  %).  The  number  of  columns  with 
combo boxes often outnumbers the columns with auto-
completion. This may be due to the fact that many of the 
functional  dependencies  are  small,  with  many  having 
only  one  column  in  the  antecedent  and  none  in 
consequent.

Evaluation: Our  preliminary  experiment  justifies  two 
preliminary  conclusions.  Firstly,  the  tool  is  able  to 
successfully add edit assistance to a series of non-trivial 
spreadsheets. A more thorough study of these and other 
cases  can  now  be  started  to  identify  technical 
improvements  that  can be made to  the  algorithms for 
table recognition and functional dependency extraction. 
Secondly, in the enhanced spreadsheets a large number 
of columns are generally affected by the generated edit 
assistance, which indicates that the user experience can 
be impacted in a significant manner. Thus, a validation 
experiment  can  be  started  to  evaluate  how  users 
experience the additional assistance and to which extent 
their productivity and effectiveness can be improved.

RELATED WORK

Our work is strongly related to a series of techniques by 
Abraham et al.. Firstly, they designed and implemented 
an algorithm that  uses the labels within a spreadsheet 
for  unit  checking (Erwig and Burnett  2002;  Abraham 
and Erwig 2004). By typing the cells in a spreadsheet 
with  unit  information  and  tracking  them  through 
references and formulas,  various types of users errors 
can be caught. We have adopted the view of Abraham et 
al. of a spreadsheet as a collection of tables and we have 
reused  their  algorithm  for  identifying  the  spatial 
boundaries  of  these  tables.  Rather  than exploiting the 
labels  in  the  spreadsheet  to  reconstruct  implicit  user 
intentions,  we  exploit  redundancies  in  data  elements. 
Consequently, the errors caught by our approach are of a 
different kind.
Secondly, Abraham et al. developed a type system and 
corresponding inference algorithm that assigns types to 
values,  operations,  cells,  formulas,  and  entire 
spreadsheets  (Abraham  and  Erwig  2006b).  The  type 
system  can  be  used  to  catch  errors  in  existing 
spreadsheets or to infer models for spreadsheets that can 
help  to  prevent  errors.  These  models  are  condensed 
representations of areas of repeating types, and so, they 
are not relational database models, as in our approach, 
but similar to collection types in regular programming.
Thirdly, Abraham et al. developed a tool for generating 
spreadsheets  from spreadsheet  specifications  (models) 
(Erwig  et  al.  2006).  Generated  spreadsheets  are 
guaranteed to be free of reference, range, or type errors. 
This  implies  a  significant  departure  of  normal 
spreadsheet  usage,  where  domain  experts  create 
spreadsheet  specifications  and  others  use  these  to 
generate  spreadsheets.  A  system  has  also  been 
developed  to  extract  specifications  from  existing 
spreadsheets  (Abraham  and  Erwig  2006a).  Our 
approach does not require such a paradigm shift.  The 
inferred model is present in the background only, of a 
familiar  spreadsheet  environment  enhanced  with 
features  for  completion,  protection,  and  insertion  of 
data.
In previous work we presented techniques and tools to 
transform  spreadsheets  into  relational  databases  and 
back (Cunha et al. 2009a). As in the current paper, we 
used an algorithm for functional  dependency recovery 
to  construct  a  relational  model,  but  rather  than 
generating  edit  assistance,  the  recovered  information 
was  used  to  perform  spreadsheet  refactoring.  The 
algorithm  for  extracting  and  filtering  spreadsheets 
presented in the current paper is an improvement over 
that work. We provided a short user-centered overview 
of the idea of generating edit assistance for spreadsheets 
via extraction of functional dependencies in a previous 
short paper (Cunha et al. 2009b). In the current paper, 
we  provide  the  technical  details  of  the  solution, 
including  the  improved  algorithm  for  inferring  and 
filtering functional dependencies. Also, we provide the 
first  preliminary  evaluation  of  the  approach  by 
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application to a sample of spreadsheets from the EUSES 
corpus.

CONCLUSIONS

We  have  demonstrated  how  implicit  structural 
properties of spreadsheet data can be exploited to offer 
edit  assistance to spreadsheet users.  To discover these 
properties, we have made use of our improved approach 
for  mining functional  dependencies from spreadsheets 
and subsequent  synthesis of  a  relational  database.  On 
this basis,  we have  made the  following contributions: 
Derivation of formulas and visual elements that capture 
the knowledge encoded in the reconstructed relational 
database  schema;  Embedding  of  these  formulas  and 
visual elements into the original spreadsheet in the form 
of features for auto-completion, guarded deletion, and 
controlled  insertion;  Integration  of  the  algorithms  for 
reconstruction  of  a  schema,  for  derivation  of 
corresponding  formulas  and  visual  elements,  and  for 
their embedding into an addon for spreadsheets.
A spreadsheet  environment  enhanced  with  our  addon 
compensates to a significant extent for the lack of the 
structured  programming  concepts  in  spreadsheets.  In 
particular, it assists users to prevent common update and 
deletion anomalies during editing.
There are several extensions of our work that we would 
like  to  explore.  The  algorithms  running  in  the 
background  need  to  recalculate  the  relational  schema 
and  the  ensuing  formulas  and  visual  elements  every 
time new data is inserted. For larger spreadsheets, this 
recalculation  may  incur  waiting  time  for  the  user. 
Several  optimizations  of  our  algorithms  can  be 
attempted to eliminate such waiting times, for example, 
by use of  incremental  evaluation. Our approach could 
be integrated with similar,  complementary approaches 
to  cover  a  wider  range  of  possible  user  errors.  In 
particular,  the work of  Abraham et  al.  (Abraham and 
Erwig  2006b,a)  for  preventing  range,  reference,  and 
type  errors  could  be  combined  with  our  work  for 
preventing data loss and inconsistency.
We  have  presented  some  preliminary  experimental 
results  to  pave  the  way  for  a  more  comprehensive 
validation experiments. In particular, we intend to set up 
a structured experiment for testing the impact on end-
user productivity, and effectiveness.

REFERENCES

R. Abraham and M. Erwig. Header and unit inference  
for spreadsheets through spatial analyses. Visual 
Languages and Human Centric Computing, IEEE 
Symp. on, pages 165–172, Sept. 2004. 

R. Abraham and M. Erwig. UCheck: A spreadsheet type 
checker for  end  users.  J.  Vis.  Lang.  Comput.,  
18(1):71–95, 2007.

Robin Abraham and Martin Erwig. Inferring templates 
from spreadsheets. In ICSE ’06: Proceedings of 

the  28th  Int.  Conf.  on  Software  Engineering,  
pages  182–191,  New York,  NY,  USA,  2006a.  
ACM. ISBN 1-59593-375-1. 

Robin Abraham and Martin Erwig. Type inference for  
spreadsheets. In Annalisa Bossi and Michael J.  
Maher,  editors,  Proc.  of  the  8th  Int.  ACM  
SIGPLAN Conf. on Principles and Practice of  
Declarative  Programming,  Venice,  Italy,  pages  
73–84. ACM, 2006b. ISBN 1-59593-388-3.

C.  Beeri,  R.  Fagin,  and  J.H.  Howard.  A complete  
axiomatization  for  functional  and  multivalued  
dependencies in database relations. In Proc. of  
the ACM SIGMOD Int. Conf. on Management of 
Data, pages 47–61, 1977.

E. F. Codd. A relational model of data for large shared 
data  banks.  Commun.  ACM,  13(6):377–387,  
1970. 

T. Connolly and C. Begg. Database Systems, A Practical 
Approach  to  Design,  Implementation,  and  
Management. Addison-Wesley, 3 edition, 2002.

Jácome Cunha, João Saraiva, and Joost Visser.  From  
spreadsheets to relational databases and back. In 
PEPM ’09: Proc. of the 2009 ACM SIGPLAN  
Workshop  on  partial  evaluation  and  program  
manipulation,  pages 179–188,  New York,  NY,  
USA, 2009a. ACM. ISBN 978-1-60558-327-3. 

Jácome  Cunha,  João  Saraiva,  and  Joost  Visser.  
Discovery-based edit assistance for spreadsheets. 
In IEEE Symposium on Visual Languages and  
Human-Centric Computing, IEEE, 2009b.

C.  J.  Date.  An  Introduction  to  Database  Systems.  
Addison-Wesley, 1995. ISBN 0-201-82458-2. 

Martin Erwig and Margaret M. Burnett. Adding apples 
and oranges. 4th Int. Symp. on Practical Aspects 
of Declarative Languages, pages 173–191, 2002.

Martin Erwig, Robin Abraham, Irene Cooperstein, and 
Steve Kollmansberger. Automatic generation and 
maintenance  of  correct  spreadsheets.  In  ICSE  
’05:  Proceedings  of  the  27th  international  
conference on Software engineering, pages 136–
145, New York, NY, USA, 2005. ACM. ISBN 1-
59593-963-2.

Martin Erwig, Robin Abraham, Steve Kollmansberger,  
and  Irene  Cooperstein.  Gencel:  a  program  
generator  for  correct  spreadsheets.  J.  Funct.  
Program, 16(3):293–325, 2006.

Marc  Fisher  II  and  Gregg  Rothermel.  The  EUSES  
Spreadsheet  Corpus:A  shared  resource  for  
supporting  experimentation  with  spreadsheet  
dependability mechanism. In 1st  Workshop on  
End-User Software Engineering,  pages 47–51,  
May 2005.

Steve  Holzner.  Eclipse.  O’Reilly,  May  2004.  ISBN  
0596006411.

Matthijs Kuiper and João Saraiva. Lrc - A Generator for 
Incremental  Language-Oriented  Tools.  In  Kay  
Koskimies, editor, 7th International Conference  
on  Compiler  Construction,  volume  1383  of  



Semana de Engenharia 2010
Guimarães, 11 a 15 de Outubro

LNCS,  pages  298–301.  Springer-Verlag,  April  
1998.

D.  Maier.  The  Theory  of  Relational  Databases.  
Computer Science Press, 1983. ISBN 0-914894-
42-0. S. Peyton Jones. Haskell 98: Language and 
libraries. J. Funct. Program., 13(1):1–255, 2003. 

A.D. Pitonyak, C.R. Pearsall, J.H. Weber, and A. Boyer. 
OpenOffice.  org  macros  explained.  
Hentzenwerke Pub Inc, 2004.

Thomas  Reps  and  Tim  Teitelbaum.  The  synthesizer  
generator. SIGSOFT Sof. Eng. Notes, 9(3):42–
48, 1984. ISSN 0163-5948.

J. D. Ullman and J. Widom. A First Course in Database 
Systems. Prentice Hall, 1997.

Mark van den Brand,  Paul  Klint,  and Pieter  Olivier.  
Compilation  and  Memory  Management  for  
ASF+SDF.  In  Stefan  Jahnichen,  editor,  8th  
International  Conference  on  Compiler  
Construction,  volume 1575 of  LNCS, pages  
198–213, March 1999.


