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Abstract
In this paper we present CAOVerif, a deductive verification
tool for the CAO language. CAO is a domain-specific lan-
guage for cryptography with interesting challenges for formal
verification. It introduces not only a rich mathematical type
system, but it also offers cryptography-oriented language con-
structions. The toolchain encompasses different transforma-
tions of the source code in order to get the VCs and is based
in the Jessie plug-in of the Frama-C framework.

INTRODUCTION

Program verification refers to techniques aiming at establish-
ing that a program is in accordance with its specification.
These techniques usually rely on verification platforms, which
can be used to prove complex program properties. Often these
are based on variations of Hoare logic [6], whose axioms and
inference rules capture the semantics of imperative program-
ming languages. Such verification platforms are usually struc-
tured around the following components: an annotation Lan-
guage, a Verification condition generator (VCGen) and proof
generation.

In this report we describe a deductive verification tool for
CAO. This is a language tuned to the implementation of low-
level cryptographic primitives in a way which is close to the
notation used in scientific papers and standards. In a nut-shell,
CAO is an imperative language that includes the typical set
of imperative statements, but offers a very rich set of native
types that are used recurrently in cryptography. The idea is
to take advantage of the characteristics of this programming
language to construct a domain-specific verification tool, al-
lowing for the same verification techniques that can be applied
over general-purpose languages such as C, but simplifying the

verification of security-relevant properties, and hopefully pro-
viding a higher degree of automation.

Experience in applying general purpose verification tools to
cryptographic software shows that there is a great potential for
improvement in this regard [1, 2], and justifies the motivation
for this work.

CAOVERIF

Frama-C [3], is verification framework for C programs based
on Hoare Logic. Frama-C provides static analyzers imple-
mented as plug-ins, granting a fine-grained collaboration of
analysis techniques. The weakest precondition plug-in, called
Jessie, allows proving that C functions satisfy their specifica-
tion as expressed in ACSL (a specification language based on
JML[7]). The Jessie plug-in is built on the top of the Why tool,
which is a VCGen that supports a large number of provers as
back-end. From an annotated Why program, the tool gener-
ates a set of verification conditions that can be discharged by
a series of proof assistants [8] and automatic provers [4, 5].

We build on the Frama-C framework, and build CAOVerif
on top of the Jessie plug-in to reduce development time. We
take advantage of the fact that Jessie already incorporates
many features to reason about program correctness, such as a
first-order logic mechanism that facilitates the design of lan-
guage extensions. Based on this mechanism, we were able to
rapidly develop a appropriate models of CAO primitive types
and memory handling mechanisms. The architecture for the
CAO deductive verification tool is shown in Figure 1. An an-
notated CAO program is first checked for syntax and type con-
sistency and is then translated into the Jessie input language
by the CAO2Jessie tool. The corresponding code in the Why
input language is then generated by running the Jessie tool. A
multitude of proof assistants and automatic provers can then
be used to discharge the proof obligations which are generated
by the Why VCGen.

Because we are building on existing tools, we could fo-
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Figure 1: Tool architecture

cus our attention on the CAO-to-Jessie translation and, in
particular, on the Jessie model that captures the semantics
of CAO programs. Here we benefit from the considerable
amount of work that has already been carried out to support
the translation of C programs into Why. In particular, most
of the standard imperative language constructions supported
by CAO can be directly translated into equivalent Jessie con-
structions. Most CAO types are not native Jessie types, and so
our translation includes a model (i.e. an incomplete axiomati-
zation in first-order logic) of the CAO type system. The first-
order theory created for each CAO type typically comprises a
type signature and a set of axioms that partially describe the
operations allowed over that type. It would be pointless to
include a complete axiomatization in first-order logic of the
semantics of the entire CAO type-system, particularly for the
most complex types dealing with mathematical types such as
rings and finite fields, as these would be of little use to off-
the-shelf automatic provers. Instead we propose to refine our
models in Coq, over which we can show that our axiomatiza-
tion is consistent, and where users can interactively discharge
more intricate verification conditions. The translation of CAO
programs into Jessie also ensures the automatic generation
of verification conditions to validate the safe execution of the
verified code. Program safety in CAO has two dimensions:
memory safety and safety in arithmetic operations. Memory
safety is reduced to making sure that all indices used in vec-
tor, bit-string and matrix accesses are within the proper range.
The safety of arithmetic operations implies making sure that
all expressions refer to well-defined mathematical computa-
tions.

WORK-PLAN

As future work, we intend to implement a dedicated prover
over Coq that will provide support for CAO types where our
current models have clearer limitations. We also aim to estab-

lish the correctness of CAOVerif, to guarantee that our VCGen
generates proof-obligations that indeed provide assurance as
to the input CAO program’s safety and correctness.
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and V. Prevosto. ACSL: ANSI/ISO C Specfication Lan-
guage. CEA LIST and INRIA, 2008. Preliminary design
(version 1.4, December 12, 2008).

[4] S. Conchon, E. Contejean, and J. Kanig. Ergo : a theorem
prover for polymorphic first-order logic modulo theories,
2006.

[5] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver,
volume 4963/2008 of Lecture Notes in Computer Science,
pages 337–340. Springer Berlin, April 2008.

[6] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12:576–580,
1969.

[7] G. T. Leavens, C. Ruby, K. R. M. Leino, E. Poll, and
B. Jacobs. JML (poster session): notations and tools sup-
porting detailed design in Java. In OOPSLA ’00: Adden-
dum to the 2000 proceedings of the conference on Object-
oriented programming, systems, languages, and applica-
tions (Addendum), pages 105–106, New York, NY, USA,
2000. ACM.

[8] The Coq Development Team. The Coq Proof Assistant
Reference Manual – Version V8.2, 2008. http://coq.
inria.fr.

AUTHOR BIOGRAPHY
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