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ABSTRACT 

All decisions that concern the development and 
management of existent infrastructure are of extremely 
importance for society. However, it is verified that these 
decisions are influenced by a huge source of 
uncertainties that must be taken into account. A 
methodology that consider this, and, which objective, is 
to support such decisions, is developed within this 
research. In order to support such methodology, a 
numerical model is developed. Such model is then 
calibrated using backanalysis procedures, so that, given 
results, could best fit obtained experimental data. The 
developed model is continuously updated with collected 
data, by using inference processes. Then, a full 
probabilistic analysis is performed in order to evaluate 
the respective structure behavior. This paper describes 
such methodology, and the respective application with a 
batch of reinforced concrete beams, tested at laboratory, 
till failure. The developed methodology is applied with 
success and obtained results revealed the respective 
importance in future decisions concerning the societal 
infrastructure. Further steps consider the application of 
such methodology with a real structure. 
 
INTRODUCTION 

The development and management of the societal 
infrastructure is a central task for the continued success 
of society. The decision processes involved in this task 
concern all aspects of managing and performing the 
planning, investigations, designing, manufacturing, 
execution, operations, maintenance and 
decommissioning of objects of societal infrastructure, 
such as traffic infrastructure, housing, power generation, 
power distribution systems and water distribution 
systems. The main objective from a societal perspective 
by such activities is to improve the quality of life of the 
individuals of society both for the present and the future 
generations. 
 
Decision making for the purpose of assessing and 
managing the risks should be seen relative to the 
occurrence of hazards, i.e., risk management in the 
situations before, during and after the event (JCSS 
2008). This is because the possible decision alternatives 

or boundary conditions for decision making change over 
the corresponding time frame. Before a hazard occurs 
the issue of concern is to optimize investments into so-
called preventive measures such as e.g. protecting 
societal assets, adequately designing and strengthening 
societal infrastructure as well as developing 
preparedness and emergency strategies. During the 
event the issue is to limit consequences by containing 
damages and by means of rescue, evacuation and aid 
actions. After a hazard, the situation is to some degree 
comparable to the situation before the event; however, 
the issue here is to decide on the rehabilitation of the 
losses and functionalities and to reconsider strategies for 
prevention measures. 
 
If all aspects of decision problem would be known with 
certainty, the identification of optimal decisions would 
be straightforward by means of traditional cost-benefit 
analysis. However, due to the fact that our 
understanding of the problems involved in the decision 
problem is often far less than perfect and that we are 
only able to model the involved processes of physical 
phenomena as well as human interactions in rather 
uncertain terms, the decision problems in engineering is 
subject to significant uncertainty. Due to this, it is not 
possible to assess the outcomes of decisions in certain 
terms. There is so, no way to assess with certainty the 
consequences resulting from decisions we take. 
Accordingly, there is not one certain optimal decision 
but a set of feasible decisions which are acceptable. 
However, this interval can be reduced as the knowledge 
about studied societal infrastructure increases. 
Analyzing Figure 1, by minimizing such interval, the 
possibility of taking the right decision, the one that 
maximizes the respective utility, is higher. 
 

 

Figure 1:Decision vs. Utility 
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A methodology for the evaluation of any societal 
infrastructure that considers both uncertainty and 
variability sources, present in numeric and experimental 
data, is developed within this research. Such 
methodology is based in a numerical model, which can 
be used to support any decision before, during and after 
the hazard, and that can be updated and calibrated in a 
continuous way as more information regarding the 
studied infrastructure is collected. 
 
METHODOLOGY 

Figure 2 presents a flowchart of developed 
methodology. In order to evaluate the behavior of 
studied infrastructure, a numerical model is first 
developed and calibrated with measured data, collected 
by any implemented monitoring system (measured data 
T1). In order to do that, critical parameters, the ones that 
present a higher influence on the structural behavior, are 
continuously modified so that obtained numerical 
results best fit measured data. This process is designated 
by structural identification (St-Id), and defined here as 
backanalysis T1, was first introduced by Liu and Yao 
(1978). From several authors that present different 
applications of St-Id techniques it is important to 
mention the work of Sanayei and Saletnik (1996a, 
1996b), of Banan et al. (2004), of Banan and Hjelmstad 
(2004), and of Goulet et al. (2009a). 
 

 
Figure 2: Developed methodology 

 

The backanalysis process is based in a function, 
designated by fitness function, which determines the 
difference between numerical results and experimental 
data (Figure 3): 
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Figure 3: Fitness function 

 
The aim of backanalysis T1 is to minimize fitness 
function (1). However, such function presents, in 
several situations, a high non linearity and an extremely 
large number of critical parameters to be optimized. 
Minimization process, in this situation, gets longer, 
presenting a high computational cost, and obtained 
results that are far from the most suitable ones. In order 
to overpass such difficulties, different kind of 
optimization techniques were first tested and the most 
appropriate one is then chosen. 
 
In a further step, a random distribution is considered for 
each critical parameter. The mean value is, in this 
situation, the one obtained from backanalysis T1, being, 
the standard deviation defined according to existent 
bibliography (Choi et al. 2004, JCSS 2008, and Matos 
2008). A full probabilistic analysis is finally developed, 
being, the structural behavior, evaluated from a 
probabilistic point of view. 
 
In some situations there exist additional measurements 
(measured data T2) that may be considered in previous 
developed numerical model. In order to perform that, a 
Bayesian inference concept is introduced (Bernardo and 
Smith 2004): 
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where h(θ) indicates the prior distribution, f(x|θ) the 
likelihood and h(θ|x) the posterior distribution. The 
prior represents the existent model, the likelihood the 
collected data and the posterior the updated model. The 
critical parameters distribution and, consequently, the 
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numerical model are updated by using expression (2) 
(Figure 4). 
 

 
Figure 4: Bayesian inference 

 
Further, a full probabilistic analysis is developed. 
Sometimes, measured data T2 is considered as indirect. 
In other words, in such situations, such measurements 
correspond to parameters that are output of developed 
numerical model. In these situations a backanalysis T2 
may be executed. For these situations, the numerical 
model is updated in an indirect way. After critical 
parameters distributions being correctly defined, it is 
possible, again, to develop a full probabilistic analysis. 
 
The developed methodology will be used with a set of 
reinforced concrete and composite beams that were 
tested till failure in laboratory, and, also, with a real 
structure, a bridge, that was submitted to a load test 
(Figure 5). In this paper it will be present some results 
obtained from the application of it with reinforced 
concrete beams. 
 

 
Figure 5: Örnsköldsvik Bridge (Sweden) 

 
REINFORCED CONCRETE BEAMS 

Experimental data 

The presented methodology is validated with two sets of 
reinforced concrete beams which were tested in 
laboratory, till failure. The first set is constituted by 36 
pinned-pinned reinforced concrete beams (Figure 6) 
(Matos et al. 2010). During the test it is measured the 
applied load and the midspan displacement. Studied 
beams are grouped by typologies, according to the 
percentage of longitudinal reinforcement, the space 
between stirrups and the concrete cover. It is used a 
S500B reinforcing steel and a C25/30 concrete, 
according to EN 1992-1-1 (2004). 
 
The typology which results are provided in this paper, 
presents a longitudinal reinforcement of 3φ6, a 
transversal reinforcement of φ4@0.10 and a concrete 

cover of 1.0 cm. This typology includes two laboratory 
tested beams. The obtained failure mode is bending with 
concrete crushing (Figure 7). The failure mechanism is 
characterized by a plastic hinge at midspan. 
 

 
Figure 6: Laboratory test 

 

 
Figure 7: Bending failure mode 

 
The second battery to be tested is constituted by 32 
pinned-fixed reinforced concrete beams (Figure 8). In 
this situation it was also measured the reaction at simply 
support. In this situation, tested beams were grouped by 
typologies, considering the percentage of longitudinal 
reinforcement, the space between stirrups and the 
concrete cover. It was used a S500B steel and a C25/30 
concrete (EN 1992-1-1, 2004). 
 

 
Figure 8: Laboratory test 

 
The typology which results are presented during the 
analysis, is defined by a longitudinal reinforcement of 
2φ8 (superior) and 3φ6 (inferior), by a space between 
stirrups of 0.08 m (mid span) and of 0.03 m (supports), 
and by a concrete cover of 2 cm. This typology includes 
two laboratory tested beams. The obtained failure mode 
is bending with concrete crushing. A failure mechanism 
characterized by two plastic hinges, one at fixed 
support, and, one other, behind the load which is 
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positioned from the pinned support side, is formed 
(Figure 9). 
 

 
Figure 9: Bending failure mode 

 
Numerical model 

The non linear numerical model was developed within 
the platform ATENA (Červenka 2002, Červenka et al. 
2002), and with the aim of interpreting obtained 
experimental data. It was used a quadrangular finite 
element mesh and a perfect bond between reinforcement 
and concrete assumed. It was considered a displacement 
control test. 
 
The developed model was then simplified, without 
changing the main results, by reducing the finite 
element and load step number, in order to minimize the 
respective size, for posterior application of developed 
methodology (Figure 10). A sensitivity analysis was 
also performed to identify critical parameters, the ones 
that present a large influence on the overall structural 
behavior. 
 

 
Figure 10: Finite element mesh and results 

 
For the situation of pinned-fixed beams, it was 
necessary to reproduce the steel beam, in which the 
actuator applies the load. Also, and in order to simulate 
the fixed support, which is not working full since the 
test beginning due to concrete beam accommodation, it 
were used spring elements (Figure 11). 
 

 
Figure 11: Finite element mesh and results 

 
Backanalysis 

The algorithm that was used to perform the 
backanalysis, by minimizing fitness function (1), is the 
so called genetic algorithm (Michalewicz 1996, Mitchel 
1998, Sawaka 2002). The main idea is to identify, from 
all possible combinations of values for critical 
parameters, a set of them that will minimize the distance 
between numerical and experimental data. This 
algorithm is a stochastic search technique based on the 
mechanism of natural selection and natural genetics. In 
Figure 12 it is presented a flowchart of this algorithm. 
 

Genetic algorithms start with an initial population of 
individuals generated at random. Each individual in the 
population represents a potential solution to the problem 
under consideration. The individuals evolve through 
successive iterations called generations. During each 
generation, each individual in the population is 
evaluated through some measure of fitness. Then, 
genetic operators (reproduction, crossover and 
mutation) are applied to create the population of next 
generation. This procedure continues till the termination 
condition is satisfied. 
 

 
Figure 12: Genetic algorithm 

 
When developing a backanalysis procedure, there are 
two sources of uncertainties, ones related to 
experimental measurements and others to numerical 
analysis, which should be considered. The way such 
sources are included in the analysis is by considering 
the global uncertainty value as the algorithm tolerance 
criteria. In fact, backanalysis can be performed till one 
limit, the so called precision, determined by such 
uncertainty sources is achieved. 
 
In order to combine both uncertainties, from numerical 
and experimental data, and after determining each 
uncertainty value, the law of propagation of uncertainty 
(JCGM 100 2008, JCGM 101 2008) is applied. In this 
situation the correlation coefficient is considered to be 
null and so a simplified expression is obtained: 
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1
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n
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where u is the global uncertainty, u(x) the uncertainty 
related to each item x, and δf/δx the partial derivate of 
fitness function in order to the item x. By applying 
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expression (3), and by considering the uncertainty 
values present in bibliography (Goulet et al. 2009b, 
Goulet et al. 2009c), it is so possible to determine the 
algorithm tolerance (ε), which is, for analyzed 
typologies, equal to 6.06 in the situation of pinned-
pinned beams and to 16.18, for fixed-pinned beams. The 
optimization algorithm is then processed after obtaining 
the tolerance values. Once the algorithm criterion is 
achieved, a final population, constituted by different 
individuals, is obtained. From these individuals, there 
exists one which presents the best result, respectively, 
the minimum fitness function value. 
 
Figure 13 presents measured experimental data, and the 
numerical results obtained by considering the values 
from EN 1992-1-1 (2004), and the ones obtained from 
backanalysis developed till 30% and 100% of failure 
load, for the situation of pinned-pinned beams. From the 
respective analysis it is possible to conclude that the 
former one presents the results which best fit the 
experimental curve, being, such values, the ones 
considered in the following probabilistic analysis. The 
obtained failure mode, for this situation, is the bending, 
one, which is in agreement with obtained experimental 
results (Figure 14). 
 
It is important to mention that, usually, backanalysis 
procedures are developed till loads which are in the 
region of 30% of failure load. This is due to the fact that 
in several situations, and with the main objective of 
characterizing the structural behavior, the structure is 
submitted to an evaluation test with applied loads within 
this region. These loads usually correspond to a service 
limit state. However, in this situation, and according to 
Figure 13, the backanalysis process becomes more 
difficult to realize, as there is no information about the 
structural response for higher loads. 
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Numerical Results (EN 1992-1-1 Eurocode 2, 2004)

Numerical Results (Optimization 30% failure load)

Numerical Results (Optimization 100% failure load)

Experimental Data

 
Figure 13: Numerical results 

 

 
Figure 14: Failure mechanism 

 

Table 1 presents the fitness function results considering 
the behavior till failure load. The backanalysis gives an 
improvement of 84.76% which is excellent. The same 
table present the values of experimental and numerical 
failure load, by considering parameter values from EN 
1992-1-1 (2004) and from backanalysis. This former 
one presents an error, when compared to experimental 
failure load, less than 1%. 
 

Table 1: Fitness function and failure load values 

Fitness function Failure load 
Numerical 

model Value 
Improvement 

(%) 
Value 
(kN) 

Error 
(%) 

EN 1992-1-1 
(2004) 

383.02 - 23.37 5.79 

Backanalysis 58.39 84.76 24.88 0.32 

Experimental 
data 

- - 24.80 - 

 
Figure 15 and 16 presents measured data, and numerical 
results obtained by considering the values from EN 
1992-1-1 (2004), and the ones from backanalysis till 
30% and 100% of failure load. From the analysis it is 
possible to conclude that the former one presents the 
numerical curve which best fits the experimental one 
being, those values, the ones considered in the following 
probabilistic analysis. The cracking pattern and 
deformation shape of the fixed-pinned beam, in this 
situation, is identical to the one from experimental tests 
(Figure 17). Also the backanalysis, developed till 30% 
of failure load, presents very good results for lower 
loads but, for higher loads, numerical and experimental 
responses get far from each other. This is similar to 
what happens for pinned-pinned beams, and reveals the 
necessity of collecting more data, when in the absence 
of measured structural responses for higher loads. 
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Numerical Results (EN 1992-1-1 Eurocode 2, 2004)

Numerical Results (Optimization 30% failure load)
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Figure 15: Numerical results 
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Numerical Results (EN 1992-1-1 Eurocode 2, 2004)

Numerical Results (Optimization 30% failure load)

Numerical Results (Optimization 100% failure load)

Experimental Data

 
Figure 16: Numerical results 

 

 
Figure 17: Failure mechanism 

 
Table 2 and 3 presents the fitness function results 
considering the behavior till failure load. The 
improvement due to backanalysis process is of 56.67% 
which is really good. The same table gives experimental 
and numerical values for failure load and for bending 
moment at fixed support by considering the values from 
EN 1992-1-1 (2004) and the ones from backanalysis. 
The error, obtained from both numerical analyses, can 
be considered as admissible. The results from the 
application of optimization algorithm are very good and 
will serve to validate it. 
 

Table 2: Fitness function values 

Fitness function 
Numerical 

model 
Value Improvement (%) 

EN 1992-1-1 
(2004) 

752.62 - 

Backanalysis 326.13 56.67 

Experimental 
data 

- - 

 
Table 3: Failure load and bending moment values 

Failure load Bending moment 
Numerical 

model Value 
(kN) 

Error (%) 
Value 

(kN.m) 
Error 
(%) 

EN 1992-1-1 
(2004) 

29.35 0.13 5.12 25.78 

Backanalysis 27.04 8.00 4.91 28.87 

Experimental 
data 

29.39 - 6.90 - 

 
 

Probabilistic analysis 

Before performing any probabilistic analysis, it is 
necessary to assume for each critical parameter a 
random distribution. The respective mean is the value 
obtained from previous backanalysis procedure, while, 
the standard deviation is adopted in accordance to the 
bibliography (Choi et al. 2004, JCSS 2008, and Matos 
2008). It is so assumed, for this situation, that there is no 
additional collected data, and, consequently, it is not 
possible to update, by using inference procedures, the 
previous developed numerical model. The methodology 
finishes so with the probabilistic analysis. There are 
several authors that used probabilistic analysis in civil 
engineering field like Ditlevsen and Madsen (1996), 
Nowak and Collins (2000), Pukl et al. (2006) and 
Teigen et al. (1991a, 1991b). 
 
The non linear probabilistic analysis takes into 
consideration the critical parameters randomness. Each 
parameter is defined by a random distribution function 
according to existent bibliography (Choi et al. 2004, 
JCSS 2008, and Matos 2008). A correlation matrix, 
which relates some of those variables, is also defined. 
For pinned-pinned beams, the considered critical 
parameters distributions are present in Table 4, 5 and 6, 
and the correlation coefficients in Table 7 and 8. 
 
A framework, designated by FReET, was then used to 
develop the probabilistic analysis (Novák et al. 2003). 
The FReET is based in a Latin Hypercube sampling 
process. A specific platform, SARA, which connects 
both FReET and ATENA environments, is adequately 
used. It was generated, and posterior analyzed, more 
than one hundred samples of previous developed finite 
element model. The numerical probabilistic distribution, 
obtained for each output parameter, was then compared 
with a random distribution attributed to the respective 
measured data. This consistent comparison is based on 
the degree of approximation between numerical and 
experimental confidence intervals. 
 

Table 4: Concrete material 

Parameters Distribution 
Average 

value 
COV 

Elasticity 
modulus 

[GPa] 
Ec Norm. 30.00 0.10 

Compressi
on strength 

[MPa] 
fc Norm. 28.00 0.10 

Tensile 
strength 
[MPa] 

ft Norm. 1.50 0.20 

Fracture 
energy 
[N/m] 

Gf Norm. 51.40 0.10 
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Table 5: Longitudinal reinforcement 

Parameters Distribution 
Average 

value 
COV 

Yield 
strength 
[MPa] 

 σy Norm. 540.00 0.05 

Limit 
strength 
[MPa] 

σt Norm. 600.00 0.05 

Limit 
strain [-] 

 εlim Norm. 0.08 0.15 

 
Table 6: Geometric parameters 

Parameters Distribution 
Average 

value 
Standard 
Deviation 

Concrete cover 
[mm] 

Norm. 10.00 5.00 

Thickness 
[mm] 

Norm. 75.00 3.75 

 
Table 7: Correlation matrix (concrete) 

 Ec fc ft Gf 

Ec 1.0 0.9 0.7 0.5 

fc 0.9 1.0 0.8 0.6 

ft 0.7 0.8 1.0 0.9 

Gf 0.5 0.6 0.9 1.0 

 
Table 8: Correlation matrix (reinforcing steel) 
  σy σt  εlim 

 σy 1.0 0.8 0.8 

σt 0.8 1.0 1.0 

 εlim 0.8 1.0 1.0 

 
Consequently, it is possible to determine the 
correspondent numerical and experimental confidence 
intervals. Accordingly, and assuming a Normal 
distribution, the confidence interval [µ-3σ; µ+3σ] (µ - 
average value and σ - standard deviation) that covers 
99% of possibilities, is identified. A comparison 
between such intervals is finally developed (Figure 18). 
 

 
Figure 18: Probabilistic analysis 

 
Figure 19 presents the respective comparison results for 
pinned-pinned beams. By analyzing Figure 19, it is 
possible to conclude that experimental results are within 

the range of possibilities, defined by numerical 
confidence intervals. 
 

 
Figure 19: Experimental vs. Numerical results 

 
A comparison between failure loads is also developed. 
The numerical and experimental failure loads random 
distributions, considered to be Normal, are first 
determined. Further, it is also necessary to establish a 
limit function (Z), which relates the proximity between 
both random distributions (Figure 20). An 
approximation index (β) is then used: 
 

( ) ( ) /
. . . .   –   /     β µ µ σ σ= +2 2 1 2

Exp Num Exp Num
 (4) 

 

 
Figure 20: Approximation index (β) 

 
where µExp, µNum, σExp and σNum are, respectively, the 
experimental and numerical random distributions mean 
and standard deviation. Table 9 presents the main 
results for pinned-pinned beams in which expression (4) 
is used to determine the approximation index (β). From 
the respective analysis, it is possible to conclude that 
this index presents a lower value, which means that the 
approximation between both random distributions is 
higher (Matos et al., 2010). 
 

Table 9: Comparison of failure load (kN) 
Experimental 
failure load 

Numerical 
failure load 

D
istribution law

 

A
verage 
value 

S
tandard 

deviation 

A
verage 
value 

S
tandard 

deviation 

A
pproxim

ation 
index (β

) 

Norm. 24.80 0.25 24.57 1.03 0.22 
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The same way, for fixed-pinned beams, it was also 
developed a non linear probabilistic analysis. In this 
analysis it was assumed a random distribution for each 
critical parameter, according to existent bibliography 
(JCSS, 2001, Choi et al., 2004, and Matos, 2008). The 
random distribution mean value is the one determined 
from previous backanalysis. It was also defined the 
correlation matrixes, which relate such variables. The 
respective distribution parameters and correlation 
coefficients are present from Table 10 to 15. The 
FReET framework was used again to develop the 
probabilistic analysis (Novák et al. 2003). The obtained 
results were then analyzed. Such analysis consisted in 
determining the numerical and experimental confidence 
intervals, which corresponds to 99% of possibilities. A 
comparison between such intervals was then performed. 
 
By analyzing Figures 21 and 22, it is possible to 
conclude that experimental results are within the 
possibility defined by numerical confidence intervals. A 
comparison between numerical and experimental 
results, of two output variables, respectively, failure 
load and bending moment at fixed support, was also 
performed. In order to do that, it was defined a limit 
function (Z), which relates the proximity between both 
numerical and experimental random distributions, and 
an approximation index (β) determined (Figure 20). 
From the analysis of Table 16, it is possible to conclude 
that both variables present a low approximation index 
value, which let us conclude about the proximity 
between numerical and experimental data. 
 

Table 10: Concrete material 

Parameters Distribution 
Average 

value 
COV 

Elasticity 
modulus [GPa] 

Ec Norm. 28.01 0.10 

Compression 
strength [MPa] 

fc Norm. 30.77 0.10 

Tensile 
strength 
[MPa] 

ft Norm. 2.67 0.20 

Fracture 
energy 
[N/m] 

Gf Norm. 103.91 0.10 

 
Table 11: Longitudinal reinforcement 

Parameters Distribution 
Average 

value 
COV 

Yield 
strength 
[MPa] 

 σy Norm. 542.30 0.10 

Limit 
strength 
[MPa] 

σt Norm. 655.64 0.10 

Limit strain 
[-] 

 εlim Norm. 0.12 0.20 

 

Table 12: Geometric parameters 

Parameters Distribution 
Average 

value 
Standard 
Deviation 

Superior 
concrete cover 

[mm] 
Norm. 25.84 10.00 

Inferior 
concrete cover 

[mm] 
Norm. 22.34 5.00 

Thickness 
[mm] 

Norm. 75.00 3.75 

 
Table 13: Other parameters 

Parameters Distribution 
Average 

value 
COV 

Constant spring 
[kN/m] 

Norm. 200.00 0.10 

 
Table 14: Correlation matrix (concrete) 

 Ec fc ft Gf 

Ec 1.0 0.9 0.7 0.5 

fc 0.9 1.0 0.8 0.6 

ft 0.7 0.8 1.0 0.9 

Gf 0.5 0.6 0.9 1.0 

 
Table 15: Correlation matrix (reinforcing steel) 

  σy σt  εlim 

 σy 1.0 0.8 0.8 

σt 0.8 1.0 1.0 

 εlim 0.8 1.0 1.0 

 

 
Figure 21: Experimental vs. Numerical results 

 

 
Figure 22: Experimental vs. Numerical results 

 



 

Semana de Engenharia 2010 
Guimarães, 11 a 15 de Outubro 

 

 

Table 16: Comparison of failure load (kN) and bending 
moment (kN.m) 

Experimental 
data 

Numerical 
results P

aram
eter 

D
istribution 

law
 

A
verage 
value 

S
tandard 

deviation 

A
verage 
value 

S
tandard 

deviation 

A
pproxim

ation 
index (β

) 

F
ailure 
load  

Norm. 29.39 1.59 30.01 1.92 0.25 

B
ending 

m
om

ent  

Norm. 6.90 0.67 4.35 1.86 1.29 

 
CONCLUSIONS AND FURTHER RESEARCH 

This paper describes a methodology for the consistent 
evaluation of the behavior of any structure by taking, 
into consideration, all uncertainty sources. Such 
methodology contains both backanalysis and inference 
procedures. The inference process is based in a 
Bayesian framework. The backanalysis consists in 
fitting the numerical curve to the experimental one. This 
optimization procedure is defined as structural 
identification (St-Id). 
 
Within this paper, a St-Id technique based in a genetic 
algorithm framework, which considers the uncertainty 
present both in numerical and in experimental data, is 
proposed. The algorithm is tested with two batches of 
reinforced concrete beams which were loaded up to 
failure in laboratory. It reveals an improvement in the 
approximation between numerical and experimental 
results, taking, as a reference, the numerical results 
obtained by using the parameters from EN 1992-1-1 
(2004). However, the related computational costs are 
high and other optimization algorithms should be 
further studied. On majority of situations, when 
evaluating the behavior of real structures, a load test is 
developed. However, during these tests, the applied load 
usually presents an intensity equivalent to 30% of the 
failure load. In order to validate the methodology, the 
proposed St-Id technique is applied in two different 
situations, one, by studying the beams behavior till 
failure and, one other, till 30% of failure load. 
The results obtained from the application of the St-Id 
technique validated it. They are very good when this 
technique is applied to a load equivalent to the failure 
one. However, in situations of low intensity loads, we 
may have different set of values for critical parameters 
that fit, very well, the obtained experimental curves till 
a load of such an intensity, but, when extrapolating the 
results for higher loads, the structural behavior may 
completely change. We may even get experimental 
failure loads lower than the numerical ones, which leads 
to unsafe previsions. It is so very important to 
accomplish the results from St-Id with other information 

from Non Destructive Tests, visual inspection and 
engineering judgment. Part of developed methodology, 
respectively backanalysis T1 and the full probabilistic 
analysis, were already tested with success. However, 
there is some research that must be further developed. It 
is necessary to choose the most suitable optimization 
algorithm for backanalysis procedures, and the 
implementation of backanalysis T2. The developed 
method was only applied with a set of reinforced 
concrete beams, tested at laboratory. It is proposed to 
apply it with a real structure. 
 
This methodology constitutes an excellent support for 
any decision, before, during and after any event hazard, 
during the whole infrastructure life-cycle. Within the 
society perspective, the optimal decision is the one that 
maximizes the respective utility of the existent 
infrastructure network, during the largest period of time 
and, at same time, with the lowest related costs. Such 
decisions, if right, will improve the quality of life of 
future generations. 
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