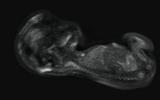
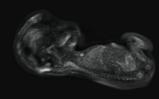

FUZZY CLUSTERING FOR SEGMENTATION OF 1ST TRIMESTER ULTRASOUND FETAL IMAGES

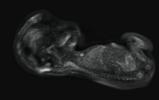
GETÚLIO PAULO PEIXOTO IGREJAS

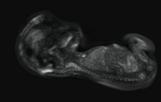

Contents

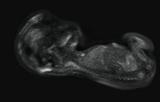
- Motivation;
- Introduction;
- Objectives;
- Fuzzy Clustering;
- FCM & FCM with Spatial Information;
- Results;
- Conclusions;



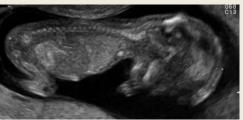
Motivation


- Challenge promoted by Dr. José Matos Cruz;
- Little work on the subject;
- Possibility to give a contribution to the fetal medicine field;


- Integrated on the PhD work;
- Ultrasonography is probably the most widely used pregnancy observation method:
 - Is cheap;
 - Non-invasive;
 - Gives lots of information to obstetricians;
 - In case of doubts other methods could be applied (generally more expensive and invasive);

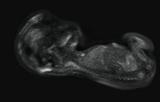

- Current systems require specialized human intervention for measurements and diagnose;
- US image observation combined with measurements represents an important tool to diagnose several problems;
- An automatic measurement system and an inference engine could represent an important tool to physicians;

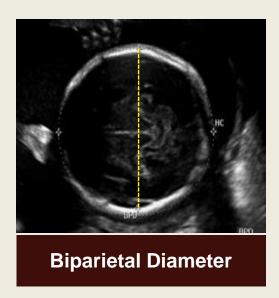
- Medical organizations recommend 3 US exams (1st at 11th and 14th week);
- Three measurements are made:
 - Biparietal diameter;
 - Crown-rump distance;
 - Nuchal translucency size;
- These measurements allow to infer the gestational age, the fetal growth rate and some chromosome anomalies;

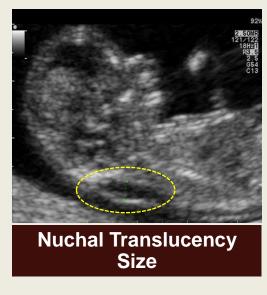


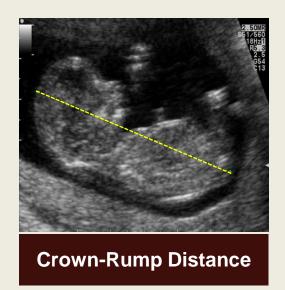
Problems with US images:

- Noise presence;
- Contact between relevant structures and other tissues with similar densities;
- Variability of images (even for the same measurement);

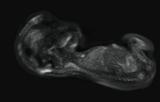


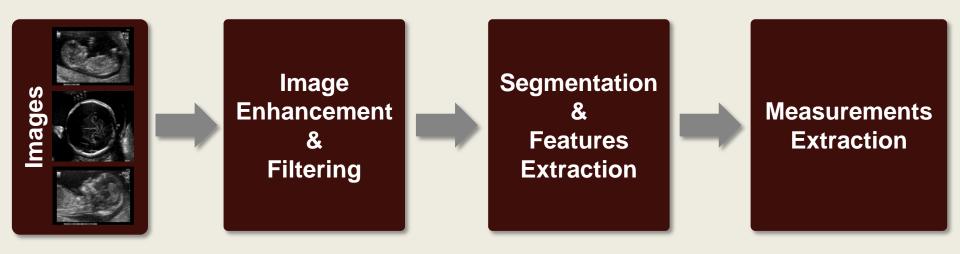




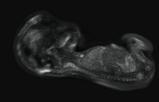

Objectives

1. Develop an automatic system, based on 1st trimester ultrasound images, to measure:

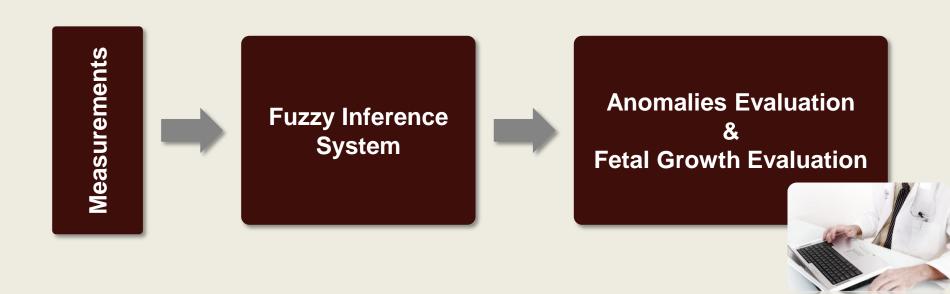




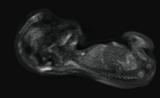
Objectives



• Measurement extraction process:



Objectives

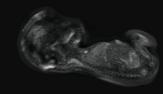


2. Build an expert system to diagnose chromosome anomalies and evaluate fetal growth;


Fuzzy Clustering

- Clustering is the process to group data elements according to a similarity criteria - segmentation;
- Two types of clustering:
 - Hard clustering;
 - Soft clustering;
- Fuzzy clustering assigns a membership value to each element in every cluster (Fuzzy Partition);

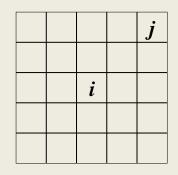
FCM & FCM with Spatial Info


- Most common Fuzzy Clustering algorithm is Fuzzy C-means (Bezdek, 1981);
- It minimizes the cost function:

$$J_{m} = \sum_{k=1}^{N} \sum_{j=1}^{C} (\mu_{jk})^{m} \|x_{k} - c_{j}\|^{2}$$

• The result is a partition matrix U with all the μ_{jk} (membership values) and the c_j (cluster centers) that minimizes the distance;

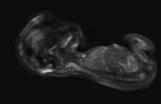
FCM & FCM with Spatial Info



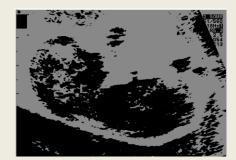
 The FCM with Spatial Information introduces the calculation of the partition matrix based on the spatial distance and on the gray-level:

$$F_{ij}^{S} = e^{\left(\frac{-\max(\left|x_{j} - x_{i}\right|, \left|y_{j} - y_{i}\right|)}{\lambda_{S}}\right)}$$

$$F_{ij}^{G} = e^{\left(\frac{-\left\|g(x_{j}, y_{j}) - g(x_{i}, y_{i})\right\|^{2}}{\lambda_{G} \times \sigma_{i}^{G^{2}}}\right)}$$


$$F_{ij} = \begin{cases} F_{ij}^{S} \times F_{ij}^{G}, j \neq i \\ 0, j = i \end{cases}$$

 Based on the F_{ij} feature matrix new membership values and cluster centers are calculated;

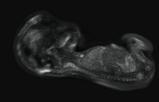


Results

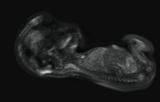
Original Image

K-means

Fuzzy C-means

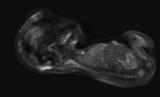

Active Contour

Fuzzy C-means with Spatial Info


Conclusions

- Fuzzy clustering approaches present similar or better results than other relevant strategies;
- FCM with Spatial Information is less sensible to noise than common FCM;
- Combined strategies could improve results;

Supervisors



 Prof. Doutor Carlos Alberto Caridade Monteiro e Couto, Dept. of Industrial Electronics of the Engineering school of University of Minho;

 Prof. Doutor Paulo Alexandre Cardoso Salgado, Dept. of Engineering of School of Sciences and Technology of University of Trás-os-Montes e Alto Douro;

Collaboration

 Dr. José Matos Cruz, Fetal Medicine and Pre-natal diagnose Unit of São Marcos Hospital, Braga, Portugal;

THANK FOR YOUR ATTENTION &

HAPPY BIRTHDAY ENGINEERING SCHOOL

