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ABSTRACT 

This work describes the implementation and assessment 

of the wall slip boundary condition in a 3D numerical 

modelling code, based on the finite volume method, that 

is being developed by the research team. Several 

phenomenological models relating the velocity and the 

shear stress at the wall were implemented. The 

capabilities of the new numerical code are illustrated 

with three case studies where the wall slip boundary 

conditions play an important role, namely the flow in a 

smooth contraction, the stick-slip phenomenon an the 

flow in a profile extrusion die. The results obtained are 

qualitatively in accordance with the theoretical 

expectations and evidence the importance of wall slip. 

 
INTRODUCTION 

Wall slip of polymer melts has been studied by several 

authors (Mitsoulis et al. 2005, Hatzikiriakos et al. 1993, 

Potente et al. 2002), resulting in the development of 

phenomenological models to handle the problem. Since 

this subject is still under study, a general slip model that 

works for every polymer/metal interface materials is still 

missing. The major difficulty is the dependence  of the 

slip velocity on a series of variables, namely,  the 

interaction between the liquid and the solid, the surface 

roughness, the shear rate and the molecular weight of 

the polymer. The existence of slip is evidenced in plots 

of pressure drop versus flow rate and thickness 

dependences, by the existence of a shear rate threshold 

and by the occurrence of extrusion defects. A direct 

characterization of the flow velocity at the interface can 

be obtained by tracer particles and near filed laser 

velocimetry. Even with these techniques the physics is 

not completely revealed demanding further 

investigations to better understand the phenomena 

involved in wall slip, for which numerical modelling can 

be a valuable tool. 

During the last decades, the progressive development of 

computational fluid dynamics and of computer 

technology (enabling the implementation of more 

realistic complex rheological models together with more 

accurate discretization and interpolation schemes) 

established numerical modelling as a useful design aid, 

leading to significant savings in time, human and 

material resources. When modelling the flow of fluids, 

the traditional boundary condition employed at the wall 

is the no-slip boundary condition (Oliveira et al. 1998). 

However when dealing with materials that promote a 

non-nill velocity at the wall, for accuracy purposes the 

wall slip phenomenon should be considered.  

This research team has been involved during the last 

decade on the development of computational tools to aid 

the design of polymer processing tools (Nóbrega et al. 

2004b), which encompasses the numerical solution of 

flow and heat transfer equations by a finite-volume 

based three-dimensional code. In a first stage, the no-

slip boundary condition at the flow channel walls was 

assumed. In fact, the majority of studies concerning the 

flow in extruders, extrusion dies and rheometers 

normally proceed from the assumption that the flowing 

melt adheres to the wall. However, there are certain 

plastic melts such as poly(vinyl chloride) (PVC), high-

density polyethylene (HDPE), polypropylene (PP) and 

elastomers, often used in the production of plastic 

profiles, that show wall-slipping under certain 

conditions (Hatzikiriakos 1993). Since wall slip within 

processing tool affects the overall velocity field and thus 

the process behaviour, it was decided to implement the 

wall-slip boundary condition in the above referred 

numerical code. 

The next three sections describe the numerical code 

developed, including the new boundary condition 
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implemented,  followed by a section where its 

assessment is reported. The subsequent sections describe 

three case studies that illustrate the relevance of the new 

boundary condition implemented. The papers ends with 

the conclusions. 

 
GOVERNING EQUATIONS 

The flow of fluids is usually governed by the well-

known incompressible Navier-Stokes equations (Eq. 1, 2 

and 3) with the no-slip boundary condition (Navier 

1822): 

0∇ =u    (1) 

( ) [ ]div p div
t

ρ
ρ

∂
+ ⊗ = −∇ +

∂

u
u u τ    (2) 

0 in= ∂Ωu    (3) 

 (4) 

Where ⊗  is the first order tensorial product, known as 
the dyadic product, u is the velocity vector, p  is the 

pressure, [ ]τ is the deviatoric stress tensor, Ω  is a 

simply-connected domain in R
3
, ∂Ω  is its boundary and 

n  a vector normal to ∂Ω . 
The stress tensor can obey the following law for 

generalized Newtonian fluids 

[ ] [ ]2 ( ) Dτ η γ= ɺ    (4) 

with [ ]D  given by 

[ ] [ ] [ ]( )T1

2
D = ∇ + ∇u u    (5) 

or any other differential constitutive equations (for non-

Newtonian fluids), e.g. the simplified Phan-Tien Tanner 

(sPTT) (Phan-Tien  and Tanner 1977) model, for which 
the stress tensor evolution is governed by: 

[ ]( ) ( )( )T

f tr λ η
∇

+ = ∇ + ∇τ τ τ u u    (6) 

where [ ]( )f tr τ is a function depending on the trace of 

the stress tensor, λ is the relaxation time, η  is the 

viscosity coefficient and 
∇

τ stands for Oldroyd’s upper 
convective derivative (Eq. 7), 

 

( )T. . .
t

∇ ∂  = + ∇ − ∇ + ∇ ∂

τ
τ u τ u τ τ u    (7) 

The linearized function [ ]( )f tr τ is given by 

[ ]( ) [ ]1f tr tr
ελ
η

= +τ τ    (8) 

where the parameter ε is related to the elongation 
behaviour of the fluid. The linearized function is only 

acceptable for low Reynolds numbers, where small 

molecular deformations occur. 

 

SLIP MODELS 

In order to include the wall slip boundary condition, Eq. 

3 must be replaced by any of the four slip laws that are 

going to be studied here: the linear (Navier 1822) and 

nonlinear (Schowalter 1988) Navier slip, the 

Hatzikiriakos (Hatzikiriakos 1993) and the asymptotic 

(Polyflow manual) laws. 

Let 1 2 3( , , )u u u=u  and 1 2 3( , , )τ τ τ=τ  be, respectively, 

the velocity and stress vectors at the wall. It is required 

that the absolute value of the slip velocity (tangent to the 

boundary, subscript t) must be a function of the tangent 

stress vector’s absolute value, as shown in Eq. 9, 

( )t tf=u τ    (9) 

Here .  stands for the usual 2l  norm and 

(.) :f →ℝ ℝ  represents a general function that can be 

linear or nonlinear. It is also required that the vector tu  

should point in the direction opposite to the tangent 

stress 
1 2 3( , , )t t t tτ τ τ=τ , as illustrated in Fig. 1. 

 

H

y

x

 
Figure 1: Schematic representation of the slip boundary 

condition. 

 

The unit vector for the tangent stress uni t−τ  can be easily 

given by 
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1 2 3

1
( , , )uni t t t t

t

τ τ τ− =τ
τ

   (10) 

With little algebra it is found that the formula that 

verifies both requirements is given by 

( )1 2 3 1 2 3

1
( , , ) ( , , )t t t t

t

u u u f τ τ τ= − τ
τ

   (11) 

For the slip models studied here, the function ( )tf τ  is 

set by Eq. 12a for the linear Navier slip law (Navier 

1822), by Eq. 12b for the nonlinear Navier slip law 

(Schowalter 1988), by Eq. 12c for the Hatzikiriakos slip 

law (Hatzikiriakos 1993) and by Eq. 12d for the 

asymptotic slip law (Polyflow manual). 

 

( )
( )

( )
( )

1 2

1 2

( )

, \{1} ( )

sinh ( )

ln 1 ( )

l t

m

nl t

t

H H t

A A t

k a

k m b
f

k k c

k k d

+



 ∈

= 



+

τ

τ
τ

τ

τ

ℝ

  (12) 

 

The constants 1 1 2 1 2 0, , , , , ,l nl A H H A Ak k k k k k k +∈ℝ  are 

the friction coefficients for each model, which are 

usually obtained through the fitting of experimental 

observations. 

 

WALL SLIP IMPLEMENTATION 

The 3D flow fields are computed with a numerical 

modelling code based on the finite volume method that 

is being developed by the authors (Oliveira et al. 1998), 

(Pinho and Oliveira 2001), (Nobrega et al. 2004b). It 

comprises a set of routines to model the relevant 

physical process and uses the non-staggered hexahedral 

structured grid arrangement, in which all dependent 

variables are located at the centre of the control 

volumes. This greatly simplifies the adoption of general 

curvilinear coordinates for the mesh (Oliveira et al. 

1998), being the Cartesian 
1 2 3

( , , , )x x x t  coordinates 

converted into general curvilinear coordinates 

1 2 3
( , , , )tξ ξ ξ  that fit to the complex geometry using the 

following transformations, 

1 1 1, 2, 3
( , ),x x ξ ξ ξ ι=     

2 2 1, 2, 3
( , )x x ξ ξ ξ ι=    (13) 

3 3 1, 2, 3
( , )x x ξ ξ ξ ι=     

( )t t ι=     

More details on this transformation can be found in the 

work of (Oliveira et al. 1998). The linear momentum 

conservation equation written in the new coordinates is 

given by 

( ) ( )

( ) ( )

1 1
J

J J

1 1
              p

J J

i i jlj

l

li lj ij

l l

u u u
t

ρ ρβ
ξ

β β τ
ξ ξ

∂ ∂
+ =

∂ ∂

∂ ∂
− +

∂ ∂

   (14) 

Here, J  is the Jacobian of the transformation 

( )i i lx x ξ= and liβ  are metric coefficients defined as the 

cofactor of the lj  position in the Jacobian (of the 

coordinate change) matrix and readily interpreted as 

area components after integration, , , 1, 2,3i j k =  are the 

Cartesian directions and 1,2,3l =  are the directions on 

the new coordinates. Notice that the velocity and 

stresses are assumed to be the Cartesian components. 

The main modifications performed in the numerical 

code in order to account for slippage are related to the 

stress term (Eq. 15) of the linear momentum 

conservation equation, 

( )1

J
lj ij

l

β τ
ξ
∂

∂
. (15) 

After discretization, assuming hexahedral cells and 

applying the Gauss theorem for the thi  Cartesian 

coordinate, the diffusive term can be approximated as, 

( )1 1 2 2 3 3B n n n Bf i i i f iff
τ τ τ τ+ + = . (16) 

where, B f  is the area of the f  face and 1n , 2n , 3n  are 

the three Cartesian components of the unitary vector 

normal to the boundary. The Einstein notation is applied 

to f , with , , , , ,f e w n s t b=  (the east, west, north, south 

, top and bottom faces). 

The stress contribution is included in the source term of 

the algebraic discretized equation, and is given by Eq. 

17, 

1( 1) Bj

i stress f ifS τ−
− = − , (17) 

where 0j =  if , ,f e n t= and 1j =  if , ,f w s b= . 

Assuming a Couette flow near the wall, the i
th
 

component of the stress vector computed at face f is 

given by 

( ), i,P

( )
( )

n
if i ws t f

u u
η γ

τ
δ

 = −  

ɺ
 (18) 
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where nδ  is the distance between the centre of the cell 

and the boundary face (normal to the boundary), the 

subscripts ws  and p  stand, respectively, for the 

boundary face (wall slip) and centre of the boundary 

cell, and the wall slip velocity components ( ,i wsu ) are 

given by Eq. 11. 

Thus, the i
th
 boundary slip velocity vector component 

general formula can then be written as 

,

,

( )
n( )

n
( )

n

i t

t
i ws

t

u

u f

η γ
η γ

η γ

∂
∂  ∂= −   ∂∂ 

∂

u
u

ɺ

ɺ

ɺ

 (19) 

 

Depending on the boundary slip employed, the recursive 

calculation formula for the wall slip velocity can be 

rearranged to: 

0

, ,( )
1

i ws i P t

d
u u

d
=

+
, (20) 

where the superscript 0 stands for a previous iteration 

value and the coefficient d  depends on the chosen 

model (Ferrás et al. 2011). 

The numerical problem is solved in an iterative way, as 

illustrated in Fig. 2. 

 

VALIDATION 

Subsequently to the numerical implementation, the 

numerical code was assessed through the comparison of 

the numerical results with the analytical solution for a 

Poiseuille flow between parallel plates, considering 

different slip conditions. 

The results shown in Fig.3 allow to conclude that there 

is a good agreement between the numerical and the 

analytical results, for all the slip models implemented, 

thus validating the numerical implementation. 

 

 

Set the boundary conditions, 

the initial velocity and pressure 

fields

Solve the six stress equations 
for the non-Newtonian model

Convergence?

No

Stop program

Yes

Compute slip velocity with the 
discretized slip model

Solve the linearized

momentum equations

Solve the pressure correction 
equation

Correct velocity and pressure

Check for convergence in the 
residuals of the system of 
equations and for the slip 

model

 
 

Figure 2: Iterative procedure employed on the numerical code, 

considering the wall slip boundary condition. 

pimenta
Text Box
Semana da Escola de Engenharia
October 24 - 27, 2011



 
 

Escola de Engenharia 

 
 

Semana da Escola de Engenharia  
October 20 - 26, 2011  

 

 

( )a

´u

´y0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

k=1E-5, n=0.5

k=1E-5, n=0.5

k=1E-5, n=1.0

k=1E-5, n=1.0

k=1E-5, n=1.5

k=1E-5, n=1.5

       

( )b

´u

´y0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 0.2 0.4 0.6 0.8 1

k=1E-5, n=0.5

k=1E-5, n=0.5

k=1E-5, n=1.0

k=1E-5, n=1.0

k=1E-5, n=1.5

k=1E-5, n=1.5

 

( )c

´u

´y0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

k=1E-4, n=0.5

k=1E-4, n=0.5

k=1E-4, n=1.0

k=1E-4, n=1.0

k=1E-4, n=1.5

k=1E-4, n=1.5

       

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

0 0.2 0.4 0.6 0.8 1

k=1E-4, n=0.5

k=1E-4, n=0.5

k=1E-4, n=1.0

k=1E-4, n=1.0

k=1E-4, n=1.5

k=1E-4, n=1.5

( )d

´u

´y

 

( )e

´u

´y0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

k1=1.0; k2=1E-5 Hatzikiriakos

k1=1.0; k2=1E-5 Hatzikiriakos

k1=1.0; k2=1E-6 Hatzikiriakos

k1=1.0; k2=1E-6 Hatzikiriakos

       

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

k1=1.0; k2=1E-5 Asymptotic

k1=1.0; k2=1E-5 Asymptotic

k1=1.0; k2=1E-6 Asymptotic

k1=1.0; k2=1E-6 Asymptotic

( )f

´u

´y

 
Figure 3. Comparison between analytical (lines) and numerical (symbols) solutions for a fully developed channel flow using non-

linear and linear Navier slip laws with different slip coefficients 1E-5 / .k m Pa s= (a), 1E-4 / .k m Pa s= (c) and using 

Hatzikiriakos (e) and Asymptotic (f) slip laws. Graphs (b) and (d) show a zoomed view of graphs (a) and (b), respectively. 

´ /u u U= , ´ /y y h= , where U is the imposed mean velocity and h  is half the channel width.
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CASE STUDY 1 

In order to access the adequateness of the implemented 

boundary conditions, the numerical code was used to 

simulate the flow in a planar channel with variable 

cross-section, shown in Fig. 4, where the slip velocity at 

the wall was, therefore, expected to vary. The slip model 

used in this case study was the Non-linear Navier law 

(Eq. 12b). Other relevant input parameters were the 

following: 1E-5
nl
k = ; 0.5m = ; inlet average velocity: 

1.0 ms
-1
, imposed as a rectangular (plug) velocity profile  

The constitutive equation was the simplified Phan-Tien 

Tanner model (Eq. 6) with Re / 0.001Uhρ η= =  and a 

Deborah numberDe / 1.0U hλ= =  with 0.025ε = . 

As can be seen in Fig. 5, when slippage is taken into 

account, the velocity profile deviates from parabolic to 

plug-like.  

0.002m0.004m

0.02m  
Figure 4: Geometry of the flow channel. 
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Figure 5: Velocity profiles along the axial length of the flow 

channel.  

 

As shown in Figs. 5 and 6, the velocity at the wall is 

almost constant in the initial parallel region of the flow 

channel (between locations A and B) where the velocity 

profile is fully developed. In the convergent region 

(from C to D), the melt average velocity increases and, 

as a consequence of an increase in the wall shear stress, 

there is also a progressive increase in the slip velocity. 

On the contrary, in the divergent zone (from D to E, exit 

of the channel), the opposite effect is observed. The 

steep decrease in the slip velocity observed in the 

vicinity of the transition zone (location C) can be 

justified by the path adopted by the melt in this region. 

In fact, and as expected, when an abrupt change in the 

geometry of the flow channel occurs, the streamlines 

deviate from the boundary contour of the channel, 

resulting in a decrease of velocity near the walls. This 

hypothesis can be confirmed in Fig. 7, where a 

streamline corresponding to the melt flowing in the 

vicinity of the channel walls in the transition zone is 

shown. As it can be seen, the distance of this line to the 

channel wall is higher close to the abrupt transition 

(location C). 

 

 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

´u

´x

A B C D E

 
 

Figure 6: Slip velocities at the wall, along the axial length of 

the flow channel. 
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Figure 7: Streamline and mesh at the transition region 

(location C). 

 

CASE STUDY 2: SLIP-STICK 

The stick-slip phenomena is well-know in the polymer 

processing filed (Hatzikiriakos 1993), being pointed out 

as the cause of some flow instabilities and the origin of 

flow defects. This case study tries to mimic the stick-slip 

phenomenon, modelling the flow on the domain 

illustrated in Fig. 8. It comprises two regions: the initial 

one (region I) that is delimitated by two symmetry lines, 

and the second (region II) that is delimitated by a solid 

wall and a symmetry line. In this way, the fluid flows 

freely in Region I and tends to stick to the wall in 

Region II, which induces the appearance of high stress 

fields close to the transition between regions (Oliveira et 

al. 1998). Obviously, the amount of slip simulated on 

the wall affects the level of the stresses developed. The 

purpose of this case study is not to study in detail the 

effect of slip in this particular case, but to assess 

qualitatively the wall slip boundary condition 

implemented in the numerical modelling code. So, only 

a limited number of slip coefficients were used and just 

the linear Navier slip model was employed. 

The constitutive equation considered was the sPTT 

model and the mesh employed is illustrated in Fig. 9. It 

comprises 10200 cells, and is similar to the “Mesh 7” 

used for a analogous problem in the work of (Oliveira et 

al. 1998). 

The tests were made for a constant Reynolds number 

Re / 20Uhρ η= =  and a Deborah number 

De / 2.0U hλ= =  with 0.025ε = . Six different slip 

intensities were tested, from no-slip (k=0) to the full-slip 

condition (k=1). 

The convergence was achieved for all the problems 

studied and, as expected, it was easier to obtain for high 

slip velocities (high friction coefficients). This happens 

because the slip velocity smooth the stress singularity 

(Fig. 10) at the transition between regions. 

The results plotted in Fig. 10 show that the amount of 

slip increases the velocity near the wall and in Region II 

and reduces the stress levels close to the transition 

region. This in qualitatively in accordance with the 

expectations. 

 
 

symmetry plane

wall

h

5h 10h

U

region IIregion I

x

y

 
 

Figure 8: Schematic representation of the stick slip geometry. 

 
 

 
Figure 9: Mesh used in the simulation of the slip-stick flow. 
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Figure 10: Distribution of (a) u ,  (b) xxτ , (c) xyτ  and (d) yyτ  

along the slip-stick region near the wall 

(Note: / 0.9975y h = , De 2, Re 20= = , ´ /u u U= , 

´ /x x h= ). 

 

CASE STUDY 3: OPTIMIZATION 

As mentioned in the Introduction Section the research 

team has been involved in the development of numerical 

tools to aid the design of thermoplastic profile extrusion 

dies. The main problem that has to be solved by the 

designer when conceiving this tools is the achievement 

of an even flow distribution (Nobrega et al. 2004a), 

which is particularly difficult to attain when the cross-

section of the profile to be produced comprises regions 

of different thicknesses, as the one illustrated in Fig. 11, 

mainly due to the different restrictions promoted to the 

flow.  

 
Figure 11: Cross-section of the parallel zone of the die used as 

case study and elemental (ES) and intersection (IS) sections 

considered for optimization purposes. 

 

The automatic optimization methodology starts by the 

division of the profile cross-section into Elemental (ES) 

and Intersection (IS) Sections, that are used to monitor 

the flow distribution (Nobrega et al. 2004a). 

The flow of the extrusion die whose cross section is 

illustrated in Fig. 11 was previously optimized by the 

numerical code, assuming the no-slip condition at the 

wall, obtaining the velocity distribution shown in Fig. 

12(a) and 13(a) (Nobrega et al. 2004a). 

The flow in the previously optimized geometry was then 

modelled with the new version of the flow modelling 

code, simulating the effect of the increase of slip at the 

wall. As expected, the increase of slip reduces the 

restriction of the wall, minimizing the effects promoted 

by different thicknesses, thus allowing to obtain a more 

balanced flow distribution, as illustrated in Fig. 12 (b,c) 

and 13 (b,c). 
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0wsw =                                    (a) 

 

3.8wsw =                                (b) 

 

15.2wsw =                              (c) 

 

Figure 12: Velocity fields along the extrusion die channel for 

different levels of wall slippage: (a) K=0 (no slip); (b) 

K=0.5E-07; (c) K=1.0E-06. In this example, the average flow 

velocity is 15.9 mm/s and wsw  is the velocity (in mm/s) at a 

fixed point located at the final parallel zone of the flow 

channel. 
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15.2wsw =                              (c) 

 

Figure 13: Velocity fields at the die exit cross-section of the 

extrusion die for different levels of wall slippage: (a) K=0 (no 

slip); (b) K=0.5E-07; (c) K=1.0E-06. 
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CONCLUSION 

In this work the implementation of the slip boundary 

condition at the flow channel walls in a previously 

developed 3D numerical modelling code was described. 

The potential of the new numerical code was illustrated 

with three case studies, where the importance of wall 

slip was evidenced. It was also shown that the computed 

velocity profiles were qualitatively in accordance with 

the theoretical expectations, thus supporting the 

correctness of the numerical developments performed. 
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