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ABSTRACT 

 

Time series motif discovery is the task of extracting 
previously unknown recurrent patterns from time series 

data. It is an important problem within applications that 

range from finance to health. Many algorithms have 

been proposed for the task of efficiently finding motifs. 

Surprisingly, most of these proposals do not focus on 

how to evaluate the discovered motifs. They are 

typically evaluated by human experts. This is unfeasible 

even for moderately sized datasets, since the number of 

discovered motifs tends to be prohibitively large. 

Statistical significance tests are widely used in 

bioinformatics and association rules mining 
communities to evaluate the extracted patterns. In this 

work we present an approach to calculate time series 

motifs statistical significance. Our proposal leverages 

work from the bioinformatics community by using a 

symbolic definition of time series motifs to derive each 

motif's p-value. We estimate the expected frequency of 

a motif by using Markov Chain models. The p-value is 

then assessed by comparing the actual frequency to the 

estimated one using statistical hypothesis tests. Our 

contribution gives means to the application of a 

powerful technique - statistical tests - to a time series 

setting. This provides researchers and practitioners with 
an important tool to evaluate automatically the degree of 

relevance of each extracted motif.  

 

 

 

1 – INTRODUCTION  

   To extract previously unknown recurrent patterns 

(motifs) from time series databases is an important data 

mining problem. Motifs are relevant because they can 

summarize the time series database and provide useful 

insight to the domain expert (Ferreira et al. 2006). A 

large number of applications exist from a broad variety 

of areas such as health and finance. Fig. 1 shows an 

example of a time series with 3 different motifs 

(displayed in blue, green and red), as typically outputted 

by existing motif discovery algorithms. 
 

 
  

Figure  1:  Example of a time series with several 
motifs. Above: in its original context; below: detail of each 

motif. Blue, Green: 3 instances; Red: 2 instances. 
  

    Since the problem formulation in (Lin et al. 2002), 

many proposals on how to extract motifs from a time 

series database have been introduced (Chiu et al. 2003), 

(Ferreira et al. 2006), (Tanaka et al. 2005), (Oates 

2002), (Yankov et al. 2007), (Minnen et al. 2007), 

(Mörchen and Ultsch 2007), (Mueen et al. 2009b), 

(Mueen and Keogh 2010), (Mueen et al. 2009a), (Castro 

and Azevedo 2010). Surprisingly, most of these 

proposals do not focus on how to evaluate the extracted 

motifs. Returned motifs tend to be subjectively 
evaluated by humans because they are application 

dependent and not previously labeled - motif discovery 

is an unsupervised task. In practice, this is unfeasible. 

Datasets are often large and motif mining algorithms 

typically return a prohibitively large number of patterns. 
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To restrain to expert analysis the most frequent motifs is 

not an interesting approach, as frequent patterns are not 

necessarily the most interesting ones. Many frequent 

patterns are spurious, trivial or simply expected: they 

are not meaningful to the user. In a randomly generated 
database of length 65536 from (Keogh and Folias 

2002), for example, 65 motifs are discovered. The top 

motif reaches 4 repetitions, and the average motif count 

is 2.17. Since a random process generated the database, 

all discovered motifs are meaningless. In fact, this 

example is depicted in Fig. 1. It highlights the need for 

automatic time series motifs evaluation. 

   Statistical tests have been successfully applied to other 

pattern mining problems. For example, in 

bioinformatics they have been used to detect DNA 

segments with significantly unexpected frequency 
(Robin and Schbath 2007); in networks analysis, to find 

significant subgraphs (Milo et al. 2002); in association 

rules mining to discard redundant rules (Webb 2007). In 

all these examples the common question to be addressed 

is: ''Can this pattern be observed so many times just by 

chance?''. These approaches consider the observed count 

(frequency) of a pattern which is typically compared to 

its expected count. This difference is then statistically 

analyzed. However, this method cannot be directly 

applied to time series data since it is not clear how to 

calculate the expected frequency of a given section of 
the series. 

   To overcome this limitation and take advantage of the 

wealth of available algorithms for symbolic data (DNA 

sequences, text, etc.), we use a symbolic definition of 

time series motifs. Our approach is based on work from 

bioinformatics (Robin and Schbath 2007). We estimate 

the probability of occurrence of a word (motif) using 

Markov Chain Models. In these models, the probability 

of a motif is estimated according to its subword count. 

Given a motif, we compare the difference between its 

observed count and estimated expected count in terms 

of statistical significance. Namely, we calculate the p-
value of this difference, aiming to answer whether we 

can observe such a count solely by chance. 

   Our contributions is to provide an approach to assess 

the statistical significance of time series motifs. The 

novelty of our work is that it enables the calculation of 

time series motifs p-values. To the best of our 

knowledge, this has not been attempted in the literature. 

It has been shown to be an important problem in DNA, 

protein, and network motifs (discrete motifs). We 

provide the link between the well studied discrete motif 

significance problem and time series motif evaluation. 
This allows time series data mining practitioners to 

evaluate better the motifs extracted from their data. It 

also provides researchers with a method to evaluate 

properly the output of motif discovery algorithms using 

statistical significance. 

   The remainder of the paper is organized as follows: 
section 2 describes the state of the art in motif statistical 

significance; background and notation used throughout 

the paper are described in section 3; in section 4 an 

approach for assessing time series motifs significance is 

proposed; the experimental analysis is described in 

section 5; finally, in section 6 we derive conclusions. 

 

2 – RELATED WORK 

   Since the introduction of the time series motif 

discovery problem (Lin et al. 2002), many approaches 

have been proposed (Ferreira et al. 2006), (Tanaka et al. 
2005), (Oates 2002), (Yankov et al. 2007), (Minnen et 

al. 2007), (Mörchen and Ultsch 2007), (Mueen et al. 

2009b), (Mueen and Keogh 2010), (Mueen et al. 

2009a), (Castro and Azevedo 2010). Most of these 

works tackle the algorithmic details of the motif 

extraction process. Surprisingly, the critical aspect of 

evaluating the extracted motifs has not received much 

attention by researchers. The results are typically 

interpreted by experts on the domain at hand. This 

approach is untenable for large real-world datasets that 

can reach terabytes of data. Automatic motif evaluation 
procedures are required. 

   According to (Ferreira and Azevedo 2007), motif 

mining evaluation measures can be classified in the 

following categories: class-based, theoretic-information, 

mixed measures and statistical significance tests. Class-

based measures (accuracy related) are calculated by 

comparing the motif occurrences with the ground truth 

using a confusion matrix. Examples are precision, recall 

and specificity. Theoretic-information measures are 

calculated using probabilistic or information criteria 

contained in the motif itself. Examples are the 
Information Gain and the Minimum Description Length. 

Measures such as Mutual Information and J-measure are 

mixed, because they use both class-based and theoretic 

information criteria. From this set of measures, we are 

particularly interested in statistical significance tests. 

These tests are very popular in science in general and 

data mining in particular. They tend to be accepted as 

the de facto standard to evaluate significance or help in 

the decision making process. 

   Statistical significance tests are widely used in 

bioinformatics. Without claiming to be exhaustive we 

mention a few of these works. Zhang et al. (Zhang et al. 
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2007) define the problem of evaluating statistical 

significance of DNA motifs as the ranking of such 

motifs according to an underlying model, defined using 

Markov chains. A dynamic programming algorithm 

(MotifRank) is proposed to compute motif exact p-
values. Marschall and Rahmann (Marschall and 

Rahmann 2009) propose a methodology to calculate p-

values with respect to independent and identically-

distributed (i.i.d.) and Markov models. A compound 

Poisson approximation is used for the number of motif 

occurrences (null distribution). These techniques are 

integrated in an efficient motif discovery algorithm by 

exploiting the monotonicity property of the compound 

Poisson approximation. The algorithm is applied to 

IUPAC strings (chemical compounds representation) 

and Mycobacterium tuberculosis data. Nuel (Nuel 2006) 
provides recursive algorithms to compute Cumulative 

Distribution Functions (CDF) using Finite Markov 

Chain Imbedding (FMCI). The algorithms are applied to 

discover exact p-values of patterns aiming to find 

hydrophobic segments in protein data. In (Boeva et al. 

2007), the authors introduce an algorithm to calculate 

the probability of finding multiple occurrences of motif 

in a random text. This probability is calculated using 

both the Bernoulli and order one Markov chain models. 

The approach is applied to find the statistical 

significance of binding sites frequency in regulatory 
modules of eukaryotic genes. Mas et al. (Low-Kam et 

al. 2000) propose an algorithm to mine unexpected 

frequent sequential patterns in DNA and protein 

sequences. Sequential patterns are defined according to 

a Markov model and patterns support follow a Binomial 

distribution. The p-values that measure over-

representation are then calculated. Hollunder et al. 

Error! Reference source not found. introduce the 

DASS algorithm to estimate the statistical significance 

of patterns in protein data. Several techniques for 

determining the expected value of each pattern such as 

data permutations, shuffling, and the binomial 
distribution are used. Robin and Schbath (Robin and 

Schbath 2001) perform an experimental comparison of 

several distributions of word counts in random 

sequences, regarding accuracy and computational cost. 

The exact distribution is compared to the Gaussian and 

compound Poisson approximations in the extraction of 

exceptional words of the phage Lambda genome. In 

(Régnier and Vandenbogaert 2006), the drawbacks of 

the Gaussian approximation are analyzed. Schbath 

(Schbath 2000) studies the statistical distributions of 

word counts in Markov chains. Formulae are derived for 
the estimated expected counts under these distributions. 

In (Robin and Schbath 2007), statistical tests are used to 

compare motif count exceptionalities in two (or more) 

sequences. The exact binomial and the asymptotic 

likelihood ratio test are used. The motif count is 

modelled using Poisson processes. The motifs in the 
backbone and loops of the Escherichia coli K-12 

bacterium are compared. 

   In the networks (graph) mining community, the issue 

of statistical significance in motif discovery has also 

received much attention. In (He and Singh 2006), a 

Binomial test is used to evaluate the statistical 

significance of frequent subgraphs in a chemical 

compounds graphs database. Milo et al. (Milo et al. 

2002) define network motifs as patterns of 

interconnections with a significantly higher frequency 

than those in randomized networks, according to their 
Z-score. A comprehensive experimental analysis is done 

in complex networks from biochemistry, neurobiology, 

ecology and engineering. In (Jacquemont et al. 2009) 

the authors convert sequential data to probabilistic 

automata and then integrate statistical constraints to 

reduce the search space of the exploratory process. The 

approach is applied to car flow modelling data. Ribeca 

and Raineri (Ribeca and Raineri 2008) derive a fast 

motif Z-scores exact calculation method using discrete 

finite-state automata (DFA), assuming the sequence is 

generated by a Markov model of arbitrary order. The 
authors experimentally test their approach in large scale 

human genome and yeast binding factors data. Matias et 

al. (Matias et al. 2006) provide exact formulas for the 

expectation and variance of a motif's number of 

occurrences. This approach also introduces a simple and 

efficient probabilistic model for the motif distribution in 

networks, which is much more efficient than the 

traditional comparison to randomized (simulated) 

networks. In (Picard et al. 2008), the authors consolidate 

a decade of research in biosequences motifs 

exceptionality and apply it to the network motifs 

scenario. Several motif distributions approximations are 
compared such as the compound Poisson distribution 

and the Gaussian approximation. Approximate p-values 

are calculated to assess the exceptionality of observed 

motif counts. The method is applied to protein-protein 

interaction networks. 

   There is a handful number of time series motif mining 

proposals that consider the significance evaluation 

aspect of extracting motifs. Ferreira and Azevedo 

(Ferreira et al. 2006) use the Information Gain and Log-

Odds measures to assess the statistical significance of 

motifs. However, the order dependency (time) that 
characterizes time series data is not taken into account. 
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In (Chiu et al. 2003), Keogh et al. use a statistical test as 

a criterion to stop their iterative motif discovery 

algorithm, i.e. the algorithm ends the execution when 

the observed motif count significantly exceeds the 

expected by chance. In this work, we aim to go one step 
further and calculate each motif's p-value according to 

their statistical significance. In the context of time series 

anomaly detection, Keogh et al. (Keogh et al. 2002) 

propose an approach to find surprising patterns in time 

series data. Markov Chain Models are used to predict 

the expected frequency of patterns, given a collection of 

previously observed normal data. However, the motif 

discovery problem is unsupervised. It is not possible to 

know beforehand which patterns are significant. 

Moreover, we are not interested in finding anomalous 

patterns. Rather, we aim at statistically stating which 
frequent patterns are also significant by calculating each 

pattern's p-value. 

 

3 – BACKGROUND AND NOTATION 

   In this section we introduce some notations and useful 

definitions. First we define our object of study. 

 

DEFINITION 3.1. A time series   of length   is an 

ordered succession of a variable's observations 

          over time, with     .   
 

   For the scope of this work, all time series are 

normalized in order to remove offset and scaling effects. 

It has been shown that comparing time series that are 

not normalized is meaningless (Keogh and Kasetty 

2003). 

   We are typically interested in mining a collection of 

time series with arbitrary lengths. 

 

DEFINITION 3.2. A time series database   is a set of 

    unordered time series (Mueen et al. 2009b).   

 

   Time series data mining algorithms often use 

subsections, or subsequences, of the original time series 

in their calculations. 

 

DEFINITION 3.3. Given a time series   of length  , a 

time series subsequence                 is a 

sampling of     contiguous positions of  , such that 

          (definition from (Chiu et al. 2003)).   

    

   For simplicity, we treat each subsequence of database 

as a different time series in  . In practice, to slide a 

window through a long time series for the purpose of 

extracting subsequences is similar to handling each 

subsequence as a different time series. Possible motif 

overlaps are handled by taking into account trivial 

matches (Chiu et al. 2003). 

   Since our work is inspired by the biosequences motif 
mining, we are interested in the symbolic representation 

of time series and their subsequences. 

 

DEFINITION 3.4. A word           is the 

symbolic representation of a subsequence  , with 

    . The   is the representation alphabet and its size 

is named the representation resolution.  

  

   The symbolization of   by a generic times series 

representation technique   is denoted by       . In 

this work we use the best representation technique 

available in the literature for time series data, as 

experimentally shown in (Ding et al. 2008). The 

Symbolic Aggregate Approximation (iSAX) (Shieh and 

Keogh 2008) representation takes as input a time series 

and transforms it into a sequence of symbols, as 

highlighted in Fig. 2. 

 

Figure  
2:  Conversion of a time series into its iSAX representation, 

generating word {2,5,7,5,3,0,3,3}. 

 

   As depicted in figure 3, slightly different 

subsequences can originate the same word in the 

representation space. These subsequences are called 

instances of the given word. 
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Figure  3:  Motif {1,1,3,8,11,12,13,13} (left) and its 

3 instances in the database (right). 

 

DEFINITION 3.5. A subsequence   is an instance of a 

word   if       , where      is a symbolic 

representation of  .   

 

   Matching between two or more instances of word   is 
defined as follows: 

   

DEFINITION 3.6. Subsequences    and    match if 

their symbolic representations are the same, i.e. 

           .   
 

At this point, we are ready to formalize the notion of 

time series motif. An example of a motif with 3 

instances is shown in figure 3. 

 

DEFINITION 3.7. The word   is a Motif in database   

if the count of all instances of   in   is greater than  .   

 

   The motif count (or frequency) of a motif   is the 

total number of instances   has in database  .   

   Time series motifs are typically sorted according to 

their motif count. 

 

 

4 – TIME SERIES MOTIFS STATISTICAL 

SIGNIFICANCE 

 

   In this section we introduce an approach to assess the 

statistical significance of time series motifs. To the best 

of our knowledge, there is no approach available in the 

literature to calculate the p-value of time series motifs. 

Our approach methodology is described next. First, 

motifs are extracted from the database. Second, the 

probability of each motif is calculated using Markov 

Chain models. Statistical hypothesis tests are then 
applied according to several distributions for the motif 

counts (Binomial, Poisson and Gaussian distributions) 

to calculate each motif's p-value. In this section the false 

discovery rate problem is also considered. 

 

4.1 – Extracting Motifs 

   The first step of the motif significance evaluation is 

the actual extraction of frequent motifs. There is a 
plethora of time series motif discovery algorithms in the 

literature (see section 2). Among those, exact algorithms 

(Mueen et al. 2009b) have been shown to be a sound 

contribution to the time series motif discovery problem. 

Despite being less accurate than their exact 

counterparts, approximate algorithms present a 

relatively good trade-off between accuracy and 

efficiency. They are also typically robust to noise (Chiu 

et al. 2003), (Castro and Azevedo 2010). In this work, to 

leverage the existing work in bioinformatics motif 

discovery, we are interested in symbolic motifs, i.e. 

discretized representations of the discovered motifs. 
Therefore, we select an approximate algorithm, that 

internally uses a symbolic representation and outputs 

discrete motifs. It is noteworthy that any motif 

discovery algorithm can be used, since its output is 

symbolic, or discretized using iSAX. The recently 

introduced MrMotif (Castro and Azevedo 2010) is an 

excellent candidate to represent the symbolic motifs 

approach. It uses a symbolic definition of time series 

motifs, a necessary property to take advantage of the 

wealth of existing work in the bioinformatics. It also 

outputs the most frequent motifs in a straightforward 
manner (a list of words) and it is efficient (linear 

complexity). MrMotif takes as input a time series 

database   and a parameter   and derives the top-  

motifs in   and their count. This step is shown in figure 

4. 

 

 
  

Figure  4: Extraction of frequent motifs from 

the time series database. 

  

   For simplicity, we choose to evaluate motif statistical 

significance as post processing task. This process can 

also be integrated in the motif search itself as 

demonstrated in (Marschall and Rahmann 2009), 

(Jacquemont et al. 2009), (Zhang et al. 2007). 

 

4.2 – Reference Model 
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   The motif count by its own is not a good 

interestingness measure. Frequency does not guarantee 

that motifs are significant, similarly to support in 

itemsets mining. A trivial example highlighting this 

problem is shown in section 1, by using random time 
series data. A better approach is to consider the 

difference between the observed motif count and the 

motif expected count, given some knowledge on the 

time series. This knowledge is obtained regarding a 

reference model that reflects the background 

distribution of the motifs. The expected count is the 

number of motifs one should expect in random 

sequences that are similar, under some similarity 

definition, to our database. Random sequences are 

typically Bernoulli trials or Markovian sequences 

(Schbath 2000). The former assume that words are i.i.d., 
although word symbols are possibly not i.i.d. in real 

data(Schbath 2006). Markov Chain models take the 

composition of the words into account. That is, they 

consider the time dependency characteristic of time 

series data. They have been widely used in 

bioinformatics (He and Singh 2006), (Milo et al. 2002), 

(Nuel 2006), (Ribeca and Raineri 2008), (Matias et al. 

2006), (Schbath 2000) because they take the time 

dependency into account (Low-Kam et al. 2000) and 

assist in correctly fitting the composition of words of 

length   up to       (where   is the selected order 
for the model). Also, there are analytical probability 

calculations available which prevents the need to refer 

to expensive simulations (Schbath 2006).  

   We follow the approach described in (Robin and 

Schbath 2007) to obtain expected counts of DNA 

motifs. Namely, we use Markov Chain models as the 

reference model to calculate the (estimated) expected 

probability   of a motif to occur in the database. The 

probability is calculated with respect to transition 

probabilities, which are estimated according to the 

observed sequences (see formulae below). The order   

of the model ranges from   (Bernoulli) up to    . In 

Markov model of order   (denoted   ), the 

composition of a word           is calculated 

using the observed counts of its subwords of length   

and    . Hereby we show the expressions for M0 

(Bernoulli), M1, and the maximal model M     :  
 

        
∏   

        

  
 

        
∏     

             

   ∏     
        

            
                       

                      

 

 

where      is the count of motif   in the sequence of 

(symbolic) length   . Under this scenario, the expected 

count of a motif is the product between the total number 

of words in the database ( ) and the probability of the 

motif in the database: 

 

 ̂         
 

 For example, for the symbolic word baccdfah the 

probabilities are calculated as follows: 

  

        
                                       

  
 

        
                                        

                                

        
                     

            

 

  

   The model order   is selected according to the length 
of the subwords composition we are interested since we 

know M  depends on its subwords of length   and 

   . 

 

4.3 – Assessing Statistical Significance 

   The expected counts have been estimated by a 

probabilistic model (Markov chains). However, 

expected counts by themselves do not provide enough 
information regarding the significance of motifs. 

Statistical hypothesis tests are widely used to help in 

decision making. In this setting, a null hypothesis is 

defined and then it is tested whether there is enough 

evidence in the data to reject that hypothesis. In motif 

discovery, the null hypothesis means that the given 

pattern is spurious or uninteresting, i.e. the actual motif 
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count is similar to the expected one. It means that if the 

motif count happens to be greater than expected, given 

that motif composition, it is so solely by chance. The 

null hypothesis is rejected in favor of the alternative 

hypothesis. In our case, that the motif has a frequency 
significantly greater than the expected count. After the 

hypothesis definition, it is necessary to define a test 

statistic and characterize its distribution. Our subject of 

interest is the motif count. Motifs counts distribution in 

the observed time series can be characterized as follows. 

Let the motif observed count   be: 

 

     ∑ 

 

   

   

 

 where    is the Bernoulli random variable: 

 

   {
                                                    
           

 

 

 with probability        . The motif count      is a 

sum of Bernoulli random variables. Therefore it follows 

a Binomial distribution: 

 

              
 

Note that the possible dependence between the different 

motifs is not an issue in our approach. Each motif count 

is treated independently of the others. However, we 

assume each instance (occurrence) of a motif is 

independent of one another. We can not guarantee that 

this assumption holds, due to the internal dynamics of 

the process that generated the time series at hand. Motif 

statistical significance is assessed by means of the p-

value: the probability of the test statistic to present the 
observed value or a more extreme one, if the null 

hypothesis is true. That is to say, given the distribution 

for test statistic (the motif count), the p-value is the 

probability of the motif count to be at least as large as 

the observed motif count, just by chance. It can be 

calculated by the probability of the        random 

variable to be at least as large as     . It is calculated 

by the complement of the Binomial cumulative density 

function, as follows: 

 

                 

   ∑  

      

   

(
 
 
)           

 

The p-value is then compared to a predefined critical 

value ( ). If it is no greater than  , the null hypothesis 

is rejected and the pattern is accepted as significant. In 

the literature, the critical value is typically set to 0.05. 
However, not considering the multiple hypothesis 

problem and fixing a value as the significance level 

tends to increase the false discovery rate (Holm 1979). 

We use the Holm adjusted significance level (  ) to 

control the number of false discoveries in the entire time 

series. This topic will be discussed in detail in section 

4.5. 

Besides the use of p-values to accept motifs 

that are statistically significant, they can also be used to 

sort the motifs of a given time series. This permits to 

achieve a rank of motifs according to their significance. 
If a p-value is very small, the motif is significantly 

frequent (over-represented). 

 

4.5 – Controlling the risk of false discoveries 

   In classical hypothesis testing, the p-value is 

compared to the defined   significance level. In mining 

for statistical significant motifs we apply a test for each 

discovered motif, i.e. the number of tests applied is the 

number of distinct motifs (  ). If   is set to 0.05 and we 
apply 100000 simultaneous tests to motifs that follow 

the null hypothesis, one would expect to find 5000 

significant motifs by chance alone (Hanhijärvi et al. 

2009). The larger the number of executed tests, the 

higher the chance to find at least one that incorrectly 

rejects the null hypothesis. This issue is known as the 

multiple hypothesis testing problem and occurs when 

multiple statistic hypothesis tests are performed 

simultaneously (Hanhijärvi et al. 2009), (Webb 2007). 

This will cause some patterns to be discovered in error 

i.e. false discoveries derivation. To control the false 
discovery rate one can apply the Bonferroni adjustment 

(Hanhijärvi et al. 2009), the classical and most simple 

approach. The approach adjusts   to       , where   

is the number of hypothesis tests performed. However 

this value tends to be extremely strict (Webb 2007), 

(Hanhijärvi et al. 2009). An alternative method is the 

Holm procedure (Holm 1979). This method provides a 

more reasonable    level, while still maintaining the 

experimentwise significance level to  . The adjusted 

significance level is calculated as follows: all p-values 

are sorted increasingly from the smallest    until   . 

For all      ,    is set to the maximum p-value    

that rejects              (Webb 2007). We use 

the Holm adjusted    for all tests, as shown in the 

experimental analysis section (5). 
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5 – EXPERIMENTAL ANALYSIS 

In this section we describe the experiments performed 

using the proposed approach to analyze the statistical 
significance of time series motifs. First, the 

experimental methodology is outlined. Then, the 

datasets and their sources are described. Finally, our 

approach is applied to datasets from various application 

domains and results are shown. The quality of the 

Poisson and Gaussian approximations is evaluated 

according to existing measures. 

 

5.1 – Methodology  

   Motifs are extracted from the data using the MrMotif 

algorithm, with     , i.e. all patterns are extracted. 
See section 4.1 for the algorithm selection discussion. 

The iSAX length and resolution parameters are both set 

to  , resulting in a                    . The 

significance level ( ) of the tests is automatically 

adjusted to cope with multiple testing. Instead of setting 

  to a typical value such as     , we automatically 

derive the adjusted threshold using the Holm procedure 

(Holm 1979). The Java implementation provided by 

MrMotif (Castro and Azevedo 2010) authors is used. 
The Colt Library for High Performance Scientific and 

Technical Computing (v1.2.0) in Java is used for 

computing the Binomial, Poisson and Gaussian p-

values. This library has been shown to provide accurate 

(long tail region) small p-values (Santosh et al. 2009). 

The approach was implemented in the Java language 

and compiled using JDK 6. All experiments were 

executed in a machine with a Intel Core    i5-530 
processor with 4GB of RAM. 

   Our experimental methodology proceeded as follows. 

First, we extract frequent motifs from each of the 

presented datasets and calculate their statistical 

significance using the proposed approach. The number 

of statistical significant motifs (according to a 
significant threshold) is analyzed. A p-value is derived 

for each motif, assisting in the ranking of the different 

motifs. Then, the quality of the Poisson and Gaussian p-

value approximations is compared, using several 

measures, to the Binomial Exact value. The aim of this 

work is not to provide proof of correctness for the 

statistical tests. Their theoretical properties are well 

established. Rather, we aim at showing their 

applicability and impact in the time series motif 

evaluation setting. 

   For clarity, we choose to use only one order for the 

Markov model from which we derive the motif expected 

probabilities. The chosen order is the maximal order 

(M6). We believe that this maximal order is the most 

representative of the significance we are interested in. 
However, calculations using smaller orders are also 

valid and should be used when the application at hand 

justifies it. Motifs of possible different sizes are 

accounted by treating each time series subsequence as a 

different time series (see section 3). 

 

5.2 – Datasets    

We aim to test our approach on data from a wide range 

of applications and sizes. A set of    time series 

datasets available in the literature are selected from 
several sources. From (Yankov et al. 2007), projectile 

shapes (arrowhead), brain activity (eeg) and motion-

capture (mocap) data. Electrooculogram (eog) data from 

(Mueen and Keogh 2010). Sensor networks monitoring 

(sensorsnetwork), telecommunication traffic (telecom) 

and protein data (sasa) from (Castro and Azevedo 

2010). Random walk data (10) from (Mueen et al. 

2009b). Data from chlorine concentration measurements 

(cl2), Electrocardiogram (koskiecg), star light curves 

(lightcurves), graphical passwords (pen), exchange rate 

(tickwise) from (Shieh and Keogh 2008). From (Keogh 
et al. 2005) we choose respiration (nprs), power demand 

(powerdata) and space shuttle data (TEK). Finally, 

datasets from a variety of sources are aggregated in 

(Keogh and Folias 2002): airplane sensor data (attas), 

elastic burst (burst, burstin), chaotic time series 

(chaotic), sea level pressure (darwin), earthquake 

(earthquake), ECG (ecg), EEG heart rate 

(eegheartrate), brain imaging (ERP), fluid dynamics 

(fluid), Fortune 500 data (fortune), explosion sound 

(infrasound), laser measurements (laser), leaf images 

(leaf), electric signal (leleccum), logistic surrogate noisy 

data (logistic), fault detection (mallat), memory 
(memory), muscle activation (muscle), network 

(network), ocean depth (ocean, oceanshear), network 

packet delay (packet), power plant (powerplant), 

random walk (random), EEG (rateeg), image shape 

(shapemixed), standard and poor index (sp), speech 

recording (speech), stocks (stock), sunspots (sunspot), 

synthetic control charts (synthetic), and water level 

observations (tide) data. 

 

5.3 – Motif Statistical Significance Results 

   In this subsection the proposed approach is applied to 
the 52 different datasets generating more than 110000 
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distinct motifs. The statistically significant motifs 

returned by the approach are shown. The goals of the 

experimental analysis are: to show the pruning power of 

our approach, to highlight that it allows to avoid the use 

of unintuitive support of Top-K parameters as a pruning 
mechanism, to discuss whether p-value based motif 

ranking is an interesting approach and ultimately, to 

show the need for statistical tests in time series motifs 

mining. We first analyze the relation between sequence 

length (n), number of discovered motifs (  ), number 

(NSM) and percentage ( ) of significant motifs, and 

the adjusted cutoff value ( ) for several datasets. In 

table 1 we show these outcomes. Results for all datasets 

are omitted for brevity and can be consulted in (Castro 
2011). 

 

Table  1: Motif results for several datasets 
  Dataset   n       NSM           

  ERP   47616   2628   95   1,97E-05   3,61  

 eog   67493   5882   95   8,64E-06   1,62  

 rateeg  576694  100438   95   4,98E-07   0,09  

 lightcurves   5327   376   70  0,000163  18,62  

 cl2   4310   54   36  0,002632  66,67  

 sasa   81280   754   29   6,89E-05   3,85  

 koskiecg   2394   360   24  0,000148   6,67  

 mallat   803   30   18  0,003846  60,00  

 motor   420   60   7  0,000926  11,67  

 stocks   18000   1394   7   3,6E-05   0,50  

 arrowheads   1231   161   5  0,000318   3,11  

 pen   510   46   4  0,001163   8,70  

 burstin   1310   221   4  0,000229   1,81  

 powerdata   1838   295   4  0,000171   1,36  

shapemixed   160   14   2  0,003846  14,29  

 10000   10000   754   2   6,64E-05   0,27  

 TEK   180   51   1   0,00098   1,96  

eegheartrate   373   85   1  0,000588   1,18  

 leaf   442   72   1  0,000694   1,39  

 network   1121   36   1  0,001389   2,78  

 insect   1471   77   1  0,000649   1,30  

 chaotic   109   4   0   0,0125   0  

 random   1718   65   0  0,000769   0  

 fortune   500   9   0  0,005556   0  

 logistic   2000   181   0  0,000276   0  

 packet   2332   187   0  0,000267   0  

 tide   2906   6   0  0,008333   0  

 eeg   62700   2767   0   1,81E-05   0  

  

We can observe that larger datasets generate a larger 

number of frequent motifs. This is expected, since 

frequent motifs can be found even in random data. We 

can also see that a larger number of significant motifs 

are also extracted from larger datasets. Nevertheless, in 
terms of percentage, there is no clear relation between 

dataset size and significant motifs. This is a result of 

considering the motif count in the adjusted cutoff value 

calculation (Holm procedure). Our approach prunes 

most of the false discoveries, since most of the motifs 

are not statistically significant. The percentage of 

accepted motifs is small for most of the datasets. For 

some datasets, all frequent motifs were discarded. 

Despite some of these data are large, no frequent motif 

could reject the null hypothesis. This indicates that 

using statistical tests in time series motif discovery can 
act as a filter, pruning meaningless motifs. This seems 

to support the need for statistical tests in time series 

motif discovery. Pruning the prohibitively large output 

of pattern discovery algorithms is typically done by 

support or (Top) K parameters. These parameters are 

unintuitive and are typically optimized by 

experimentation. However, this is untenable in practice 

since the data are massive and it becomes very difficult 

to re-run the algorithms with a new parameter setting. 

Assessing motifs p-values avoids the use of unintuitive 

parameters. Since the adjusted cutoff value is 
automatically derived by our approach, no threshold 

setting is necessary to find the most statistically 

significant patterns in the dataset. 

   An interesting byproduct of our approach is that the 

motifs can be ranked according to their statistical 

significance, i.e. their p-value. To be able to rank motifs 

is important, since a ranking yields a smooth way to 

select the patterns in the database that are most 

representative and relevant. The domain expert can 

further investigate those patterns for significance in the 

domain at hand. In table 2 the highest ranked motifs for 
five of the datasets are presented. For simplicity, the 

numeric symbols are converted to alphabetic ones 

(respecting the alphabet index, i.e.     up to    ). 

Results for all datasets and full ranks (up to the least 

ranked motif) can be accessed in (Castro 2011). 

 

Table  2: Most statistically significant motifs 

for several datasets 

  
Data   Motif              Expected    p-value  

  sasa   gggfcbbb   17   3,9E-05   3,172479   4,77E-08  

   hggdcbbb   8   8,79E-06   0,7143   8,93E-07  

    bbbbgggg   14   3,37E-05   2,735099   1,19E-06  

    bbbcggfg   10   1,67E-05   1,354194   1,68E-06  

    abbdgggg   7   7,16E-06   0,58183   2,7E-06  

  eog   aacefggg   31   8,79E-05   5,932245   3,69E-13  

    caacfggh   11   6,36E-06   0,429089   1,54E-12  

    babbeggh   12   8,78E-06   0,592607   2,27E-12  

    dbdgggfa   11   7,38E-06   0,497955   7,41E-12  

    gabdeggd   12   1,03E-05   0,695669   1,2E-11  

  cl2   heddddbe   74   0,00193   8,319006   3,98E-13  

    hecdccdf   37   0,001998   8,613394   7,54E-13  

    hedcdccd   645   0,049903   215,0832   9,33E-13  

    hedddcce   80   0,006069   26,1573   1,06E-12  

    hedddccd   64   0,004855   20,92584   1,23E-12  

koski    gdddddbg   40   0,002734   6,544641   2,37E-12  

ecg    dddddbfh   34   0,00299   7,157086   2,88E-12  

    hedddddb   43   0,006027   14,42812   7,89E-10  

    dddddbgh   22   0,001817   4,350855   1,49E-09  
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    dbggdddd   45   0,00719   17,21198   1,55E-08  
mallat   dgbcdche   90   0,03608   28,97219   6E-13  

  cgbcdche   97   0,041707   33,49079   6,16E-13  
mallat  dgbbdche   92   0,038283   30,74089   6,57E-13  

  dgbcdcge   59   0,024542   19,70757   7,29E-13  

  dhbcdcge   137   0,056988   45,76165   7,92E-13  

 

   It can be observed that motifs with the smallest p-

value, i.e. highest ranking, present a large difference 
between their expected count and actual number of 

occurrences. The ranking produced by the approach is 

calculated by using statistical tests, which are well 

established in the literature. Therefore, they reflect the 

degree of difference between expected and observed 

motif counts, which is the aim of the motif's p-value 

based ranking. Typically, the ground-truth motifs are 

not available in time series data, as the motif discovery 

process is unsupervised. To obtain a ground-truth about 

time series motifs can only be achieved by a domain 

expert, motif utility in a specific task (e.g. symbolic 
language) or interpretability (Minnen et al. 2007). Even 

in the presence of a domain expert, some of the errors a 

motif discovery algorithm can incur are justified by real 

patterns that are simply unexpected (Minnen et al. 

2007). By introducing statistical tests in time series 

motif discovery, we intend to shed light on the motifs 

that are considered to present the highest statistical 

significance. As widely mentioned in the literature, 

statistical significance does not imply significance in a 

specific domain. However, to use the highest ranked 

motifs can provide a good starting point for the experts 
analysis. For example, the 5 highest ranked statistical 

significant motifs in protein unfolding data can provide 

the user a starting point to analyze the database for 

interesting motifs in that specific application. It is 

important that the expert considers only 5 motifs rather 

than 754. In some cases, when the number of returned 

motifs makes the manual analysis very difficult, the use 

of p-value based rankings may become a requirement. 

We can also observe that motifs with the highest p-

value also exhibit a large frequency. That is expected, 

since significant motifs are those whose frequency 

exceed their estimated frequency. There is no clear 
relation between motif count ranking and p-value 

ranking. However, some of the motifs with high 

frequencies are in the top p-value rankings, and vice-

versa. 

   We show another practical example to highlight the 

relevance of the ranks generated by our approach. The 

most significant motif (showing the smallest p-value) 

from the koskiecg is displayed in Fig. 5. This motif is a 

well-known pattern in ECG data - the K-complex 

(Mueen et al. 2009b). 

 

 

 
Figure  5:  Motif with highest statistical significance 

in dataset koskiecg. 

  

 

6 – CONCLUSION 

   We have proposed an approach to evaluate the 

significance of time series motifs using statistical 

significance tests. Our approach innovates by 
computing, for the first time in the literature, each time 

series motif p-value and accepts a motif as significant if 

its value is smaller than an automatically derived 

significance level. This circumvents the need to define 

unintuitive parameters like support or top-K in motif 

discovery algorithms. Further, it significantly reduces 

the number of returned patterns. An interesting 

byproduct is the ranking of motifs obtained by 

considering their statistical significance. We believe our 

approach provides researchers and practitioners with an 

important technique to evaluate the degree of relevance 
of each extracted motif. We also aim to highlight the 

importance of evaluating motifs since it is crucial to 

make motif mining an useful task in practice. Future 

work includes expanding our proposal to other types of 

evaluation measures, and to study the power of the used 

statistical tests. 

 

REPRODUCIBILITY NOTE 

All experiments, data and source code used in this paper 

are available online at (Castro 2011). 
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