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ABSTRACT 

The main purpose of this work is to present a three-
dimensional biomechanical multibody foot model 
suitable to perform forward dynamic analysis for 
orthosis design. The proposed approach takes into 
accounts the different contact phenomena that develop 
between the foot and ground, namely the geometric, 
kinetic, dynamic and material properties of the foot-
ground interface during the stance phase of the human 
gait. The interaction between the foot and ground 
bodies is provided by the introduction of a set of 
spheres under the plantar surface of the foot. In the 
sequel of this process, a general mathematical 
methodology for contact detection between the foot and 
ground surfaces is presented. Then, in a simple way, 
when the foot-ground contact occurs, appropriate 
constitutive laws for contact phenomena are applied. 
These laws take into account the vertical ground 
reaction force as well as the friction phenomena, namely 
the Coulomb and viscoelastic friction effects. Finally, 
the results obtained from computational and 
experimental analysis are used to discuss the main 
assumptions and procedures adopted through this work. 
 
INTRODUCTION 

Over the last few years, a good number of researchers 
have studied biomechanical models, based on multibody 
dynamics, in a wide range of different applications 
where the human motion is characterized by gross 
motions (Silva et al. 1997, Tagawa et al. 2000, Nazer et 
al. 2008). However, most of them do not consider the 
foot-ground interaction, because they are developed 
within the frame work of inverse dynamic analysis 
formulation (Kraus et al. 2005, Wit and Czaplicki 2008, 

Tlalolini et al. 2010). This paper is concerned with the 
development of a three-dimensional foot model that can 
be used to perform forward dynamic analysis associated 
with the human motion. The model is developed under 
the framework of multibody systems methodologies and 
natural coordinates are used to describe the system 
components and the kinematic joints. The foot and 
ground bodies are modeled as contacting elements in 
which their characteristics are function of the geometric 
and material properties of the surfaces. The equations 
governing the dynamical behavior of the general system 
incorporate the normal and tangential forces due to the 
contact of the plantar surface and ground. A continuous 
contact model, in which the local deformation and 
contact forces are treated as continuous, provides the 
normal forces. For this model it is assumed that material 
compliance and damping parameters are available. The 
dry and viscoelastic friction effects are also considered. 
The model proposed here is straightforward and 
computationally efficient. 
It is known that the human foot is a complex multi-
articular mechanical structure composed by bones, 
articulations and soft tissues, which are controlled by 
both intrinsic and extrinsic muscles (Abboud 2002). 
This idea is corroborated by Sereig and Arvikar (1989) 
who defined the foot as a multi-segmented and highly 
ligamentous structure articulated at numerous joints and 
assisted by a meticulous arrangement of extrinsic and 
intrinsic muscles that provide a diverse range of 
motions and functions. The foot is a vital part of the 
human locomotion apparatus, not only because it 
supports the weight of the complete human body, but 
also because during human gait the body pivots about it. 
The foot also forms an important kinetic and kinematic 
boundary condition between the model and the ground. 
In a broad sense, most of the existing biomechanical 
foot models consider the foot as single rigid body, 
neglecting the multi-segmental and deformable 
structures that it comprises. In general, these models are 
used to represent the foot-ground interaction that occurs 
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during the stance phase of human gait. There are other 
simple approaches that treat the ankle joints directly 
connected to the ground, and, consequently, 
disregarding the existence of the foot (Siegler et al. 
1982). Other modeling foot approach is to consider the 
foot kinematically fastened to the ground during the 
stance phase of gait in order to limit and control the 
motion (Pandy and Berme 1989, Yang et al. 1990, Chou 
et al. 1995). 
One of the first biomechanical foot models that does not 
include any kinematic conditions to the movement of 
the feet was developed by Meglan (1992). In this 
model, the interaction of the plantar surface with the 
ground is described by viscoelastic elements. The 
mechanical properties of the viscoelastic elements were 
identified using experimental data on heel pads (Valiant 
1984). The shear forces were calculated using a 
modified Coulomb friction model. However, besides the 
existence of some experimental measurement errors, 
this model leads to some numerical difficulties, namely 
in what concerns the solution of the equations of 
motion. Hence, the computational simulations failed 
due to stiffness problems in the numerical solution of 
the equations of motion. 
Another foot model that describes the foot-ground 
contact interaction during the stance phase of gait using 
viscoelastic elements was introduced by Gilchrist and 
Winter (1996). In this three-dimensional model, the foot 
was described as a two segment model in which the 
metatarsal-phalangeal articulation was represented by 
one revolute joint. This foot model was developed and 
used to simulate the foot global motion, from heel 
contact to toe-off. The viscoelastic contact properties 
were described by a collection of 9 vertically oriented 
spring-damper elements, located along the midline of 
the foot. Associated with each vertical spring-damper 
element, two orthogonally horizontal dampers were 
considered with the purpose to account for the friction 
components of the ground reaction force. In addition, 
torque acting on the metatarsal-phalangeal articulation 
was included as a torsional spring-damper element. In 
this work, the stiffness and damping characteristics 
were obtained by using trial and error approach. 
Although the results of the simulation with this foot 
model reproduced well the kinematics and kinetics, it 
was shown that the model is quite sensitive to the 
stiffness and damping parameters. 
Güller et al. (1998) used a sphere model to represent the 
plantar surface of the foot during locomotion 
simulations. The mechanical properties of the sphere 

were those published in reference (Valiant 1984). The 
heel pad is modeled as viscoelastic spherical body 
compressed against a rigid plane. The stiffness and 
damping properties of the heel pad tissue were 
represented by Kelvin-Voigt elements, in which the 
spring and damper are in parallel. It should be 
highlighted that this model is found to be insensitive to 
variations in stiffness and damping parameters. 
Neptune et al. (2000) developed a three-dimensional 
musculoskeletal foot model combining the equations of 
motion for the musculoskeletal system and model for 
the muscle force generation and ground contact 
elements. This musculoskeletal model consisted of rigid 
segments representing the rear-foot, mid-foot, toes, 
talus, shank, patella, thigh of the supported leg, pelvis 
and the rest-of-body segment. The contact between the 
foot and the ground was modeled by 66 discrete 
independent viscoelastic elements, each attached to one 
of the three foot segments in locations that describe the 
three dimensional exterior surface of a shoe when the 
foot joints are in a neutral position. The obtained results 
showed that the ground reaction force was insensitive to 
the variations of the shoe stiffness. 
A general biomechanical model, that also includes the 
foot-ground interaction, was presented by Anderson and 
Pandy (2001). The skeleton was represented by a 10 
anatomical segments that results in 23 degree-of 
freedom. The pelvis was modeled as a single rigid body 
and the remaining segments branched in an open chain 
from the pelvis. The head, arms and torso (HAT) were 
lumped into a single rigid body, being this segment 
articulated with the pelvis. Two elements were used to 
model each foot, that is, the hindfoot and the toes 
anatomical segments. The interaction of the feet with 
the ground was simulated using a series of spring-
damper elements distributed under the plantar surface of 
each foot. Some differences between numerical and 
experimental results were observed. Spikes in the 
vertical ground reaction force just prior to opposite toe-
off are caused by very small-amplitude oscillations in 
the foot springs. The vertical force does not fall to zero 
at the end of stance phase, which results from a delay in 
weight transfer onto the contralateral leg at the 
beginning of double support. A computational 
simulation of human walking was also described by 
Wojtyra (2003). The biped model consists of 8 rigid 
bodies. The trunk was modeled as two bodies connected 
by a revolute joint. Compliance laws were used to 
model the contact and friction forces developed in the 
foot-ground interaction. Then, a set of 5 force vectors 
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acting on each foot was used to model ground reaction 
forces. In this model, the number of forces and points of 
their applications were chosen to obtain an adequate 
approximation of reality. This model was successfully 
validated, being the results of simulation in reasonably 
good agreement with experimental measurements. 
More recently, Peasgood et al. (2007) presented a 
general two-dimensional multibody model for dynamic 
walking gait analysis. In this work, a foot contact model 
was created using a point contact force at the heel and 
ball of each foot. When a contact condition is detected, 
the vertical contact force is computed on the foot using 
a nonlinear spring-damper element. The horizontal 
force at the contact point was modeled using the 
Coulomb friction force model. This foot model was 
used to support the development of a feedback control 
system that stabilizes the torso orientation during a 
human walking gait dynamic simulation, enabling 
arbitrarily long simulations. Millard and co-authors 
(2007) used the multibody mechanical model developed 
by Peasgood et al. (2007) to introduce a new foot 
model. A predictive forward dynamic simulation of 
human gait was performed for a multi-step analysis. 
Foot contact forces were calculated using a 2-point foot 
contact model, with a contact located at the heel and 
metatarsal. This foot contact model produced ground 
reaction forces that substantially differ from those 
observed during the normal gait (Valiant 1984). The 
authors showed that the poor performance of the foot 
contact model was partly responsible for the joint torque 
differences between healthy human gait and the 
simulated results. 
 
MATHEMATICAL FOOT MODEL 

In order for the foot contact model to be used, it is first 
necessary to develop a mathematical model for foot and 
ground surfaces in the biomechanical multibody system. 
The biomechanical multibody foot model proposed in 
this study is composed by 3 rigid bodies that represent 
the shank, the main foot part and the toes, as it is 
illustrated in Fig. 1a. The ground is the fourth body, 
which is rigid and flat. The foot parts are constrained by 
2 revolute joints. In the present work, the main foot part 
and the toes are represented by a set of spheres, as 
depicted in Fig. 1b. The number of spheres, their radius 
and their locations can vary and be adjusted with the 
intent to obtain a better representation of the plantar 
surface. Furthermore, these characteristics must also 
taken into account the anatomical and biomechanics of 

the actual foot, that is, the spheres must be located in 
the areas of the foot that are most relevant in human gait 
(Moreira et al. 2009).  
The interaction between the foot and the ground is 
performed by evaluating, at each time step, the potential 
contacts between the spheres and the rigid flat surface, 
which depends on the global bodies’ position during the 
simulation. The occurrence of any penetration is used as 
the basis to develop the procedure to evaluate the local 
deformation of the bodies in contact. The normal and 
tangential contact forces are function of the material 
properties of the contact bodies, penetration and relative 
contact velocities in both normal and tangential 
directions. 
 

(a)

Main foot part

Shank

Toes

Revolute joint

Revolute joint

Main foot part

Shank

Toes

Revolute joint

Revolute joint

(b)  
Figures 1: (a) Foot parts; (b) Foot plantar surface 

defined as a set of spheres 
 
In the present work the interaction between the foot and 
the ground is provided by the introduction of 9 spheres 
(6 under the plantar surface and 3 under the toes), 
located along the midline of the foot, as it is 
schematically shown in Fig. 1b. A general procedure 
based on the kinematic configuration of the multibody 
system’s bodies is developed with the purpose to detect 
what are the contacting elements at each instant of the 
analysis. Figure 2 shows the ground body, denoted by 
symbol j, which represents a flat rigid body defined by a 
point Pj and a vector n normal to the plane. In order to 
keep the analysis simple, only one sphere is considered 
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to represent part of the foot denoted as body i. The 
radius of the spheres is Ri, while its center is represented 
by point Ci. The global coordinate system is indicated 
by XYZ. 
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Figures 2: Localization vectors of the main geometric 

elements necessary for contact detection 
 
From Fig. 2 the distance vector d between points Ci and 
Pj can be expressed by 
 

P C
j i= −d r r         (1) 

 
where both P

jr  and C
ir  are described in global 

coordinates with respect to the inertial reference frame 
(Nikravesh 1988). Taking into account that the normal 
of the ground plane must be expressed in terms of 
global coordinates, the components of vector d in the 
normal and tangential to the ground can be evaluated as 
 

( )T
n =d d n n         (2) 

t n= −d d d         (3) 
 
These two vectors are represented in Fig. 2. Thus, the 
geometric condition used to check if the sphere and 
plane are in contact is given by 
 

i nR dδ = −         (4) 
 
in which Ri is the sphere radius and dn denotes the 
magnitude of the vector dn, that represents the 
projection of vector d onto the normal direction n 

T T
n n nd = =d d d n         (5) 

 
By analyzing Eq. (4) it can be observed that relative 
penetration between ground and sphere occurs when δ 
is greater than zero, otherwise the bodies are separated 
from each other. These two scenarios are represented in 
Fig. 3, where the relative normal and tangential 
velocities are also illustrated. 
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Figures 3: (a) Approaching phase between a sphere and 

a plane; (b) Contact between a sphere and a plane, 
where the pseudo-penetration, δ, is visible 

 
In most of the relevant contact force models, it is of 
paramount importance to evaluate the dissipative effect 
that takes place during the contact process. In such 
models, it is necessary to calculate the relative velocity 
of the contacting surfaces in both normal and tangential 
directions. The normal relative velocity determines 
whether the contact bodies are approaching or 
separating. Similarly, the tangential relative velocity 
helps in the determination if the contact bodies are 
sliding or sticking (Flores et al. 2006). The relative 
scalar velocities, normal and tangential to the plane of 
collision, are found by projecting the relative contact 
velocity onto each one of these directions, yielding 
 

( )T
n =v v n n         (6) 

t n= −v v v         (7) 
 
in which the relative velocity between the points Ci and 
Pj is given by 
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P C
j i= −v v v         (8) 

 
In short, if the contact between sphere and ground is 
effective, then the pseudo-penetration is given by Eq. 
(4), being the pseudo-velocity of penetration is 
 

nδ = v         (9) 

 
CONSTITUTIVE EQUATIONS FOR CONTACT 

With the purpose to evaluate efficiently the contact 
forces resulting from the foot-ground interaction, 
special attention must be given to the numerical 
description of the contact force model. Information on 
the contact velocity, material properties of the colliding 
bodies and geometric characterization of the contacting 
surfaces must be included into the contact force model. 
These characteristics are observed with a continuous 
contact force law, in which the deformation and contact 
force is considered as a continuous function (Lankarani 
and Nikravesh 1990). Furthermore, it is important that 
the contact force model can be added to the stable 
integration of the multibody system’s equations of 
motion. In a broad sense, any contact problem in 
multibody dynamics can be divided into three main 
steps, namely (i) definition of the geometric properties; 
(ii) development of a methodology for contact 
detection; (iii) application of appropriate constitutive 
laws for contact forces that develop in the normal and 
tangential directions (Hippmann 2004). In what follows, 
these issues are presented and discussed for the case of 
foot-ground interaction during human gait. 
In this study, as it was already described in the previous 
section, the contact problem between the foot and 
ground is defined as the contact situation between a set 
of spheres and a flat surface. The elements in contact 
are assumed to be rigid, however the contacts are 
deformable, materialized by an overlap or pseudo-
penetration. The problem of contact detection deals with 
the evaluation of the minimum distance between 
potential contacting points, at every time step of 
simulation. This is of paramount importance when the 
multibody system has multiple contact points, as it is the 
case of foot-ground interaction. In a simple way, the 
mathematical expression for that contact involves 
sphere radius and bodies positions and allows for the 
calculation of pseudo-penetration of the bodies. The 
constitutive laws that represent the physical interaction 
between foot and ground are functions of the relative 

penetration. The best known force model for the contact 
between two spheres of isotropic materials was 
developed by Hertz, which is based on the theory of 
elasticity, (Hertz 1882) 
 

m
n Kδ=f n         (10) 

 
where the parameter K represents the relative contact 
stiffness that depends on the geometric and material 
properties of the contacting bodies, δ the relative 
penetration given by Eq. (4), m a non-linear coefficient 
and n is the normal unit vector of the contact plane. 
This is a purely elastic model, that is, it does not 
account for the energy dissipation during the contact 
process. In fact, one of the most complex tasks when 
modeling any contact deals with the issue associated 
with the process of energy dissipation. Therefore, in the 
present work, the normal contact force between the foot 
and ground is the summation of two components, 
namely the elastic repulsive force and the dissipative 
viscous force. These two phenomena are materialized 
by the parallel association of a spring and damper 
elements, as it is represented in the scheme of Fig. 4. 
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Figures 4: Spring-damper model representing the foot-
ground contact in the normal and tangential directions 

 
Thus, diving the normal contact force into the elastic 
and damping components, as in the case of the Kelvin-
Voigt model (Goldsimth 1960), yields 
 

( )m
n K cδ δ= +f n         (11) 
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in which K and c are the spring stiffness and damping 
coefficient of the penalty approach, δ denotes the 
relative penetration, δ  is the relative velocity of the 
contacting elements m a non-linear exponent and n is 
the normal unit vector of the contact plane. The amount 
of viscous damping during the contact is controlled by 
the coefficient c. The energy dissipated will increase as 
c becomes larger and the kinetic energy will drive the 
system to damper faster. 
The spring stiffness depends on the geometrical and 
material properties of the contacting elements. For the 
case of a contact between a sphere i and a plane j, this 
parameter is given by (Goldsimth 1960) 
 

22

0.424
11

π π

j

ji

i j

R
K

E E
υυ

=
−−

+

        (12) 

 
where Ri is the sphere radius, υ and E are the Poisson’s 
ratio and Young’s elastic modulus associated with each 
contacting body. This is a constant parameter. 
Conversely, the damping coefficient varies with the 
kinematics of the system, that is, it also depends on the 
contact velocity. A hysteresis damping function can be 
incorporated in this force model, which represents the 
dissipated energy during the impact process, such that 
proposed by Hunt and Crossley (1975) 
 

mc χδ=         (13) 
 
in which χ is denominated the hysteresis damping 
factor, having the remaining parameters the same 
meaning as described above. 
When the contact between the foot and ground takes 
place, a friction force must also be incorporated in the 
contact analysis, in order to account for the shearing 
force. In the present work, the constitutive law for the 
tangential force is expressed as 
 

( )t c n d tf vμ μ= − +f t         (14) 
 
which points in the opposite direction of the shearing 
velocity in the tangential plane of contact. In Eq. (14), 
μc and μd represent the dry Coulomb and viscous 
friction coefficients, fn is the magnitude of the normal 
contact force, vt is the relative tangential velocity and t 
is unit vector in the tangential direction. 

In short, the normal elastic and damping force 
components produced in the foot-ground contact is 
evaluated by using Eqs. (11)-(13). Whilst the tangential 
force is evaluated by employing Eq. (14), which 
includes both the dry Coulomb friction and the viscous 
friction effects. Is should be highlighted that the 
introduction of the viscous component proved to be 
quite important, in the measure that it is responsible for 
preventing the foot from sliding and it is responsible for 
that dynamic system’s response. This aspect plays a 
crucial role in this type of dynamic problems involving 
contacts.  
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Figures 5: Resulting forces and moments that act at the 

centers of mass of the two foot bodies 
 
It should be noted that during the dynamic 

simulation of the foot-ground interaction, the number of 
spheres in contact with the ground surface varies. Thus, 
the ground vertical and horizontal reaction forces must 
be evaluated accordingly, that is, as the summation of 
the contribution of each sphere. Let l represents the 
number of spheres in contact with ground, then the 
magnitude of the reaction forces are evaluated 
 

1

l

n nk
k

F f
=

=∑         (15) 

1

l

t tk
k

F f
=

=∑         (16) 

 
where fnk and ftk represent the amount of force 
developed by each sphere in the normal and tangential 
direction. The resulting forces are then applied in the 
center of mass of each body, as it is schematically 
depicted in Fig. 5. The reaction forces are represented 
by vectors Fni, Fti, Fnj and Ftj, for the main foot part and 
toes, respectively. In addition, the moments that result 
from the transport of the contact forces are also 
illustrated in Fig. 5. Finally, the X and Y coordinates of 
the center of pressure (COP) can be evaluated by using 
the following expressions 
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FORMULATION OF THE EQUATIONS OF 
MOTION FOR MULTIBODY SYSTEMS 

This section presents the formulation of the general 
equations of motion of the spatial dynamic analysis of 
multibody systems. The present work closely follows 
the approach developed by Silva (2003). Due to its 
simplicity and computational easiness, natural 
coordinates and Newton-Euler’s method are used to 
formulate the equations of motion of the spatial 
multibody systems (Nikravesh 1988). The methodology 
presented here can be implemented in any general 
purpose multibody code, being tested in particular in the 
computer program APOLLO (Silva 2003), which has 
been developed for the spatial dynamic analysis of 
general biomechanical systems. For a constrained 
multibody system, the kinematical joints are described 
by a set of algebraic constraint equations denoted as 
 

( , )t =Φ q 0         (19) 
 
Using the Lagrange multipliers technique the 
constraints are added to the equations of motion. These 
are written together with the second time derivative of 
the constraint equations. Thus, the set of equations that 
describe the motion of the multibody system is 
 

T⎡ ⎤ ⎧ ⎫ ⎧ ⎫
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

q

q

M Φ q g
Φ 0 λ γ

        (20) 

 
where λ is the vector of Lagrange multipliers and γ is 
the vector that groups all the terms of the acceleration 
constraint equations that depend on the velocities only, 
 

( ) 2tt t= − − −q q qγ Φ q q Φ Φ q         (21) 

 
The Lagrange multipliers, associated with the kinematic 
constraints, are physically related to the reaction forces 
and moments generated between the bodies 
interconnected by kinematic joints. Equation (20) is a 
differential algebraic equation that has to be solved, 
being the resulting accelerations integrated in time. 
However, in order to avoid constraints violation during 

the numerical simulation, the Baumgarte technique is 
used, being Eq. (20) modified to (Baumgarte 1972) 
 

22

T

α β
⎡ ⎤ ⎧ ⎫ ⎧ ⎫

=⎢ ⎥ ⎨ ⎬ ⎨ ⎬− −⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

q

q

M Φ q g
Φ 0 λ γ Φ Φ

        (22) 

 
where α and β are positive constants that represent the 
feedback control parameters for the velocity and 
position constraint violations. 
In a dynamic analysis, a unique solution is obtained 
when the constraint equations are considered 
simultaneously with the differential equations of 
motion, for a proper set of initial conditions. Thus, 
mathematically the simulation of constrained multibody 
system requires the solution of a set of nc differential 
equations coupled with a set of m algebraic equations. 
According to the formulation outlined, the dynamic 
response of multibody systems involves the evaluation 
of the Jacobian matrix Φq and vectors g and γ , each 
time step. The solution of Eq. (22) is obtained for the 
system accelerations q . These accelerations, together 
with the velocities, are integrated to obtain the new 
velocities q  and positions q  for the next time step. This 
process is repeated until the complete description of 
system motion is obtained for a selected time interval 
(Nikravesh 1988). 
 
FOOT MODEL APPLICATION TO HUMAN 
GAIT ANALYSIS  

In this section, some numerical results obtained from 
some computational simulations of the developed foot 
model are presented and discussed in order to 
understand the dynamic behavior of the foot-ground 
interaction during the human gait. Figure 6 shows a 
schematic representation of the biomechanical 
multibody model considered here. In order to keep the 
analysis simple, this model only includes 4 basic rigid 
bodies representing the shank, main foot part, toes and 
ground. Each body has a local coordinate frame located 
at the center of mass. Two revolute joints are used to 
connect the main foot part to shank and the main foot 
part to toes. The main foot part and toes are also 
constrained by a linear torsional spring-damper element. 
The torsional spring stiffness is equal to 12 N/m, while 
the damping coefficient is equal to 0.5 Ns/m. 
Furthermore, the present study only accounts for the 
skeletal structure, being the effect of muscles, tendons 
and ligaments neglected. 
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Figures 6: Representation of the global biomechanical 

multibody model 
 
A number of parameters is required by the APOLLO 
program such as the number of feet involved, the local 
coordinates of the normal vector to the floor and the 
number of the spheres used to represent the feet surface. 
In the present work, for each foot, the maximum 
number of spheres allowed is equal to 25. The sphere-
plan contact geometrical and material properties should 
be specified by the user, namely local coordinates of the 
spheres, the sphere radius, coulomb and viscous 
coefficients, relative stiffness, non-linear degree of the 
contact law, normal damping coefficient. The proposed 
foot model allows the evaluation of the ground reaction 
forces produced during the contact as well as the 
calculation of the center of pressure position under the 
plantar surface of the foot. The biomechanical model is 
based on the data published by Winter (1990), being 
their anthropometric dimensions those that correspond 
to a male of 1.70 m and 70 kg. The biomechanical 
system encompasses 6 functional degrees of freedom: 3 
for the knee/shank translational trajectories, 1 for the 
knee flexion, 1 for the ankle joint rotation and 1 for the 
metatarsal-phalangeal joint rotation. The mass and 
moment of inertia properties of each body are listed in 
Table 1.  
In the particular cases studied in this work, the foot and 
ground interaction is provided by the introduction of a 9 
spheres under plantar surface of the foot, 6 located 
under the main foot part and 3 situated under the toes. 
The spheres are number from 1 to 9 starting from the 

most left sphere. The local coordinates of the center of 
each sphere and their radii are presented in Table 2. As 
far as the evaluation of the contact forces is concerned, 
all the spheres have the same properties relative to the 
contacting stiffness, damping coefficient, degree of 
nonlinearity and viscous friction coefficient used in the 
constitutive contact force laws, which values are, 
respectively, 40 kN/m, 300 Ns/m, 1.5 and 3.0 Ns/m. 
The friction coefficient is a variable parameter that can 
vary from 0.5 to 1.0. These values are used to produce 
the reference data presented in this work. 
 
Table 1: Inertia properties of the biomechanical model 

Moment of inertia 
[kgm2] Segment Description Mass 

[kg] Iξξ Iηη Iζζ 
1 Shank 4.76 8.230 8.230 8.230 
2 Main foot part 1.33 2.250 2.250 2.250 
3 Toes 0.35 0.471 0.471 0.471 

 
Table 2: Geometric properties of the contact spheres 

Sphere 
number ξ [mm] η [mm] ζ [mm] Radius 

[mm] 
1 -94.70 0.00 -15.34 30.81 
2 -94.70 0.00 -15.89 39.53 
3 -75.20 0.00 -22.89 31.10 
4 0.00 0.00 -25.89 15.10 
5 26.97 0.00 -32.36 12.94 
6 56.09 0.00 -34.52 15.10 
7 -22.70 0.00 -15.10 12.94 
8 0.00 0.00 -17.26 10.78 
9 21.60 0.00 -12.94 10.79 

 
Prior to analyze the dynamic response of the foot model 
associated with human gait, it is important to 
demonstrate the crucial role of the Coulomb and viscous 
friction effects. For this purpose, two different 
simulations were performed. In the first case, the 
viscous effect is neglected, and the static Coulomb 
friction coefficient is equal to 1.0. In the second case, 
the biomechanical model is simulated with both 
Coulomb friction and viscous friction actions. Initially, 
the model is in a horizontal position as Fig. 7a shows. 
The system is then released from its initial configuration 
under gravity action only, which is taken as acting in 
the negative Z direction. When contact between the foot 
and ground is detected, the contact forces generated are 
evaluated according to the continuous force model 
described in the previous section. Figures 7a-c represent 
the animation sequence corresponding to the first case, 
that is, when only the Coulomb friction is incorporated 
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in the contact interaction between foot and ground. In 
turn, Figs. 7d-f show the animation sequence when both 
Coulomb and viscous friction effects are considered. 
Based on these illustrations, it can be observed that in 
the first scenario, the foot describes a rotational motion 
with higher amplitude, visible when the foot goes 
beyond the vertical line, as Fig. 7c demonstrates. In 
sharp contrast are the representations of the second 
scenario, in which the foot stops before the vertical line. 
This behavior can be explained due to the incorporation 
of the viscous friction effect. Finally, it can be observed 
the key role played by the viscous friction, which is in 
fact much more realistic. 
 

(a)                                            (b)                                                   (c)

(d)                                            (e)                                                   (f)  
Figures 7: (a)-(c) Animation sequence with only 

Coulomb friction; (d)-(f) Animation sequence with both 
Coulomb and viscous friction effects 

 
In what follows, some obtained results from a 
computational simulation corresponding to a forward 
dynamic analysis of the biomechanical model described 
above are presented and discussed. The global motion is 
relative to a complete gait cycle. The analysis is 
performed considering the full prescribed kinematic 
data, that is, all the functional degrees of freedom are 
guided through the entire gait cycle. The global 
dynamic response of the system is quantified by plotting 
the vertical ground reaction force. The computational 
results for the vertical reaction force are compared to 
the data obtained experimentally, as it can be observed 
in the diagrams of Fig. 8. In general, there is a good 
agreement between computational and experimental 
approaches, being also supported by some the best 
published literature in this particular filed of 
investigation (Silva 2003), namely in what concerns 
with the vertical reaction force. From the plot of the 
center of pressure it is possible to quantify the foot 
length and also the evolution of the foot path during the 
gait cycle. 
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Figures 8: Vertical reaction force 

 
The global motion produced by the biomechanical 
multibody model is illustrated in the animation 
sequence of Fig. 9, where the main phases of the human 
gait are presented, namely, the swing and the stance 
phases. In the case of the stance phase, three sub-phases 
can be identified, that is, the heel contact (initial 
contact), the plantar support (mid stance) and toe off 
(terminal stance). Figure 9a shows the swing phase 
(terminal swing), which starts when the shank is vertical 
and ends when the foot touches the ground. In the phase 
there is no contact between the foot and the ground, 
hence there is no reaction forces. The three sub-phases 
of the stance period can be describes as follows. The 
stance phase itself starts with the initial contact between 
the foot and ground, as it is depicted in Fig. 9b. In 
general, the heel is the first part to touch the ground 
(heel contact). In the sub-phase the spheres 1 to 3 
contact with ground, being this situation corresponding 
to 10% of stance phase. Figure 9c shows the mid stance 
sub-phase, in which the body weight is transferred to 
the leg. This sub-phase is of utmost important for shock 
absorption, weight-bearing and forward progression. In 
the mid stance sub-phase, spheres 1 to 8 contact the 
ground, which corresponds to 49% of stance phase. 
Finally, the end of stance phase is visible in the 
representation of Fig. 9d. This last sub-phase begins 
when the toes are the only part of the foot to contact the 
ground, which is usually denominated as the toe off. In 
this sub-phase, the spheres 7 to 9 contact the ground 
that represents 68% of stance phase. To sum up, it can 
be said that the global behavior of the contact foot 
model is realistic and corroborates the data available 
(Debrunner and Hepp 1999, Gefen 2003). 
Finally, in order to demonstrate the application of the 
proposed methodology in the study of the influence of 
the shape of the plantar surface on the response of the 
system, two different plantar surface pathologies are 
considered, namely one that representing a cavus foot 
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and one corresponding to a flat foot pathologies. These 
two pathologies are associated with anomalies on 
topography of plantar surface of the foot. The cavus 
foot pathology is characterized by arches with much 
higher amplitude than usual and is caused by weakness 
in the muscles, especially muscles in the leg and feet, 
can cause this pathology, or due to nerve or muscle 
disease. These unbalanced muscles, especially in the 
foot and ankle, work unevenly causing the high arch. 
This pathology, eventually, causes pain in the patient 
and they have high probability to develop thick calluses 
under the metatarsal-phalangeal joints. Flat foot or 
pronated foot is a common foot shape. This pathology is 
characterized by the absence of the arch of the foot. 
When a patient suffering from this pathology stands up, 
the arch in the middle of the foot disappears and the 
foot seems to lie flat on the ground. 
 

(a)                                      (b)          (c)                                (d)(a)                                      (b)          (c)                                (d)  
Figures 9: Animation sequence of the human gait cycle 

of the biomechanical model 
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(a)

(b)  
Figures 10: Vertical reaction force: (a) Cavus foot; (b) 

Flat foot 

The influence of the different foot pathologies on the 
reaction force is illustrated in the diagrams of Fig. 10 
where their plots are compared with the data 
corresponding to a foot without pathology. In the case 
of the cavus foot, the vertical ground reaction force 
produced is higher during the heel contact, at the end of 
mid stance and toe off phases, and presents lower 
amplitude during the mid stance phase. Indeed, for this 
foot pathology, the contact is more intensive in the heel 
phase because the body weight is more concentrated in 
the heel and toes, and is less intensive in the central 
zone in which the cavus pathology is located. On the 
other hand, in the case of flat foot pathology is can be 
drawn that the contact force evolution tends to have a 
similar shape to the classic Hertz contact. 
 
CONCLUSIONS 

A comprehensive three-dimensional model of the 
interaction developed between the foot and ground 
during human gait has been presented and discussed in 
this work. The proposed model is developed under the 
framework of multibody systems methodologies. In a 
simple way, the foot and ground are modeled as 
contacting elements, which characteristics are function 
of the geometric and material properties of the 
contacting surfaces. The interaction between the 
proposed foot model and the ground is modeled using 
sphere-plan contact pairs that can be adjusted in 
number, size and position in order to ensure a better 
replication of the foot plantar surface. 
For each contact pair a force is calculated based in the 
kinematic characteristics of the contact, namely relative 
pseudo-penetration and on the relative material 
characteristics of the surfaces in contact. More 
precisely, a continuous viscoelastic contact force model 
used is the one the Kelvin-Voigt model (for the normal-
to-the-ground component of the contact force) and on a 
dry-friction model (for the tangential-to-the-ground 
components of the contact force). With respect to the 
Kelvin-Voigt model, the force produced by the spring 
component is calculated according to the Hertzian 
contact theory while the force produced in the viscous 
element follows Hunt and Crossley hysteretic approach. 
The friction force model presents one of the most 
important and novel features of the proposed foot model 
as it includes two distinct components: a standard 
Coulomb friction component and a viscous friction 
component that is proportional to the tangential-to-the 
ground velocity of foot. Furthermore the proposed 
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methodology was implemented in a three-dimensional 
multibody code, named APOLLO that is able to 
automatically generate the equations of motion of any 
biomechanical system and to solve them for forward 
and inverse dynamics. 
Some numerical results obtained from different 
computational simulations are presented in order to 
discuss the methodologies and premises adopted 
through this work. In short, the three-dimensional 
computational foot model here proposed is a reliable 
reproduction of contact between foot and floor. It was 
demonstrated that, when contact occurs, the Coulomb 
friction force alone was not able to stop the foot from an 
excessive sliding even when the Coulomb friction 
coefficient was set to one. This result is of crucial 
importance and may justify the reason why several 
reviewed models fail to duplicate the proper kinematics 
and, consequently, the dynamics of the foot-ground 
interaction during the simulation of a normal gait cycle. 
With this foot contact model, the use of a force platform 
to evaluate the ground reaction forces could be 
dispensable in human gait analysis tasks. The numerical 
results obtained from several computational simulations 
were compared to those published in the literature. 
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