
 adadja lkjsdf lskdjf lskf lksf lsaf lkasfhlksafl kshflkasfhlaksfl kasf
lkasfhksafksf skfaskflasfksahfksahflsafhlk

 University of Minho
 School of Engineering
 Computer Science and Technology Center

Uma Escola a Reinventar o Futuro – Semana da Escola de Engenharia - 24 a 27 de Outubro de 2011

Author* NUNO A. CARVALHO
 Supervisor: José Pereira

* nuno@di.uminho.pt

EXPERIMENTAL EVALUATION OF DISTRIBUTED MIDDLEWARE WITH A
VIRTUALIZED JAVA ENVIRONMENT

Network

JVM 2

JVM 1

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

...

The correctness and performance of large scale service oriented
systems depends on distributed middleware components performing
various communication and coordination functions. It is, however,
very difficult to experimentally assess such middleware
components, as interesting behavior often arises exclusively in large
scale settings, but such deployments are costly and time
consuming. We address this challenge with MINHA, a system that
virtualizes multiple JVM instances within a single JVM, reproducing
the concurrency, distribution, and performance characteristics of the
actual distributed system. The usefulness of MINHA is
demonstrated by applying it to the WS4D Java stack, a popular
implementation of the Device Profile for Web Services (DPWS)
specification.

Introduction

This poster introduces MINHA, a simulation platform that allows
multiple virtual JVM instances that run off-the-shelf Java middleware
components and distributed applications within a single host JVM,
much as an hypervisor enables multiple virtual machines within a
single server. In contrast with common hypervisors, MINHA
manages a simulated timeline which is updated using accurate
measurements of the time spent executing real code fragments,
hence reproducing the performance of multiple physically
independent hosts. Finally, it includes simulation models of
networking components for realistically mimicking a distributed
execution.
The usefulness of MINHA is demonstrated by showing how the
WS4D Java stack, an off-the-shelf middleware component, is
evaluated on a large scale system with hundreds of simulated
devices in single host using 5 X less RAM than needed for separate
JVMs. In fact, MINHA avoids the error introduced by running all
devices within a single host, competing for the same CPU
resources, and provides a more truthful approximation of a
distributed system.

Conclusion

The experimental evaluation of some middleware component usually
requires the architecture outlined in Figure 1. Briefly, multiple
instances of an application that makes use of the target middleware
component are deployed in multiple JVMs. Distributed interactions
are then initiated by the application using the middleware, that
makes use of platform's libraries and of the underlying Java
bytecode execution mechanism.

MINHA allows reproducing the same distributed run within a single
JVM as shown in Figure 2. In detail, the application and middleware
classes for each instance are loaded by a custom class loader that
replaces simulation models for references to the underlying platform,
namely, libraries and synchronization bytecode. Some of these
simulation models are developed from scratch while others are
produced by translating native libraries themselves. The resulting
code makes use of the simulation kernel and time virtualization to
run. Multiple instances are loaded under the control of a command
line user interface and configuration loader, which has the following
advantages.

Global observation without interference: Once the whole process
is centralized, it is possible to get a global observation of all
operation and system variables.

Simulated components: When in a real execution, still in the
development phase, it is necessary to evaluate the system for
different environments and software components. With MINHA, such
environments and software models can be replaced by simulation
models, and incorporated in a standard test harness to be run
automatically as code evolves.

Large scale: Large scale applications, that require a huge amount
of resources to be deployed in the real environment, make this
development more complicated. Testing during the development
phase may require a big share of the system already in operation
which requires high costs already in these phase.

Automated “What-if” analysis: By resorting to simulated
components and running the system with varying parameters, the
impact of extreme environments can be assessed, exploring even
conditions that are not yet possible in practice.

Fault-injection: MINHA can also be extended to perform various
fault-injection operations, in space and time domains

Overview

Figure 1: Distributed Java application.

JVM

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Simulated events and resources

Time virtualization

U
s
e
r

 i
n
te

rf
a
c
e
 a

n
d
 c

o
n
fi
g
u
ra

ti
o
n

Simulation models (network,...)

Virtual JVM 2

Virtual JVM 1

Bytecode instrumentation

Stubbed platform libraries
(fake.java.*)

Translated platform libraries
(moved.java.*)

Target middleware

Target application

...

Figure 2: Simulation of a distributed Java application.

Results

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

L
a
te

n
cy

 (
m

s)

Devices

Multiple JVMs
Minha

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 0 50 100 150 200 250 300

D
u
ra

tio
n
 (

s)

Devices

Multiple JVMs
Minha (sim)
Minha (real)

Execution mode RAM (GB)

Multiple JVMs 25.4

MINHA 5.7

Figure 3: Latency. Figure 4: Duration.

Figure 5: Average memory usage for 300 devices.

mailto:nuno@di.uminho.pt
mailto:nuno@di.uminho.pt

