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AUTOMATIC DETECTION AND SEGMENTATION OF CORTICAL LESIONS IN 
MULTIPLE SCLEROSIS

2)Using a Gaussian mixture Eq 1 with two or more components can 
model the entire cortex tissue.

                                                                                                     (Eq 1)

3) Based on a Bayesian classifier, utilizes the adaptive mixtures 
method (AMM) and Markov random field (MRF) model to obtain and 
upgrade the class conditional probability density function (CCPDF) 
and the a priori probability of each class. 

Bayesian Classification
The Bayes rule, Eq 2 , indicates how the posterior probability of a 
class is calculated, given feature measurements.

   
                                                                                                     (Eq 2)

In this equation, ωj refers to class jth and x is the feature vector. p(x|
ωj), p(ωj) and p(ωj|x) are the CCPDF, the a priori probability and the a 
posteriori probability of class j , respectively.

Markov random fields and Gibbs distributions
MRF models an image or a volume as a random field, a structured 
collection of random variables,  Ω= {1, . . . ,m}, and defined on the set 
S.There are two conditions for considering a random field as MRF

1. p(ωj) >0,   ∀ ∈ Ω, Condition of positivity,

2. p(ωj |ωS−{j}) = p(ωj |ωNj ), Condition of Markovianity.

ω is a Gibbs Random Field (GRF) with respect to the neighborhood 
sytem if:

                                                                                                (Eq 4)

Where Z is a normalization constant, T is the temperature parameter. 
U(ω) is the energy function where Vc(ω) is a potential function. 

  

Model for Image Classification
Usinng a Bayesian classifer end Computation of the a priori 
probability by MRF model we can conver the product of the probability 
in a energy form:

                                                                                               (Eq 5)

where  is a weighting parameter to determine how much ER and EF 
individually contribute to the entire energy E[4]. For the model (5), the 
MAP may be any of the following:

                                                                                                (Eq 6)

Eq. (6) means that maximizing the posteriori conditional probability 
distribution or Gibbs distribution is equivalent to minimizing the energy 
of the model.

Data Set
Fourteen MS patients (nine with relapsing-remitting MS, RRMS; five 
with secondary progressive MS, SPMS; mean±SD age=38.9±12.9 
years; median Expanded Disability Status Scale=3.0, range=1.0-6.5; 
mean±SD disease duration=10.2±7.7 years) and eight age-matched 
controls were scanned twice on a human 7T Siemens scanner using 
an in-house developed 8- or 32-channel phased array coil, and on a 
3T Siemens Tim Trio scanner using the Siemens 32-channel coil.

Result Validation
The algorithm performance will be evaluated by comparing lesion 
volumes obtained by both; the algorithm and experimented 
radiologists.

Abstract
The purpose of this project is to develop robust algorithms for 
detection, segmentation and determination of different stages of MS 
cortical lesions in brain MR T2* images. The proposed approach is to 
improve existing approaches according with the new requirements, 
specially the subtle signal variations between normal and lesion 
tissues.  

Problem
The in vivo study of cortical lesions in Multiple Sclerosis (MS)  is 
constrained by the technical limitations of currently available Magnetic 
Resonance (MR) techniques including limited image resolution and 
low contrast between small cortical lesions and surrounding normal 
cortical GM[1]. 

Cortical multiple sclerosis lesions are difficult to detect in 7T T2* 
becouse:

a)To be required three independent scans to form an data set, Fig 1.

b) Poor contrast between grey and white matter, Fig 2;

c) Spatial variation in healthy and lesion grey matter, Fig 2;

 

Methods
For the detection, evaluation and segmentation of cortical lesions in 
MS we propose the MAP scheme previously described with the 
following changes:

1) Instead usinng all brain for segmentation for segmentation MS 
lesions [2][3], we selected only the cortex data by using FreeSurfer 
http://surfer.nmr.mgh.harvard.edu based tools, Figura . This approach 
reduces the number of classes involved diminishing the confusability 
among classes and perhaps improving the classification performance. 
In this case only two different tissue classes exist; normal and lesion 
tissue. 

Figure 1: Three independent scans to 
form an data set.

Figure 2:  Poor contrast between grey and white matter and Spatial 
variation in healthy and lesion grey mattert.
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Figure 3: Result of applying the proposed algorithm in reference[3] to the image of a patient with moderate 
lesion load: (a) input image  (b) segmentation of lesions. c) The original 37 T2* image. d) Application the 
Freesurfer tool to extract the cortex.
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