

Escola de Engenharia

Semana da Escola de Engenharia

October 24 - 27, 2011

Effective Self-Provisioning of Hardware Infrastructure by

Assessing Application Scalability

Nuno A. Carvalho and José Pereira

Department of Informatics

E-mail: nuno@di.uminho.pt

KEYWORDS

Scalability, Dependability, Distributed Systems.

ABSTRACT

Assigning virtual machines to physical hosts and

allocating specific resources to virtual machines (e.g.

processor cores) is a key issue for a cloud computing

provider offering Infrastructure-as-a-Service (IaaS).

Underprovisioning of resources fails to fulfill the

promise of infinite resources. For the provider, it limits

the amount of actual usage that can be charged to

clients. On the other hand, overprovisioning makes

inefficient usage of physical infrastructure. Moreover,

provisioning decisions must change as application

requirements have to be satisfied dynamically.

In this paper, we show that straightforward usage of

reactive adaptation mechanisms based on measurement

of CPU core usage often leads to unstable behavior.

Trying to avoid such frequent reconfiguration and

associated downtime by introducing inertia, results again

in sub-optimal resource occupation and failure to adapt

timely. We then solve this problem by introducing an

adaptation mechanism based on estimation of the

system's scalability curve and show that it improves both

resource occupation and allows faster reaction to

changing requirements.

INTRODUCTION

Currently there is a great complexity between the quality

of services provided and the cost of its availability, i.e.,

by applying strict rules to lower costs imposed by the

current business models, but aimed to an growing

market, many companies are migrating their products

and services solutions to the cloud. This change makes

resource management much simpler, both in terms of

hardware, it ceases to be a concern, and at the financial

level, because is only needed to pay the used resources,

eliminating the risk of overbooking or not sufficient

hardware.

Yet this simplicity in resource management has a hidden

side, the complex issues of provisioning have to be

solved by someone, as well as other issues implicit in

this business model on the side of the cloud provider,

such as how to: 1) know the occupation of the nodes, as

well as its characterization, to be able to allocate

multiple clients in the most economic and efficient

configuration as possible, usually two conflicting

objectives; 2) measure the utilization of applications of

different customers, without knowing the application

itself, that is, each application is a black box; 3) predict

what will happen in order to avoid service failures,

heavily penalized by service level agreements (SLA).

Most cloud providers rely on fixed adaptation policies,

which have been continuously manually adjusted but can

not embrace the huge diversity of behaviors displayed

by the various applications, which often lead to wrong

decisions, or at least not as efficient as desirable. This is

compounded by the increasing complexity which

characterizes distributed applications, e.g., services

provided by telecommunications carriers, or the eternal

beta web applications where changes are performed at a

dizzying pace. This leads to the key factors affecting the

performance change from day to day, but especially they

are not those expected either by administrators or by the

developers themselves. Which are often called upon to

carry out a description of the host application, that only

aggravate the wrong decisions, in particular when what

is at stake is the allocation in the same machine of

various components of a single application.

These issues take on even greater importance when

directly affect the amount charged to customers, i.e., the

amounts charged depends directly on the resources

allocated, if its allocation is not efficient. For example,

if are allocated more resources than needed, clients will

pay for resources that do not have provided increased

performance, being so heavily penalized. Furthermore,

these improperly allocated resources could be used to

Escola de Engenharia

Semana da Escola de Engenharia

October 24 - 27, 2011

accommodate new customers, or turned off, thereby

reducing the energy bill.

In this paper we address the problem of achieving both

optimal resource occupation and faster reaction to

changing requirements related to CPU utilization. The

proposed method and tool, through the discovery of the

system's scalability curve, is able to decide whether it is

really desirable, both in terms of resources and

performance, to add or remove CPU cores to or from the

system.

SYSTEM SCALABILITY

The main problem of existing adaptation mechanisms is

not knowing the scalability limits of the application, that

is, they assume that all CPU core additions results in

linear increase in performance. The application may be

limited by software and not by hardware, the most usual

cause nowadays. This omission leads to wrong

decisions, or at least not as efficient as desirable.

Our approach [1] fills this assumption, because knowing

the scalability curve we know the outcome of the

hardware deployment modification before realizing it,

thus avoiding unstable or even non-optimal

configurations, that without the need to know the

application or the need to use benchmarks to define the

application behaviour or the safety interval, not needed

anymore.

In Figure 1 we can see the scalability curve of a given

system, on which is clearly observable the number of

CPU cores, from which the configuration is no longer

optimal, namely different from 10 cores, setting until

each increment has a performance gain greater than or

equal to 5%. This threshold on the performance gain of

adding a CPU core is a parameter of the cloud provider,

being in charge of decide if want more reacting

configurations by choosing a small threshold, which will

make the adaptation mechanism more sensitive to the

workload, or more conservative settings in which will

require a major change in workload to trigger

adaptations. This decision can also be delegated to the

costumer, since it directly influences the quantity of

allocated resources, i.e., the lower the threshold the

greater the maximum number of allocated resources,

having direct influence on the amount charged to the

customer.

CONCLUSIONS

In this paper, we propose an adaptation mechanism

based on the estimation of the system's scalability curve,

and present a set of tools that implement the proposed

approach. Our approach provides a effective way to

assess and improve resource allocation.

The results show the effectiveness of our approach,

cause unlike conventional solutions, it ponders his

decisions with the system's scalability curve, achieving

more efficient configurations, even allowing for optimal

allocation according to different goals such as

performance, cost or power consumption.

REFERENCES

[1] N. A. Carvalho and J. Pereira. Measuring software

systems scalability for proactive data center

management. In R. Meersman, T. Dillon, and P.

Herrero, editors, On the Move to Meaningful

Internet Systems, OTM 2010, volume 6427 of

Lecture Notes in Computer Science, pages 829–842.

Springer Berlin / Heidelberg, 2010. 10.1007/978-3-

642-16949-6 11.

AUTHORS’ BIOGRAPHIES

NUNO A. CARVALHO went to the Universidade do

Minho, where he studied Computer Science and Systems

Engineering and obtained his degree. He worked as a

researcher in the IST FP6 project ”GORDA - Open

Replication of Databases” and P-SON project

“Probabilistically-Structured Overlay Networks”.

Currently, he is in the MAP-i Doctoral Programme

doing his PhD entitled “Self-Managing Service

Platform”. His e-mail address is: nuno@di.uminho.pt

and his web page can be found at

http://gsd.di.uminho.pt/members/nac.

Figure 1: Scalability curve for a given system

